Abstract

Laser-induced incandescence is both characterized and demonstrated for the measurement of metal nanoparticle concentration. Reported are the results of an initial characterization of the spectral and temporal signature of the laser-induced incandescence as a function of the excitation laser fluence and wavelength. Validation of the incandescence as a measure of the concentration is demonstrated by absorption measurements. Fluence dependence measurements are also presented. Double-pulse measurements determine the fluence for the onset of vaporization-induced mass loss. Comparisons between the present observations and those for carbon nanostructures are also made. Metals tested include (in order of increasing vaporization temperature) Fe, Ti, Mo, and W.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. Dorman, ed., Magnetic Properties of Fine Particles (North-Holland, Amsterdam, 1992).
  2. M. Adelt, S. Nepijko, W. Drachsel, H.-J. Freund, “Size-dependent luminescence of small palladium particles,” Chem. Phys. Lett. 291, 425–432 (1998).
    [Crossref]
  3. S. Yatsuya, S. Kasukabe, R. Uyeda, “Formation of ultrafine particles by gas evaporation technique. I. Aluminum in helium,” Jpn. J. Appl. Phys. 12, 1675–1684 (1973).
    [Crossref]
  4. T. C. Pluym, Q. H. Powell, A. S. Gurav, T. L. Ward, T. T. Kodas, L. M. Wang, H. D. Glicksman, “Solid silver particle production by spray pyrolysis,” J. Aerosol Sci. 24, 383–392 (1993).
    [Crossref]
  5. V. Haas, R. Birringer, H. Gleiter, S. E. Pratsinis, “Synthesis of nanostructured powders in an aerosol flow condenser,” J. Aerosol Sci. 28, 1443–1453 (1997).
    [Crossref]
  6. J. I. Vovchuk, N. I. Polataev, “The temperature field of a laminar diffusion dust flame,” Combust. Flame 99, 706–712 (1994).
    [Crossref]
  7. A. J. Tulis, J. R. Selman, “Detonation tube studies of aluminum particles dispersed in air,” in Nineteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1982), pp. 655–663.
    [Crossref]
  8. R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
    [Crossref]
  9. R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in a diffusion flame,” Combust. Flame 51, 203–218 (1983).
    [Crossref]
  10. H. Chang, W. Y. Lin, P. Biswas, “An inversion technique to determine the aerosol size distribution in multicomponent systems from in-situ light scattering measurements,” Aerosol. Sci. Technol. 22, 24–32 (1995).
    [Crossref]
  11. N. A. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993).
    [Crossref]
  12. F. Cignoli, S. Benecchi, G. Zizak, “Time-delayed detection of laser-induced incandescence for the two-dimensional visualization of soot in flames,” Appl. Opt. 33, 5778–5782 (1994).
    [Crossref] [PubMed]
  13. R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards measurement of soot volume fraction,” Appl. Phys. B 59, 445–452 (1994).
    [Crossref]
  14. T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
    [Crossref] [PubMed]
  15. C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air flame,” Combust. Flame 99, 723–732 (1994).
    [Crossref]
  16. J. E. Dec, A. O. zur Loye, D. L. Siebers, “Soot distribution in D.I. diesel engine using 2-D imaging of laser-induced incandescence, elastic scattering, and flame luminosity,” SAE Technical Paper 910224 (Society of Automotive Engineers, Warrensdale, Pa., 1991).
  17. S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2277–2284.
    [Crossref]
  18. J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fractions from laser-induced incandescence by comparison with extinction measurements in laminar, premixed flat flames,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2387–2396.
    [Crossref]
  19. K. R. McManus, M. G. Allen, W. T. Rawlins, “Quantitative detection and imaging of soot particles by laser induced incandescence,” paper AIAA-97-0117, presented at the 35th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 6–10 January 1997 (American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York, 1997).
  20. National Institute of Standards Atomic Spectroscopy Database, Version 1.1 (National Institute of Standards and Technology, Gaithersburg, Md., 1994).
  21. R. A. Dobbins, C. M. Megardis, “Morphology of flame-generated soot as determined by thermophoretic sampling,” Langmuir 3, 254–259 (1987).
    [Crossref]
  22. G. M. Faeth, U. O. Koylu, “Soot morphology and optical properties in nonpremixed turbulent flame environments,” Combust. Sci. Technol. 108, 207–229 (1995).
    [Crossref]
  23. C. G. Morgan, “Laser-induced breakdown of gases,” Rep. Prog. Phys. 38, 621–665 (1975).
    [Crossref]
  24. T. L. Thiem, Y.-I. Lee, J. Sneddon, “Lasers in atomic spectrometry: selected applications,” Microchem. J. 45, 1–35 (1992).
    [Crossref]
  25. C. R. Shaddix, K. C. Smith, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
    [Crossref]
  26. P.-E. Bengtsson, M. Alden, “Soot visualization strategies using laser techniques,” J. Appl. Phys. B 60, 51–59 (1995).
    [Crossref]
  27. X. L. Mao, M. A. Shannon, A. J. Fernandez, R. E. Russo, “Temperature and emission spatial profiles of laser-induced plasmas during ablation using time-integrated emission spectroscopy,” Appl. Spectrosc. 49, 1054–1062 (1995).
    [Crossref]
  28. L. Brus, “Luminescence of silicon materials: chains, sheets, nanocrystals, nanowires, microcrystals and porous silicon,” J. Phys. Chem. 98, 3575–3581 (1994).
    [Crossref]
  29. P. M. Fauchet, “Photoluminescence and electroluminescence from porous silicon,” J. Lumin. 70, 294–309 (1996).
    [Crossref]
  30. M. Cardona, G. Guntherodt, eds., Light Scattering in Solids IV, Electronic Scattering, Spin Effects, SERS, and Morphic Effects (Springer-Verlag, Heidelberg, 1984).
    [Crossref]
  31. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, Springer Series in Material Science (Springer-Verlag, Heidelberg, 1995).
    [Crossref]
  32. G. Herzberg, Molecular Spectra and Molecular Structure III. Electronic Spectra and Electronic Structure of Polyatomic Molecules (Van Nostrand Reinhold, New York, 1966).
  33. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon and Breach, Amsterdam, 1996).
  34. B. Quay, T. W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
    [Crossref]
  35. P. Roth, A. V. Filippov, “In-situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996).
    [Crossref]
  36. B. Mewes, J. M. Seitzman, “Soot volume fraction and particle size measurements with laser-induced incandescence,” Appl. Opt. 36, 709–730 (1997).
    [Crossref] [PubMed]
  37. L. A. Melton, “Soot diagnostics based on laser-heating,” Appl. Opt. 23, 2201–2208 (1984).
    [Crossref]
  38. D. L. Hofeldt, “Real time soot concentration measurement technique for engine exhaust streams,” SAE Technical Paper 930079 (Society of Automotive Engineers, Warrensdale, Pa., 1993).
  39. A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4483 (1977).
    [Crossref]
  40. R. L. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35, 6548–6559 (1996).
    [Crossref] [PubMed]
  41. R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Optical and microscopy investigations of soot structure alterations by laser-induced incandescence,” Appl. Phys. B 67, 115–123 (1998).
    [Crossref]
  42. H. R. Leider, O. H. Krikorian, D. A. Young, “Thermodynamic properties of carbon up to the critical point,” Carbon 11, 555–559 (1973).
    [Crossref]
  43. C. J. Dasch, “Continuous-wave probe laser investigation of laser vaporization of small soot particles in a flame,” Appl. Opt. 23, 2209–2215 (1984).
    [Crossref] [PubMed]
  44. R. L. Vander Wal, K. A. Jensen, “Laser-induced incandescence: excitation intensity,” Appl. Opt. 37, 1607–1606 (1998).
    [Crossref]
  45. A. V. Filippov, M. W. Markus, P. Roth, “In-situ characterization of ultrafine particles by laser-induced incandescence: sizing and particle structure determination,” J. Aerosol Sci. 30, 71–87 (1999).
    [Crossref]

1999 (1)

A. V. Filippov, M. W. Markus, P. Roth, “In-situ characterization of ultrafine particles by laser-induced incandescence: sizing and particle structure determination,” J. Aerosol Sci. 30, 71–87 (1999).
[Crossref]

1998 (3)

R. L. Vander Wal, K. A. Jensen, “Laser-induced incandescence: excitation intensity,” Appl. Opt. 37, 1607–1606 (1998).
[Crossref]

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Optical and microscopy investigations of soot structure alterations by laser-induced incandescence,” Appl. Phys. B 67, 115–123 (1998).
[Crossref]

M. Adelt, S. Nepijko, W. Drachsel, H.-J. Freund, “Size-dependent luminescence of small palladium particles,” Chem. Phys. Lett. 291, 425–432 (1998).
[Crossref]

1997 (2)

V. Haas, R. Birringer, H. Gleiter, S. E. Pratsinis, “Synthesis of nanostructured powders in an aerosol flow condenser,” J. Aerosol Sci. 28, 1443–1453 (1997).
[Crossref]

B. Mewes, J. M. Seitzman, “Soot volume fraction and particle size measurements with laser-induced incandescence,” Appl. Opt. 36, 709–730 (1997).
[Crossref] [PubMed]

1996 (5)

P. M. Fauchet, “Photoluminescence and electroluminescence from porous silicon,” J. Lumin. 70, 294–309 (1996).
[Crossref]

C. R. Shaddix, K. C. Smith, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[Crossref]

P. Roth, A. V. Filippov, “In-situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996).
[Crossref]

R. L. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35, 6548–6559 (1996).
[Crossref] [PubMed]

R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
[Crossref]

1995 (5)

H. Chang, W. Y. Lin, P. Biswas, “An inversion technique to determine the aerosol size distribution in multicomponent systems from in-situ light scattering measurements,” Aerosol. Sci. Technol. 22, 24–32 (1995).
[Crossref]

T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
[Crossref] [PubMed]

G. M. Faeth, U. O. Koylu, “Soot morphology and optical properties in nonpremixed turbulent flame environments,” Combust. Sci. Technol. 108, 207–229 (1995).
[Crossref]

P.-E. Bengtsson, M. Alden, “Soot visualization strategies using laser techniques,” J. Appl. Phys. B 60, 51–59 (1995).
[Crossref]

X. L. Mao, M. A. Shannon, A. J. Fernandez, R. E. Russo, “Temperature and emission spatial profiles of laser-induced plasmas during ablation using time-integrated emission spectroscopy,” Appl. Spectrosc. 49, 1054–1062 (1995).
[Crossref]

1994 (6)

L. Brus, “Luminescence of silicon materials: chains, sheets, nanocrystals, nanowires, microcrystals and porous silicon,” J. Phys. Chem. 98, 3575–3581 (1994).
[Crossref]

B. Quay, T. W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[Crossref]

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air flame,” Combust. Flame 99, 723–732 (1994).
[Crossref]

F. Cignoli, S. Benecchi, G. Zizak, “Time-delayed detection of laser-induced incandescence for the two-dimensional visualization of soot in flames,” Appl. Opt. 33, 5778–5782 (1994).
[Crossref] [PubMed]

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards measurement of soot volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[Crossref]

J. I. Vovchuk, N. I. Polataev, “The temperature field of a laminar diffusion dust flame,” Combust. Flame 99, 706–712 (1994).
[Crossref]

1993 (2)

N. A. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993).
[Crossref]

T. C. Pluym, Q. H. Powell, A. S. Gurav, T. L. Ward, T. T. Kodas, L. M. Wang, H. D. Glicksman, “Solid silver particle production by spray pyrolysis,” J. Aerosol Sci. 24, 383–392 (1993).
[Crossref]

1992 (1)

T. L. Thiem, Y.-I. Lee, J. Sneddon, “Lasers in atomic spectrometry: selected applications,” Microchem. J. 45, 1–35 (1992).
[Crossref]

1987 (1)

R. A. Dobbins, C. M. Megardis, “Morphology of flame-generated soot as determined by thermophoretic sampling,” Langmuir 3, 254–259 (1987).
[Crossref]

1984 (2)

1983 (1)

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in a diffusion flame,” Combust. Flame 51, 203–218 (1983).
[Crossref]

1977 (1)

A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4483 (1977).
[Crossref]

1975 (1)

C. G. Morgan, “Laser-induced breakdown of gases,” Rep. Prog. Phys. 38, 621–665 (1975).
[Crossref]

1973 (2)

S. Yatsuya, S. Kasukabe, R. Uyeda, “Formation of ultrafine particles by gas evaporation technique. I. Aluminum in helium,” Jpn. J. Appl. Phys. 12, 1675–1684 (1973).
[Crossref]

H. R. Leider, O. H. Krikorian, D. A. Young, “Thermodynamic properties of carbon up to the critical point,” Carbon 11, 555–559 (1973).
[Crossref]

Adelt, M.

M. Adelt, S. Nepijko, W. Drachsel, H.-J. Freund, “Size-dependent luminescence of small palladium particles,” Chem. Phys. Lett. 291, 425–432 (1998).
[Crossref]

Alden, M.

P.-E. Bengtsson, M. Alden, “Soot visualization strategies using laser techniques,” J. Appl. Phys. B 60, 51–59 (1995).
[Crossref]

Allen, M. G.

K. R. McManus, M. G. Allen, W. T. Rawlins, “Quantitative detection and imaging of soot particles by laser induced incandescence,” paper AIAA-97-0117, presented at the 35th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 6–10 January 1997 (American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York, 1997).

Appel, J.

J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fractions from laser-induced incandescence by comparison with extinction measurements in laminar, premixed flat flames,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2387–2396.
[Crossref]

Benecchi, S.

Bengtsson, P.-E.

P.-E. Bengtsson, M. Alden, “Soot visualization strategies using laser techniques,” J. Appl. Phys. B 60, 51–59 (1995).
[Crossref]

Birringer, R.

V. Haas, R. Birringer, H. Gleiter, S. E. Pratsinis, “Synthesis of nanostructured powders in an aerosol flow condenser,” J. Aerosol Sci. 28, 1443–1453 (1997).
[Crossref]

Biswas, P.

H. Chang, W. Y. Lin, P. Biswas, “An inversion technique to determine the aerosol size distribution in multicomponent systems from in-situ light scattering measurements,” Aerosol. Sci. Technol. 22, 24–32 (1995).
[Crossref]

Bockhorn, H.

J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fractions from laser-induced incandescence by comparison with extinction measurements in laminar, premixed flat flames,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2387–2396.
[Crossref]

Brus, L.

L. Brus, “Luminescence of silicon materials: chains, sheets, nanocrystals, nanowires, microcrystals and porous silicon,” J. Phys. Chem. 98, 3575–3581 (1994).
[Crossref]

Chang, H.

H. Chang, W. Y. Lin, P. Biswas, “An inversion technique to determine the aerosol size distribution in multicomponent systems from in-situ light scattering measurements,” Aerosol. Sci. Technol. 22, 24–32 (1995).
[Crossref]

Choi, M. Y.

R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
[Crossref]

Cignoli, F.

Dasch, C. J.

Dec, J. E.

J. E. Dec, A. O. zur Loye, D. L. Siebers, “Soot distribution in D.I. diesel engine using 2-D imaging of laser-induced incandescence, elastic scattering, and flame luminosity,” SAE Technical Paper 910224 (Society of Automotive Engineers, Warrensdale, Pa., 1991).

Dobbins, R. A.

R. A. Dobbins, C. M. Megardis, “Morphology of flame-generated soot as determined by thermophoretic sampling,” Langmuir 3, 254–259 (1987).
[Crossref]

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in a diffusion flame,” Combust. Flame 51, 203–218 (1983).
[Crossref]

Drachsel, W.

M. Adelt, S. Nepijko, W. Drachsel, H.-J. Freund, “Size-dependent luminescence of small palladium particles,” Chem. Phys. Lett. 291, 425–432 (1998).
[Crossref]

Eckbreth, A. C.

A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4483 (1977).
[Crossref]

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon and Breach, Amsterdam, 1996).

Faeth, G. M.

G. M. Faeth, U. O. Koylu, “Soot morphology and optical properties in nonpremixed turbulent flame environments,” Combust. Sci. Technol. 108, 207–229 (1995).
[Crossref]

Fauchet, P. M.

P. M. Fauchet, “Photoluminescence and electroluminescence from porous silicon,” J. Lumin. 70, 294–309 (1996).
[Crossref]

Fernandez, A. J.

Filippov, A. V.

A. V. Filippov, M. W. Markus, P. Roth, “In-situ characterization of ultrafine particles by laser-induced incandescence: sizing and particle structure determination,” J. Aerosol Sci. 30, 71–87 (1999).
[Crossref]

P. Roth, A. V. Filippov, “In-situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996).
[Crossref]

Freund, H.-J.

M. Adelt, S. Nepijko, W. Drachsel, H.-J. Freund, “Size-dependent luminescence of small palladium particles,” Chem. Phys. Lett. 291, 425–432 (1998).
[Crossref]

Gleiter, H.

V. Haas, R. Birringer, H. Gleiter, S. E. Pratsinis, “Synthesis of nanostructured powders in an aerosol flow condenser,” J. Aerosol Sci. 28, 1443–1453 (1997).
[Crossref]

Glicksman, H. D.

T. C. Pluym, Q. H. Powell, A. S. Gurav, T. L. Ward, T. T. Kodas, L. M. Wang, H. D. Glicksman, “Solid silver particle production by spray pyrolysis,” J. Aerosol Sci. 24, 383–392 (1993).
[Crossref]

Greenhalgh, D. A.

N. A. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993).
[Crossref]

Gupta, S.

Gurav, A. S.

T. C. Pluym, Q. H. Powell, A. S. Gurav, T. L. Ward, T. T. Kodas, L. M. Wang, H. D. Glicksman, “Solid silver particle production by spray pyrolysis,” J. Aerosol Sci. 24, 383–392 (1993).
[Crossref]

Haas, V.

V. Haas, R. Birringer, H. Gleiter, S. E. Pratsinis, “Synthesis of nanostructured powders in an aerosol flow condenser,” J. Aerosol Sci. 28, 1443–1453 (1997).
[Crossref]

Harrington, J. E.

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air flame,” Combust. Flame 99, 723–732 (1994).
[Crossref]

Herzberg, G.

G. Herzberg, Molecular Spectra and Molecular Structure III. Electronic Spectra and Electronic Structure of Polyatomic Molecules (Van Nostrand Reinhold, New York, 1966).

Hofeldt, D. L.

D. L. Hofeldt, “Real time soot concentration measurement technique for engine exhaust streams,” SAE Technical Paper 930079 (Society of Automotive Engineers, Warrensdale, Pa., 1993).

Jensen, K. A.

Jungfleisch, B.

J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fractions from laser-induced incandescence by comparison with extinction measurements in laminar, premixed flat flames,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2387–2396.
[Crossref]

Kasukabe, S.

S. Yatsuya, S. Kasukabe, R. Uyeda, “Formation of ultrafine particles by gas evaporation technique. I. Aluminum in helium,” Jpn. J. Appl. Phys. 12, 1675–1684 (1973).
[Crossref]

Kodas, T. T.

T. C. Pluym, Q. H. Powell, A. S. Gurav, T. L. Ward, T. T. Kodas, L. M. Wang, H. D. Glicksman, “Solid silver particle production by spray pyrolysis,” J. Aerosol Sci. 24, 383–392 (1993).
[Crossref]

Koylu, U. O.

G. M. Faeth, U. O. Koylu, “Soot morphology and optical properties in nonpremixed turbulent flame environments,” Combust. Sci. Technol. 108, 207–229 (1995).
[Crossref]

Kreibig, U.

U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, Springer Series in Material Science (Springer-Verlag, Heidelberg, 1995).
[Crossref]

Krikorian, O. H.

H. R. Leider, O. H. Krikorian, D. A. Young, “Thermodynamic properties of carbon up to the critical point,” Carbon 11, 555–559 (1973).
[Crossref]

Lee, T. W.

B. Quay, T. W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[Crossref]

Lee, Y.-I.

T. L. Thiem, Y.-I. Lee, J. Sneddon, “Lasers in atomic spectrometry: selected applications,” Microchem. J. 45, 1–35 (1992).
[Crossref]

Leider, H. R.

H. R. Leider, O. H. Krikorian, D. A. Young, “Thermodynamic properties of carbon up to the critical point,” Carbon 11, 555–559 (1973).
[Crossref]

Leipertz, A.

S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2277–2284.
[Crossref]

Lin, W. Y.

H. Chang, W. Y. Lin, P. Biswas, “An inversion technique to determine the aerosol size distribution in multicomponent systems from in-situ light scattering measurements,” Aerosol. Sci. Technol. 22, 24–32 (1995).
[Crossref]

Mao, X. L.

Markus, M. W.

A. V. Filippov, M. W. Markus, P. Roth, “In-situ characterization of ultrafine particles by laser-induced incandescence: sizing and particle structure determination,” J. Aerosol Sci. 30, 71–87 (1999).
[Crossref]

Marquardt, M.

J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fractions from laser-induced incandescence by comparison with extinction measurements in laminar, premixed flat flames,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2387–2396.
[Crossref]

McManus, K. R.

K. R. McManus, M. G. Allen, W. T. Rawlins, “Quantitative detection and imaging of soot particles by laser induced incandescence,” paper AIAA-97-0117, presented at the 35th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 6–10 January 1997 (American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York, 1997).

Megardis, C. M.

R. A. Dobbins, C. M. Megardis, “Morphology of flame-generated soot as determined by thermophoretic sampling,” Langmuir 3, 254–259 (1987).
[Crossref]

Melton, L. A.

Mewes, B.

Morgan, C. G.

C. G. Morgan, “Laser-induced breakdown of gases,” Rep. Prog. Phys. 38, 621–665 (1975).
[Crossref]

Nepijko, S.

M. Adelt, S. Nepijko, W. Drachsel, H.-J. Freund, “Size-dependent luminescence of small palladium particles,” Chem. Phys. Lett. 291, 425–432 (1998).
[Crossref]

Ni, T.

T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
[Crossref] [PubMed]

B. Quay, T. W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[Crossref]

Pinson, J. A.

Pluym, T. C.

T. C. Pluym, Q. H. Powell, A. S. Gurav, T. L. Ward, T. T. Kodas, L. M. Wang, H. D. Glicksman, “Solid silver particle production by spray pyrolysis,” J. Aerosol Sci. 24, 383–392 (1993).
[Crossref]

Polataev, N. I.

J. I. Vovchuk, N. I. Polataev, “The temperature field of a laminar diffusion dust flame,” Combust. Flame 99, 706–712 (1994).
[Crossref]

Powell, Q. H.

T. C. Pluym, Q. H. Powell, A. S. Gurav, T. L. Ward, T. T. Kodas, L. M. Wang, H. D. Glicksman, “Solid silver particle production by spray pyrolysis,” J. Aerosol Sci. 24, 383–392 (1993).
[Crossref]

Pratsinis, S. E.

V. Haas, R. Birringer, H. Gleiter, S. E. Pratsinis, “Synthesis of nanostructured powders in an aerosol flow condenser,” J. Aerosol Sci. 28, 1443–1453 (1997).
[Crossref]

Quay, B.

B. Quay, T. W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[Crossref]

Rawlins, W. T.

K. R. McManus, M. G. Allen, W. T. Rawlins, “Quantitative detection and imaging of soot particles by laser induced incandescence,” paper AIAA-97-0117, presented at the 35th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 6–10 January 1997 (American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York, 1997).

Roth, P.

A. V. Filippov, M. W. Markus, P. Roth, “In-situ characterization of ultrafine particles by laser-induced incandescence: sizing and particle structure determination,” J. Aerosol Sci. 30, 71–87 (1999).
[Crossref]

P. Roth, A. V. Filippov, “In-situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996).
[Crossref]

Russo, R. E.

Santoro, R. J.

T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
[Crossref] [PubMed]

B. Quay, T. W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[Crossref]

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in a diffusion flame,” Combust. Flame 51, 203–218 (1983).
[Crossref]

Schraml, S.

S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2277–2284.
[Crossref]

Seitzman, J. M.

Selman, J. R.

A. J. Tulis, J. R. Selman, “Detonation tube studies of aluminum particles dispersed in air,” in Nineteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1982), pp. 655–663.
[Crossref]

Semerjian, H. G.

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in a diffusion flame,” Combust. Flame 51, 203–218 (1983).
[Crossref]

Shaddix, C. R.

C. R. Shaddix, K. C. Smith, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[Crossref]

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air flame,” Combust. Flame 99, 723–732 (1994).
[Crossref]

Shannon, M. A.

Siebers, D. L.

J. E. Dec, A. O. zur Loye, D. L. Siebers, “Soot distribution in D.I. diesel engine using 2-D imaging of laser-induced incandescence, elastic scattering, and flame luminosity,” SAE Technical Paper 910224 (Society of Automotive Engineers, Warrensdale, Pa., 1991).

Smith, K. C.

C. R. Shaddix, K. C. Smith, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[Crossref]

Smyth, K. C.

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air flame,” Combust. Flame 99, 723–732 (1994).
[Crossref]

Sneddon, J.

T. L. Thiem, Y.-I. Lee, J. Sneddon, “Lasers in atomic spectrometry: selected applications,” Microchem. J. 45, 1–35 (1992).
[Crossref]

Stephens, A. B.

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Optical and microscopy investigations of soot structure alterations by laser-induced incandescence,” Appl. Phys. B 67, 115–123 (1998).
[Crossref]

Suntz, R.

J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fractions from laser-induced incandescence by comparison with extinction measurements in laminar, premixed flat flames,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2387–2396.
[Crossref]

Tait, N. A.

N. A. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993).
[Crossref]

Thiem, T. L.

T. L. Thiem, Y.-I. Lee, J. Sneddon, “Lasers in atomic spectrometry: selected applications,” Microchem. J. 45, 1–35 (1992).
[Crossref]

Ticich, T. M.

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Optical and microscopy investigations of soot structure alterations by laser-induced incandescence,” Appl. Phys. B 67, 115–123 (1998).
[Crossref]

Tulis, A. J.

A. J. Tulis, J. R. Selman, “Detonation tube studies of aluminum particles dispersed in air,” in Nineteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1982), pp. 655–663.
[Crossref]

Uyeda, R.

S. Yatsuya, S. Kasukabe, R. Uyeda, “Formation of ultrafine particles by gas evaporation technique. I. Aluminum in helium,” Jpn. J. Appl. Phys. 12, 1675–1684 (1973).
[Crossref]

Vander Wal, R. L.

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Optical and microscopy investigations of soot structure alterations by laser-induced incandescence,” Appl. Phys. B 67, 115–123 (1998).
[Crossref]

R. L. Vander Wal, K. A. Jensen, “Laser-induced incandescence: excitation intensity,” Appl. Opt. 37, 1607–1606 (1998).
[Crossref]

R. L. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35, 6548–6559 (1996).
[Crossref] [PubMed]

R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
[Crossref]

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards measurement of soot volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[Crossref]

Vollmer, M.

U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, Springer Series in Material Science (Springer-Verlag, Heidelberg, 1995).
[Crossref]

Vovchuk, J. I.

J. I. Vovchuk, N. I. Polataev, “The temperature field of a laminar diffusion dust flame,” Combust. Flame 99, 706–712 (1994).
[Crossref]

Wang, L. M.

T. C. Pluym, Q. H. Powell, A. S. Gurav, T. L. Ward, T. T. Kodas, L. M. Wang, H. D. Glicksman, “Solid silver particle production by spray pyrolysis,” J. Aerosol Sci. 24, 383–392 (1993).
[Crossref]

Ward, T. L.

T. C. Pluym, Q. H. Powell, A. S. Gurav, T. L. Ward, T. T. Kodas, L. M. Wang, H. D. Glicksman, “Solid silver particle production by spray pyrolysis,” J. Aerosol Sci. 24, 383–392 (1993).
[Crossref]

Weiland, K. J.

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards measurement of soot volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[Crossref]

Will, S.

S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2277–2284.
[Crossref]

Yatsuya, S.

S. Yatsuya, S. Kasukabe, R. Uyeda, “Formation of ultrafine particles by gas evaporation technique. I. Aluminum in helium,” Jpn. J. Appl. Phys. 12, 1675–1684 (1973).
[Crossref]

Young, D. A.

H. R. Leider, O. H. Krikorian, D. A. Young, “Thermodynamic properties of carbon up to the critical point,” Carbon 11, 555–559 (1973).
[Crossref]

Zhou, Z.

R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
[Crossref]

Zizak, G.

zur Loye, A. O.

J. E. Dec, A. O. zur Loye, D. L. Siebers, “Soot distribution in D.I. diesel engine using 2-D imaging of laser-induced incandescence, elastic scattering, and flame luminosity,” SAE Technical Paper 910224 (Society of Automotive Engineers, Warrensdale, Pa., 1991).

Aerosol. Sci. Technol. (1)

H. Chang, W. Y. Lin, P. Biswas, “An inversion technique to determine the aerosol size distribution in multicomponent systems from in-situ light scattering measurements,” Aerosol. Sci. Technol. 22, 24–32 (1995).
[Crossref]

Appl. Opt. (7)

Appl. Phys. B (2)

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Optical and microscopy investigations of soot structure alterations by laser-induced incandescence,” Appl. Phys. B 67, 115–123 (1998).
[Crossref]

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards measurement of soot volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[Crossref]

Appl. Spectrosc. (1)

Ber. Bunsenges. Phys. Chem. (1)

N. A. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993).
[Crossref]

Carbon (1)

H. R. Leider, O. H. Krikorian, D. A. Young, “Thermodynamic properties of carbon up to the critical point,” Carbon 11, 555–559 (1973).
[Crossref]

Chem. Phys. Lett. (1)

M. Adelt, S. Nepijko, W. Drachsel, H.-J. Freund, “Size-dependent luminescence of small palladium particles,” Chem. Phys. Lett. 291, 425–432 (1998).
[Crossref]

Combust. Flame (6)

J. I. Vovchuk, N. I. Polataev, “The temperature field of a laminar diffusion dust flame,” Combust. Flame 99, 706–712 (1994).
[Crossref]

R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
[Crossref]

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in a diffusion flame,” Combust. Flame 51, 203–218 (1983).
[Crossref]

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air flame,” Combust. Flame 99, 723–732 (1994).
[Crossref]

C. R. Shaddix, K. C. Smith, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[Crossref]

B. Quay, T. W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[Crossref]

Combust. Sci. Technol. (1)

G. M. Faeth, U. O. Koylu, “Soot morphology and optical properties in nonpremixed turbulent flame environments,” Combust. Sci. Technol. 108, 207–229 (1995).
[Crossref]

J. Aerosol Sci. (4)

P. Roth, A. V. Filippov, “In-situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996).
[Crossref]

T. C. Pluym, Q. H. Powell, A. S. Gurav, T. L. Ward, T. T. Kodas, L. M. Wang, H. D. Glicksman, “Solid silver particle production by spray pyrolysis,” J. Aerosol Sci. 24, 383–392 (1993).
[Crossref]

V. Haas, R. Birringer, H. Gleiter, S. E. Pratsinis, “Synthesis of nanostructured powders in an aerosol flow condenser,” J. Aerosol Sci. 28, 1443–1453 (1997).
[Crossref]

A. V. Filippov, M. W. Markus, P. Roth, “In-situ characterization of ultrafine particles by laser-induced incandescence: sizing and particle structure determination,” J. Aerosol Sci. 30, 71–87 (1999).
[Crossref]

J. Appl. Phys. (1)

A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4483 (1977).
[Crossref]

J. Appl. Phys. B (1)

P.-E. Bengtsson, M. Alden, “Soot visualization strategies using laser techniques,” J. Appl. Phys. B 60, 51–59 (1995).
[Crossref]

J. Lumin. (1)

P. M. Fauchet, “Photoluminescence and electroluminescence from porous silicon,” J. Lumin. 70, 294–309 (1996).
[Crossref]

J. Phys. Chem. (1)

L. Brus, “Luminescence of silicon materials: chains, sheets, nanocrystals, nanowires, microcrystals and porous silicon,” J. Phys. Chem. 98, 3575–3581 (1994).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. Yatsuya, S. Kasukabe, R. Uyeda, “Formation of ultrafine particles by gas evaporation technique. I. Aluminum in helium,” Jpn. J. Appl. Phys. 12, 1675–1684 (1973).
[Crossref]

Langmuir (1)

R. A. Dobbins, C. M. Megardis, “Morphology of flame-generated soot as determined by thermophoretic sampling,” Langmuir 3, 254–259 (1987).
[Crossref]

Microchem. J. (1)

T. L. Thiem, Y.-I. Lee, J. Sneddon, “Lasers in atomic spectrometry: selected applications,” Microchem. J. 45, 1–35 (1992).
[Crossref]

Rep. Prog. Phys. (1)

C. G. Morgan, “Laser-induced breakdown of gases,” Rep. Prog. Phys. 38, 621–665 (1975).
[Crossref]

Other (12)

J. L. Dorman, ed., Magnetic Properties of Fine Particles (North-Holland, Amsterdam, 1992).

M. Cardona, G. Guntherodt, eds., Light Scattering in Solids IV, Electronic Scattering, Spin Effects, SERS, and Morphic Effects (Springer-Verlag, Heidelberg, 1984).
[Crossref]

U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, Springer Series in Material Science (Springer-Verlag, Heidelberg, 1995).
[Crossref]

G. Herzberg, Molecular Spectra and Molecular Structure III. Electronic Spectra and Electronic Structure of Polyatomic Molecules (Van Nostrand Reinhold, New York, 1966).

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon and Breach, Amsterdam, 1996).

D. L. Hofeldt, “Real time soot concentration measurement technique for engine exhaust streams,” SAE Technical Paper 930079 (Society of Automotive Engineers, Warrensdale, Pa., 1993).

A. J. Tulis, J. R. Selman, “Detonation tube studies of aluminum particles dispersed in air,” in Nineteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1982), pp. 655–663.
[Crossref]

J. E. Dec, A. O. zur Loye, D. L. Siebers, “Soot distribution in D.I. diesel engine using 2-D imaging of laser-induced incandescence, elastic scattering, and flame luminosity,” SAE Technical Paper 910224 (Society of Automotive Engineers, Warrensdale, Pa., 1991).

S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2277–2284.
[Crossref]

J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fractions from laser-induced incandescence by comparison with extinction measurements in laminar, premixed flat flames,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2387–2396.
[Crossref]

K. R. McManus, M. G. Allen, W. T. Rawlins, “Quantitative detection and imaging of soot particles by laser induced incandescence,” paper AIAA-97-0117, presented at the 35th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 6–10 January 1997 (American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York, 1997).

National Institute of Standards Atomic Spectroscopy Database, Version 1.1 (National Institute of Standards and Technology, Gaithersburg, Md., 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Experimental schematic.

Fig. 2
Fig. 2

TEM of W nanostructures illustrating the internal structure of aggregates.

Fig. 3
Fig. 3

TEM of W nanostructures illustrating aggregate morphology.

Fig. 4
Fig. 4

Spectrally resolved emissions from W nanostructures at the indicated excitation fluences by use of 1064-nm light. We collected the prompt spectra coincident with the laser pulse using an intensifier gate width of 100 ns, and the delayed spectra were collected 200 ns after the laser pulse using a gate width of 50 ns.

Fig. 5
Fig. 5

Temporally resolved emission from W nanostructures detected at 426 and 500 nm with a spectral bandwidth of 12 nm. The excitation wavelength was 1064 nm.

Fig. 6
Fig. 6

Semilog plot of temporally resolved emission from W observed at 426 and 500 nm at the indicated fluence levels.

Fig. 7
Fig. 7

Spectrally resolved emissions from Fe nanostructures at the different indicated excitation fluences by use of 1064-nm light. We collected the prompt spectra coincident with the laser pulse using an intensifier gate width of 50 ns, and the delayed spectra were collected 50 ns after the laser pulse using a gate width of 50 ns.

Fig. 8
Fig. 8

Temporally resolved emission from Fe nanostructures detected at 343 and 500 nm with a spectral bandwidth of 12 nm. The excitation wavelength was 1064 nm.

Fig. 9
Fig. 9

Semilog plot of temporally resolved emission from Fe observed at 343 and 500 nm at the indicated fluence levels.

Fig. 10
Fig. 10

Spectrally resolved emissions from Mo nanostructures at the different indicated excitation fluences by use of 1064-nm light. We collected the prompt spectra coincident with the laser pulse using an intensifier gate width of 50 ns, and the delayed spectra were collected 50 ns after the laser pulse using a gate width of 50 ns.

Fig. 11
Fig. 11

Temporally resolved emission from Mo nanostructures detected at 500 nm with a spectral bandwidth of 12 nm. The excitation wavelength was 1064 nm. The curves have been temporally shifted for clarity.

Fig. 12
Fig. 12

Semilog plot of temporally resolved emission from Mo observed at 500 nm at the indicated fluence levels.

Fig. 13
Fig. 13

Spectrally resolved emissions from Ti nanostructures at the different indicated excitation fluences by use of 1064-nm light. We collected the prompt spectra coincident with the laser pulse using an intensifier gate width of 50 ns, and the delayed spectra were collected 50 ns after the laser pulse using a gate width of 50 ns.

Fig. 14
Fig. 14

Temporally resolved emission from Ti nanostructures detected at 500 nm with a spectral bandwidth of 12 nm. The excitation wavelength was 1064 nm. The curves have been temporally shifted for clarity.

Fig. 15
Fig. 15

Comparison between the LII signal and the relative particle mass concentration for W and Fe as measured by absorbance at 670 nm.

Fig. 16
Fig. 16

Excitation fluence dependence (by use of 1064-nm light) of the LII signal from laser-heated W nanostructures.

Fig. 17
Fig. 17

Comparison of the temporally resolved emission from W nanostructures heated to incandescence temperatures by two successive laser pulses (at 1064 nm) of identical fluences separated in time by approximately 50 µs.

Tables (1)

Tables Icon

Table 1 Metal Aerosol Size Characterization

Metrics