Abstract

A standoff method of detecting liquids on terrestrial and synthetic landscapes is presented. The interstitial liquid layers are identified through their unique molecular vibration modes in the 7.14–14.29-µm middle infrared (fingerprint) region of liberated thermal luminescence. Several seconds of 2.45-GHz beam exposure at 1.5 W cm-1 is sufficient for detecting polydimethyl siloxane lightly wetting the soil through its fundamental Si–CH3 and Si–O–Si stretching modes in the fingerprint region. A detection window of thermal opportunity opens as the surface attains maximum thermal gradient following irradiation by the microwave beam. The contaminant is revealed inside this window by means of a simple difference-spectrum measurement. Our goal is to reduce the time needed for optimum detection of the contaminant’s thermal spectrum to a subsecond exposure from a limited intensity beam.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. L. Henderson, M. F. Baumgardner, D. P. Franzmeier, D. E. Stott, D. C. Coster, “High dimensional reflectance analysis of soil organic matter,” Soil Sci. Soc. Am. J. 53, 865–872 (1992).
    [CrossRef]
  2. M. M. Verstraete, R. E. Dickinson, “A physical model of the bidirectional reflectance of vegetation canopies. 2. Inversion and validation,” J. Geophys. Res. 95, 11,767–11,775 (1990).
    [CrossRef]
  3. R. M. Narayanan, S. E. Green, D. R. Alexander, “Midinfrared laser reflectance of moist soils,” Appl. Opt. 32, 6043–6052 (1993).
    [CrossRef] [PubMed]
  4. W. C. Snyder, W. Zhengming, “Surface temperature correction for active infrared reflectance measurements of natural materials,” Appl. Opt. 35, 2216–2220 (1996).
    [CrossRef] [PubMed]
  5. J. L. Thomson, J. W. Salisbury, “Midinfrared reflectance of mineral mixtures (7–14 µm),” Remote Sens. Environ. 45(1), 1–13 (1993).
    [CrossRef]
  6. A. B. Kahle, F. D. Palluconi, S. J. Hook, J. Realmuto, G. Bothwell, “The Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER),” Int. J. Imaging Syst. Technol. 3(2), 144–156 (1991).
    [CrossRef]
  7. G. N. Pearson, M. Harris, D. V. Willetts, P. R. Tapster, P. J. Roberts, “Differential laser absorption and thermal emission for remote identification of opaque surface coatings,” Appl. Opt. 36, 2713–2720 (1997).
    [CrossRef] [PubMed]
  8. Z. L. Lee, F. Becker, “Feasibility of land surface temperature and emissivity determination from AVRR data,” Remote Sens. Environ. 43(1), 67–85 (1993).
  9. A. Hayden, “Determination of trace-gas amounts in plumes by the use of orthogonal digital filtering of thermal-emission spectra,” Appl. Opt. 35, 2802–2809 (1996).
    [CrossRef] [PubMed]
  10. K. P. Gaikovich, “Stochastic theory of temperature distribution and thermal emission of half-space with random time-dependent surface temperature,” IEEE Trans. Geosc. Remote Sens. 34, 582–587 (1996).
    [CrossRef]
  11. M. G. Bulatov, Yu. A. Kravtsov, V. G. Pungin, E. I. Skvortsov, “Effect of rainfall on sea-surface microwave thermal emission,” Waves Random Media 8(1), 103–109 (1998).
    [CrossRef]
  12. D. Courtois, C. Thiebeaux, A. Delahaigue, J. C. Mouanda, “Thermal emission detection by laser heterodyne radiometry,” Opt. Laser Technol. 22(2), 131–135 (1990).
    [CrossRef]
  13. A. H. Carrieri, “Infrared detection of liquids on terrestrial surfaces by CO2 laser heating,” Appl. Opt. 29, 4907–4913 (1990).
    [CrossRef] [PubMed]
  14. S. M. Haugland, E. Z. Bahar, A. H. Carrieri, “Identification of contaminant coatings over rough surfaces using polarized infrared scattering,” Appl. Opt. 31, 3847–3852 (1992).
    [CrossRef] [PubMed]
  15. A. H. Carrieri, J. R. Bottiger, D. J. Owens, E. S. Roese, “Differential absorption Mueller matrix spectroscopy and the infrared detection of crystalline organics,” Appl. Opt. 37, 6550–6557 (1998).
    [CrossRef]
  16. A. H. Carrieri, “Neural network pattern recognition by means of differential absorption Mueller matrix spectroscopy,” Appl. Opt. 38, 3759–3766 (1999).
    [CrossRef]
  17. A. H. Carrieri, P. I. Lim, “Neural network pattern recognition of thermal-signature spectra for chemical defense,” Appl. Opt. 34, 2623–2635 (1995).
    [CrossRef] [PubMed]

1999 (1)

1998 (2)

A. H. Carrieri, J. R. Bottiger, D. J. Owens, E. S. Roese, “Differential absorption Mueller matrix spectroscopy and the infrared detection of crystalline organics,” Appl. Opt. 37, 6550–6557 (1998).
[CrossRef]

M. G. Bulatov, Yu. A. Kravtsov, V. G. Pungin, E. I. Skvortsov, “Effect of rainfall on sea-surface microwave thermal emission,” Waves Random Media 8(1), 103–109 (1998).
[CrossRef]

1997 (1)

1996 (3)

1995 (1)

1993 (3)

R. M. Narayanan, S. E. Green, D. R. Alexander, “Midinfrared laser reflectance of moist soils,” Appl. Opt. 32, 6043–6052 (1993).
[CrossRef] [PubMed]

J. L. Thomson, J. W. Salisbury, “Midinfrared reflectance of mineral mixtures (7–14 µm),” Remote Sens. Environ. 45(1), 1–13 (1993).
[CrossRef]

Z. L. Lee, F. Becker, “Feasibility of land surface temperature and emissivity determination from AVRR data,” Remote Sens. Environ. 43(1), 67–85 (1993).

1992 (2)

T. L. Henderson, M. F. Baumgardner, D. P. Franzmeier, D. E. Stott, D. C. Coster, “High dimensional reflectance analysis of soil organic matter,” Soil Sci. Soc. Am. J. 53, 865–872 (1992).
[CrossRef]

S. M. Haugland, E. Z. Bahar, A. H. Carrieri, “Identification of contaminant coatings over rough surfaces using polarized infrared scattering,” Appl. Opt. 31, 3847–3852 (1992).
[CrossRef] [PubMed]

1991 (1)

A. B. Kahle, F. D. Palluconi, S. J. Hook, J. Realmuto, G. Bothwell, “The Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER),” Int. J. Imaging Syst. Technol. 3(2), 144–156 (1991).
[CrossRef]

1990 (3)

M. M. Verstraete, R. E. Dickinson, “A physical model of the bidirectional reflectance of vegetation canopies. 2. Inversion and validation,” J. Geophys. Res. 95, 11,767–11,775 (1990).
[CrossRef]

D. Courtois, C. Thiebeaux, A. Delahaigue, J. C. Mouanda, “Thermal emission detection by laser heterodyne radiometry,” Opt. Laser Technol. 22(2), 131–135 (1990).
[CrossRef]

A. H. Carrieri, “Infrared detection of liquids on terrestrial surfaces by CO2 laser heating,” Appl. Opt. 29, 4907–4913 (1990).
[CrossRef] [PubMed]

Alexander, D. R.

Bahar, E. Z.

Baumgardner, M. F.

T. L. Henderson, M. F. Baumgardner, D. P. Franzmeier, D. E. Stott, D. C. Coster, “High dimensional reflectance analysis of soil organic matter,” Soil Sci. Soc. Am. J. 53, 865–872 (1992).
[CrossRef]

Becker, F.

Z. L. Lee, F. Becker, “Feasibility of land surface temperature and emissivity determination from AVRR data,” Remote Sens. Environ. 43(1), 67–85 (1993).

Bothwell, G.

A. B. Kahle, F. D. Palluconi, S. J. Hook, J. Realmuto, G. Bothwell, “The Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER),” Int. J. Imaging Syst. Technol. 3(2), 144–156 (1991).
[CrossRef]

Bottiger, J. R.

Bulatov, M. G.

M. G. Bulatov, Yu. A. Kravtsov, V. G. Pungin, E. I. Skvortsov, “Effect of rainfall on sea-surface microwave thermal emission,” Waves Random Media 8(1), 103–109 (1998).
[CrossRef]

Carrieri, A. H.

Coster, D. C.

T. L. Henderson, M. F. Baumgardner, D. P. Franzmeier, D. E. Stott, D. C. Coster, “High dimensional reflectance analysis of soil organic matter,” Soil Sci. Soc. Am. J. 53, 865–872 (1992).
[CrossRef]

Courtois, D.

D. Courtois, C. Thiebeaux, A. Delahaigue, J. C. Mouanda, “Thermal emission detection by laser heterodyne radiometry,” Opt. Laser Technol. 22(2), 131–135 (1990).
[CrossRef]

Delahaigue, A.

D. Courtois, C. Thiebeaux, A. Delahaigue, J. C. Mouanda, “Thermal emission detection by laser heterodyne radiometry,” Opt. Laser Technol. 22(2), 131–135 (1990).
[CrossRef]

Dickinson, R. E.

M. M. Verstraete, R. E. Dickinson, “A physical model of the bidirectional reflectance of vegetation canopies. 2. Inversion and validation,” J. Geophys. Res. 95, 11,767–11,775 (1990).
[CrossRef]

Franzmeier, D. P.

T. L. Henderson, M. F. Baumgardner, D. P. Franzmeier, D. E. Stott, D. C. Coster, “High dimensional reflectance analysis of soil organic matter,” Soil Sci. Soc. Am. J. 53, 865–872 (1992).
[CrossRef]

Gaikovich, K. P.

K. P. Gaikovich, “Stochastic theory of temperature distribution and thermal emission of half-space with random time-dependent surface temperature,” IEEE Trans. Geosc. Remote Sens. 34, 582–587 (1996).
[CrossRef]

Green, S. E.

Harris, M.

Haugland, S. M.

Hayden, A.

Henderson, T. L.

T. L. Henderson, M. F. Baumgardner, D. P. Franzmeier, D. E. Stott, D. C. Coster, “High dimensional reflectance analysis of soil organic matter,” Soil Sci. Soc. Am. J. 53, 865–872 (1992).
[CrossRef]

Hook, S. J.

A. B. Kahle, F. D. Palluconi, S. J. Hook, J. Realmuto, G. Bothwell, “The Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER),” Int. J. Imaging Syst. Technol. 3(2), 144–156 (1991).
[CrossRef]

Kahle, A. B.

A. B. Kahle, F. D. Palluconi, S. J. Hook, J. Realmuto, G. Bothwell, “The Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER),” Int. J. Imaging Syst. Technol. 3(2), 144–156 (1991).
[CrossRef]

Kravtsov, Yu. A.

M. G. Bulatov, Yu. A. Kravtsov, V. G. Pungin, E. I. Skvortsov, “Effect of rainfall on sea-surface microwave thermal emission,” Waves Random Media 8(1), 103–109 (1998).
[CrossRef]

Lee, Z. L.

Z. L. Lee, F. Becker, “Feasibility of land surface temperature and emissivity determination from AVRR data,” Remote Sens. Environ. 43(1), 67–85 (1993).

Lim, P. I.

Mouanda, J. C.

D. Courtois, C. Thiebeaux, A. Delahaigue, J. C. Mouanda, “Thermal emission detection by laser heterodyne radiometry,” Opt. Laser Technol. 22(2), 131–135 (1990).
[CrossRef]

Narayanan, R. M.

Owens, D. J.

Palluconi, F. D.

A. B. Kahle, F. D. Palluconi, S. J. Hook, J. Realmuto, G. Bothwell, “The Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER),” Int. J. Imaging Syst. Technol. 3(2), 144–156 (1991).
[CrossRef]

Pearson, G. N.

Pungin, V. G.

M. G. Bulatov, Yu. A. Kravtsov, V. G. Pungin, E. I. Skvortsov, “Effect of rainfall on sea-surface microwave thermal emission,” Waves Random Media 8(1), 103–109 (1998).
[CrossRef]

Realmuto, J.

A. B. Kahle, F. D. Palluconi, S. J. Hook, J. Realmuto, G. Bothwell, “The Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER),” Int. J. Imaging Syst. Technol. 3(2), 144–156 (1991).
[CrossRef]

Roberts, P. J.

Roese, E. S.

Salisbury, J. W.

J. L. Thomson, J. W. Salisbury, “Midinfrared reflectance of mineral mixtures (7–14 µm),” Remote Sens. Environ. 45(1), 1–13 (1993).
[CrossRef]

Skvortsov, E. I.

M. G. Bulatov, Yu. A. Kravtsov, V. G. Pungin, E. I. Skvortsov, “Effect of rainfall on sea-surface microwave thermal emission,” Waves Random Media 8(1), 103–109 (1998).
[CrossRef]

Snyder, W. C.

Stott, D. E.

T. L. Henderson, M. F. Baumgardner, D. P. Franzmeier, D. E. Stott, D. C. Coster, “High dimensional reflectance analysis of soil organic matter,” Soil Sci. Soc. Am. J. 53, 865–872 (1992).
[CrossRef]

Tapster, P. R.

Thiebeaux, C.

D. Courtois, C. Thiebeaux, A. Delahaigue, J. C. Mouanda, “Thermal emission detection by laser heterodyne radiometry,” Opt. Laser Technol. 22(2), 131–135 (1990).
[CrossRef]

Thomson, J. L.

J. L. Thomson, J. W. Salisbury, “Midinfrared reflectance of mineral mixtures (7–14 µm),” Remote Sens. Environ. 45(1), 1–13 (1993).
[CrossRef]

Verstraete, M. M.

M. M. Verstraete, R. E. Dickinson, “A physical model of the bidirectional reflectance of vegetation canopies. 2. Inversion and validation,” J. Geophys. Res. 95, 11,767–11,775 (1990).
[CrossRef]

Willetts, D. V.

Zhengming, W.

Appl. Opt. (9)

R. M. Narayanan, S. E. Green, D. R. Alexander, “Midinfrared laser reflectance of moist soils,” Appl. Opt. 32, 6043–6052 (1993).
[CrossRef] [PubMed]

W. C. Snyder, W. Zhengming, “Surface temperature correction for active infrared reflectance measurements of natural materials,” Appl. Opt. 35, 2216–2220 (1996).
[CrossRef] [PubMed]

G. N. Pearson, M. Harris, D. V. Willetts, P. R. Tapster, P. J. Roberts, “Differential laser absorption and thermal emission for remote identification of opaque surface coatings,” Appl. Opt. 36, 2713–2720 (1997).
[CrossRef] [PubMed]

A. Hayden, “Determination of trace-gas amounts in plumes by the use of orthogonal digital filtering of thermal-emission spectra,” Appl. Opt. 35, 2802–2809 (1996).
[CrossRef] [PubMed]

A. H. Carrieri, “Infrared detection of liquids on terrestrial surfaces by CO2 laser heating,” Appl. Opt. 29, 4907–4913 (1990).
[CrossRef] [PubMed]

S. M. Haugland, E. Z. Bahar, A. H. Carrieri, “Identification of contaminant coatings over rough surfaces using polarized infrared scattering,” Appl. Opt. 31, 3847–3852 (1992).
[CrossRef] [PubMed]

A. H. Carrieri, J. R. Bottiger, D. J. Owens, E. S. Roese, “Differential absorption Mueller matrix spectroscopy and the infrared detection of crystalline organics,” Appl. Opt. 37, 6550–6557 (1998).
[CrossRef]

A. H. Carrieri, “Neural network pattern recognition by means of differential absorption Mueller matrix spectroscopy,” Appl. Opt. 38, 3759–3766 (1999).
[CrossRef]

A. H. Carrieri, P. I. Lim, “Neural network pattern recognition of thermal-signature spectra for chemical defense,” Appl. Opt. 34, 2623–2635 (1995).
[CrossRef] [PubMed]

IEEE Trans. Geosc. Remote Sens. (1)

K. P. Gaikovich, “Stochastic theory of temperature distribution and thermal emission of half-space with random time-dependent surface temperature,” IEEE Trans. Geosc. Remote Sens. 34, 582–587 (1996).
[CrossRef]

Int. J. Imaging Syst. Technol. (1)

A. B. Kahle, F. D. Palluconi, S. J. Hook, J. Realmuto, G. Bothwell, “The Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER),” Int. J. Imaging Syst. Technol. 3(2), 144–156 (1991).
[CrossRef]

J. Geophys. Res. (1)

M. M. Verstraete, R. E. Dickinson, “A physical model of the bidirectional reflectance of vegetation canopies. 2. Inversion and validation,” J. Geophys. Res. 95, 11,767–11,775 (1990).
[CrossRef]

Opt. Laser Technol. (1)

D. Courtois, C. Thiebeaux, A. Delahaigue, J. C. Mouanda, “Thermal emission detection by laser heterodyne radiometry,” Opt. Laser Technol. 22(2), 131–135 (1990).
[CrossRef]

Remote Sens. Environ. (2)

J. L. Thomson, J. W. Salisbury, “Midinfrared reflectance of mineral mixtures (7–14 µm),” Remote Sens. Environ. 45(1), 1–13 (1993).
[CrossRef]

Z. L. Lee, F. Becker, “Feasibility of land surface temperature and emissivity determination from AVRR data,” Remote Sens. Environ. 43(1), 67–85 (1993).

Soil Sci. Soc. Am. J. (1)

T. L. Henderson, M. F. Baumgardner, D. P. Franzmeier, D. E. Stott, D. C. Coster, “High dimensional reflectance analysis of soil organic matter,” Soil Sci. Soc. Am. J. 53, 865–872 (1992).
[CrossRef]

Waves Random Media (1)

M. G. Bulatov, Yu. A. Kravtsov, V. G. Pungin, E. I. Skvortsov, “Effect of rainfall on sea-surface microwave thermal emission,” Waves Random Media 8(1), 103–109 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Computer model (top) and actual system (bottom) of the TLS. The sensor’s optical head is housed on a modified M116A2 military trailer with pedestal. The refurbished S-250 military shelter is equipped with data acquisition and processing and automation electronics, environment control hardware, global positioning system, and radio. Electrical power is supplied by a dc generator mounted in the HMMWV engine compartment, a dc battery bank is located in a side compartment of the vehicle, and a dc-to-ac converter is housed inside the shelter.

Fig. 2
Fig. 2

Principal components of the TLS transmitter and receiver optics.

Fig. 3
Fig. 3

Optical alignment of the TLS receiver. (a) The condenser’s primary mirror is coaligned with the horizontal axis (optical table). Incident from the left, a He–Ne alignment beam is retroreflected and superimposed by a flat mirror mounted to the telescope’s spider vertical frame (the spider is a radial mount for a 90° central flat reflector in the Newtonian telescope). Pinhole irises 1 and 2 are positioned in the superimposed beam. (b) A perpendicular axis is established by inserting a 90° reflector in the horizontal beam, just before the condenser, and retroreflecting it from a flat horizontal mirror on the optics table while iris 3 is inserted in the superimposed beam. (c) The triangular scanner structure is placed on its mount and an upward-vertical He–Ne beam is made to pass through iris 3, reflect 90° twice by reflector (b) and scanner mirrors, respectively, and then retroreflect. The scanner is rotated in exact increments of 120°, and angle adjustments (shimming) to its three mirror disks superimpose the retroreflected alignment beam.

Fig. 4
Fig. 4

Data collection by the TLS while traveling an open land area. The scanner tracks a fixed ground area (507 cm2) in the period T 1T 4 while projecting infrared radiance to a 10× beam condenser. The condensed radiance is directed to a spectrometer where interferograms are produced, grouped and coadded, Fourier transformed, and spectrally processed. A regulated magnetron beam source heats the ground, generating a thermal gradient and detection window for conducting a difference-spectrum (ΔS) measurement (during maximum gradient). ΔS contains enhanced thermal emission and absorption bands that identify the surface contaminant. The bottom photograph was taken of the receiver’s inner cradle that houses scanner, beam condenser, and FTIR spectrometer optics.

Fig. 5
Fig. 5

Operation flow chart of the TLS data-acquisition and processing systems with in-loop beam power regulation. Scanned radiant emissions collected from the surface (Fig. 4) are directed to and operated on by a Michelson interferometer, producing interference waveforms that are amplified and digitally recorded. The right-hand section of the chart shows how the TLS beam source is regulated to produce maximum TL flux from the irradiated ground. The left-hand section depicts how raw interferogram sets are coadded, transformed into thermal spectra, and prepared for submission to a neural network pattern recognition system. The bottom section shows postprocessing events including localization of the contaminant area by the global positioning system and instructions on how to deal with the threat. A/D, analog-to-digital; MCT, mercury cadmium telluride.

Fig. 6
Fig. 6

Processing of TLS data from a soil sample that is wetted with SF96 before submission to the neural network: (a) Coadded interferogram sets represent ambient and heated ground regions; (b) Fourier transformation of coadded interferogram sets; (c) slight graybody shift is an effect of microwave heating; (d) subtraction of similar spectra (ΔS) during the peak thermal gradient event identifies an emissions contrast by the SF96 layers; (e) specialized algorithms operate on ΔS clarifying the contaminant’s spectral presence; and (f) comparison of SF96 standard spectrum and TLS measurement. The neural network causes an alarm to trip against SF96 in this case. Note the presence of a second contaminant in (f).

Metrics