Abstract

The design of Fabry–Perot etalons for direct detection Doppler wind lidar from a satellite is considered for two direct detection methods, fringe imaging (multichannel) and double edge. The area solid-angle product of the etalon for each technique is derived and shown to be inherently larger, for a given etalon aperture, for the fringe imager than for the double-edge Doppler analyzer. Modeling of the Doppler measurement accuracy of a spaceflight direct detection wind lidar shows that a very large optical aperture, 2 m or more, is necessary. Optical throughput matching to a 2-m collector requires, for the fringe-imaging Doppler analyzer, an etalon with 60 mm aperture, whereas the double-edge technique would require two etalons of 200 mm aperture, or a split-aperture etalon of 400 mm working aperture. Because the two direct detection methods have been shown to have practically identical intrinsic sensitivities (measurement accuracies per unit signal), this difference in etalon dimensions may be a significant selection consideration.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. J. Abreu, “Wind measurements from an orbital platform using a lidar system with incoherent detection: an analysis,” Appl. Opt. 18, 2992–2997 (1979).
    [CrossRef] [PubMed]
  2. K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
    [CrossRef]
  3. W. R. Skinner, P. B. Hays, “Incoherent Doppler lidar for measurement of atmospheric winds,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, P. B. Hays, eds., Proc. SPIE2266, 383–394 (1994).
    [CrossRef]
  4. M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
    [CrossRef]
  5. C. L. Korb, B. M. Gentry, C. Y. Weng, “Edge technique: theory and application to the lidar measurement of atmospheric wind,” Appl. Opt. 31, 4202–4213 (1992).
    [CrossRef] [PubMed]
  6. M. J. McGill, J. D. Spinhirne, “Comparison of two direct-detection Doppler lidar techniques,” Opt. Eng. 37, 2675–2686 (1998).
    [CrossRef]
  7. J. A. McKay, “Modeling of direct detection Doppler wind lidar: I. The edge technique,” Appl. Opt. 37, 6480–6486 (1998).
    [CrossRef]
  8. J. A. McKay, “Modeling of direct detection Doppler wind lidar: II. The fringe imaging technique,” Appl. Opt. 37, 6487–6493 (1998).
    [CrossRef]
  9. J. A. McKay, “Direct detection Doppler wind lidar for spaceflight,” in Proceedings of the 19th International Laser Radar Conference, Conference Publication 1998-207671 (NASA Scientific and Technical Information Program Office, Hanover, Md., 1998), Part 2, pp. 595–599.
  10. B. M. Gentry, C. L. Korb, “Edge technique for high-accuracy Doppler velocimetry,” Appl. Opt. 33, 5770–5777 (1994).
    [CrossRef] [PubMed]
  11. C. L. Wyatt, Radiometric System Design (Macmillan, New York, 1987), Sect. 3.2.4.
  12. D. Rees, I. McWhirter, P. B. Hays, T. Dines, “A stable, rugged, capacitance-stabilised piezoelectric scanned Fabry-Perot etalon,” J. Phys. E 14, 1320–1325 (1981).
    [CrossRef]
  13. B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I: Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sensing 31, 16–27 (1993).
    [CrossRef]
  14. J.-M. Gagné, J.-P. Saint-Dizier, M. Picard, “Méthode d’echantillonage des fonctions déterministes en spectroscopie: application à un spectromètre multicanal par comptage photonique,” Appl. Opt. 13, 581–588 (1974).
    [CrossRef]
  15. C. Flesia, C. L. Korb, “Theory of the double-edge molecular technique for Doppler lidar wind measurement,” Appl. Opt. 38, 432–440 (1999).
    [CrossRef]
  16. A. Garnier, M. L. Chanin, “Description of a Doppler Rayleigh LIDAR for measuring winds in the middle atmosphere,” Appl. Phys. B 55, 35–40 (1992).
    [CrossRef]
  17. M. L. Chanin, A. Hauchecorne, A. Garnier, D. Nedelikovic, “Recent lidar developments to monitor stratosphere-troposphere exchange,” J. Atmos. Terr. Phys. 56, 1073–1081 (1994).
    [CrossRef]
  18. “Definition and preliminary design of the laser atmospheric wind sounder (LAWS),” (GE Astro Space Co., P.O. Box 800, Princeton N.J. 08540, 1992).
  19. “Global wind profiles,” (National Oceanic and Atmospheric Administration, 1305 East West Highway, Silver Spring Md. 20910, 1998).
  20. “Unaccommodated environmental data records: technology status and promising technological areas” (National Polar-orbiting Operational Environmental Satellite System Integrated Program Office, Silver Spring, Md. 20910, 1996).
  21. A. Stoffelen, G.-J. Marseille, “Study on the utility of a Doppler wind lidar for numerical weather prediction and climate,” , Royal Netherlands Meteorological Institute (KNMI), pub., 3730 AE De Bilt, The Netherlands (1998).
  22. M. S. Lake, J. E. Phelps, J. E. Dyer, D. A. Caudle, A. Tam, J. Escobedo, E. P. Kasl, “A deployable primary mirror for space telescopes,” in Advanced Telescope Design, Fabrication, and Control, B. Roybal, ed., Proc. SPIE3785, (1999).
    [CrossRef]
  23. P. B. Hays, “Circle to line interferometer optical system,” Appl. Opt. 29, 1482–1489 (1990).
    [CrossRef] [PubMed]
  24. M. J. McGill, M. Marzouk, V. S. Scott, J. D. Spinhirne, “Holographic circle-to-point converter with particular applications for lidar work,” Opt. Eng. 36, 2171–2175 (1997).
    [CrossRef]
  25. G. D. Emmitt, J. Spinhirne, R. Menzies, D. Winker, D. Bowdle, “Target atmospheres for use in DWL concept studies,” 4th draft, February1998. This can be found at http://cyclone.swa.com/LidarProducts/targetAtm/ .
  26. P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, W. R. Skinner, “The High-Resolution Doppler Imager on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10,713–10,723 (1993).
    [CrossRef]

1999 (1)

1998 (3)

1997 (1)

M. J. McGill, M. Marzouk, V. S. Scott, J. D. Spinhirne, “Holographic circle-to-point converter with particular applications for lidar work,” Opt. Eng. 36, 2171–2175 (1997).
[CrossRef]

1995 (1)

K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

1994 (2)

B. M. Gentry, C. L. Korb, “Edge technique for high-accuracy Doppler velocimetry,” Appl. Opt. 33, 5770–5777 (1994).
[CrossRef] [PubMed]

M. L. Chanin, A. Hauchecorne, A. Garnier, D. Nedelikovic, “Recent lidar developments to monitor stratosphere-troposphere exchange,” J. Atmos. Terr. Phys. 56, 1073–1081 (1994).
[CrossRef]

1993 (2)

P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, W. R. Skinner, “The High-Resolution Doppler Imager on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10,713–10,723 (1993).
[CrossRef]

B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I: Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sensing 31, 16–27 (1993).
[CrossRef]

1992 (2)

A. Garnier, M. L. Chanin, “Description of a Doppler Rayleigh LIDAR for measuring winds in the middle atmosphere,” Appl. Phys. B 55, 35–40 (1992).
[CrossRef]

C. L. Korb, B. M. Gentry, C. Y. Weng, “Edge technique: theory and application to the lidar measurement of atmospheric wind,” Appl. Opt. 31, 4202–4213 (1992).
[CrossRef] [PubMed]

1990 (1)

1989 (1)

M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

1981 (1)

D. Rees, I. McWhirter, P. B. Hays, T. Dines, “A stable, rugged, capacitance-stabilised piezoelectric scanned Fabry-Perot etalon,” J. Phys. E 14, 1320–1325 (1981).
[CrossRef]

1979 (1)

1974 (1)

Abreu, V. J.

K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, W. R. Skinner, “The High-Resolution Doppler Imager on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10,713–10,723 (1993).
[CrossRef]

V. J. Abreu, “Wind measurements from an orbital platform using a lidar system with incoherent detection: an analysis,” Appl. Opt. 18, 2992–2997 (1979).
[CrossRef] [PubMed]

Barnes, J. E.

K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

Caudle, D. A.

M. S. Lake, J. E. Phelps, J. E. Dyer, D. A. Caudle, A. Tam, J. Escobedo, E. P. Kasl, “A deployable primary mirror for space telescopes,” in Advanced Telescope Design, Fabrication, and Control, B. Roybal, ed., Proc. SPIE3785, (1999).
[CrossRef]

Chanin, M. L.

M. L. Chanin, A. Hauchecorne, A. Garnier, D. Nedelikovic, “Recent lidar developments to monitor stratosphere-troposphere exchange,” J. Atmos. Terr. Phys. 56, 1073–1081 (1994).
[CrossRef]

A. Garnier, M. L. Chanin, “Description of a Doppler Rayleigh LIDAR for measuring winds in the middle atmosphere,” Appl. Phys. B 55, 35–40 (1992).
[CrossRef]

M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

Dines, T.

D. Rees, I. McWhirter, P. B. Hays, T. Dines, “A stable, rugged, capacitance-stabilised piezoelectric scanned Fabry-Perot etalon,” J. Phys. E 14, 1320–1325 (1981).
[CrossRef]

Dobbs, M. E.

P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, W. R. Skinner, “The High-Resolution Doppler Imager on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10,713–10,723 (1993).
[CrossRef]

Dyer, J. E.

M. S. Lake, J. E. Phelps, J. E. Dyer, D. A. Caudle, A. Tam, J. Escobedo, E. P. Kasl, “A deployable primary mirror for space telescopes,” in Advanced Telescope Design, Fabrication, and Control, B. Roybal, ed., Proc. SPIE3785, (1999).
[CrossRef]

Escobedo, J.

M. S. Lake, J. E. Phelps, J. E. Dyer, D. A. Caudle, A. Tam, J. Escobedo, E. P. Kasl, “A deployable primary mirror for space telescopes,” in Advanced Telescope Design, Fabrication, and Control, B. Roybal, ed., Proc. SPIE3785, (1999).
[CrossRef]

Fischer, K. F.

K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

Flesia, C.

Gagné, J.-M.

Garnier, A.

M. L. Chanin, A. Hauchecorne, A. Garnier, D. Nedelikovic, “Recent lidar developments to monitor stratosphere-troposphere exchange,” J. Atmos. Terr. Phys. 56, 1073–1081 (1994).
[CrossRef]

A. Garnier, M. L. Chanin, “Description of a Doppler Rayleigh LIDAR for measuring winds in the middle atmosphere,” Appl. Phys. B 55, 35–40 (1992).
[CrossRef]

M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

Gell, D. A.

P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, W. R. Skinner, “The High-Resolution Doppler Imager on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10,713–10,723 (1993).
[CrossRef]

Gentry, B. M.

Grassl, H. J.

P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, W. R. Skinner, “The High-Resolution Doppler Imager on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10,713–10,723 (1993).
[CrossRef]

Hardesty, R. M.

B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I: Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sensing 31, 16–27 (1993).
[CrossRef]

Hauchecorne, A.

M. L. Chanin, A. Hauchecorne, A. Garnier, D. Nedelikovic, “Recent lidar developments to monitor stratosphere-troposphere exchange,” J. Atmos. Terr. Phys. 56, 1073–1081 (1994).
[CrossRef]

M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

Hays, P. B.

P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, W. R. Skinner, “The High-Resolution Doppler Imager on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10,713–10,723 (1993).
[CrossRef]

P. B. Hays, “Circle to line interferometer optical system,” Appl. Opt. 29, 1482–1489 (1990).
[CrossRef] [PubMed]

D. Rees, I. McWhirter, P. B. Hays, T. Dines, “A stable, rugged, capacitance-stabilised piezoelectric scanned Fabry-Perot etalon,” J. Phys. E 14, 1320–1325 (1981).
[CrossRef]

W. R. Skinner, P. B. Hays, “Incoherent Doppler lidar for measurement of atmospheric winds,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, P. B. Hays, eds., Proc. SPIE2266, 383–394 (1994).
[CrossRef]

Irgang, T. D.

K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

Kasl, E. P.

M. S. Lake, J. E. Phelps, J. E. Dyer, D. A. Caudle, A. Tam, J. Escobedo, E. P. Kasl, “A deployable primary mirror for space telescopes,” in Advanced Telescope Design, Fabrication, and Control, B. Roybal, ed., Proc. SPIE3785, (1999).
[CrossRef]

Korb, C. L.

Lake, M. S.

M. S. Lake, J. E. Phelps, J. E. Dyer, D. A. Caudle, A. Tam, J. Escobedo, E. P. Kasl, “A deployable primary mirror for space telescopes,” in Advanced Telescope Design, Fabrication, and Control, B. Roybal, ed., Proc. SPIE3785, (1999).
[CrossRef]

Marseille, G.-J.

A. Stoffelen, G.-J. Marseille, “Study on the utility of a Doppler wind lidar for numerical weather prediction and climate,” , Royal Netherlands Meteorological Institute (KNMI), pub., 3730 AE De Bilt, The Netherlands (1998).

Marzouk, M.

M. J. McGill, M. Marzouk, V. S. Scott, J. D. Spinhirne, “Holographic circle-to-point converter with particular applications for lidar work,” Opt. Eng. 36, 2171–2175 (1997).
[CrossRef]

McGill, M. J.

M. J. McGill, J. D. Spinhirne, “Comparison of two direct-detection Doppler lidar techniques,” Opt. Eng. 37, 2675–2686 (1998).
[CrossRef]

M. J. McGill, M. Marzouk, V. S. Scott, J. D. Spinhirne, “Holographic circle-to-point converter with particular applications for lidar work,” Opt. Eng. 36, 2171–2175 (1997).
[CrossRef]

K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

McKay, J. A.

J. A. McKay, “Modeling of direct detection Doppler wind lidar: I. The edge technique,” Appl. Opt. 37, 6480–6486 (1998).
[CrossRef]

J. A. McKay, “Modeling of direct detection Doppler wind lidar: II. The fringe imaging technique,” Appl. Opt. 37, 6487–6493 (1998).
[CrossRef]

J. A. McKay, “Direct detection Doppler wind lidar for spaceflight,” in Proceedings of the 19th International Laser Radar Conference, Conference Publication 1998-207671 (NASA Scientific and Technical Information Program Office, Hanover, Md., 1998), Part 2, pp. 595–599.

McWhirter, I.

D. Rees, I. McWhirter, P. B. Hays, T. Dines, “A stable, rugged, capacitance-stabilised piezoelectric scanned Fabry-Perot etalon,” J. Phys. E 14, 1320–1325 (1981).
[CrossRef]

Nedelikovic, D.

M. L. Chanin, A. Hauchecorne, A. Garnier, D. Nedelikovic, “Recent lidar developments to monitor stratosphere-troposphere exchange,” J. Atmos. Terr. Phys. 56, 1073–1081 (1994).
[CrossRef]

Phelps, J. E.

M. S. Lake, J. E. Phelps, J. E. Dyer, D. A. Caudle, A. Tam, J. Escobedo, E. P. Kasl, “A deployable primary mirror for space telescopes,” in Advanced Telescope Design, Fabrication, and Control, B. Roybal, ed., Proc. SPIE3785, (1999).
[CrossRef]

Picard, M.

Porteneuve, J.

M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

Rees, D.

D. Rees, I. McWhirter, P. B. Hays, T. Dines, “A stable, rugged, capacitance-stabilised piezoelectric scanned Fabry-Perot etalon,” J. Phys. E 14, 1320–1325 (1981).
[CrossRef]

Rye, B. J.

B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I: Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sensing 31, 16–27 (1993).
[CrossRef]

Saint-Dizier, J.-P.

Scott, V. S.

M. J. McGill, M. Marzouk, V. S. Scott, J. D. Spinhirne, “Holographic circle-to-point converter with particular applications for lidar work,” Opt. Eng. 36, 2171–2175 (1997).
[CrossRef]

Skinner, W. R.

K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, W. R. Skinner, “The High-Resolution Doppler Imager on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10,713–10,723 (1993).
[CrossRef]

W. R. Skinner, P. B. Hays, “Incoherent Doppler lidar for measurement of atmospheric winds,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, P. B. Hays, eds., Proc. SPIE2266, 383–394 (1994).
[CrossRef]

Spinhirne, J. D.

M. J. McGill, J. D. Spinhirne, “Comparison of two direct-detection Doppler lidar techniques,” Opt. Eng. 37, 2675–2686 (1998).
[CrossRef]

M. J. McGill, M. Marzouk, V. S. Scott, J. D. Spinhirne, “Holographic circle-to-point converter with particular applications for lidar work,” Opt. Eng. 36, 2171–2175 (1997).
[CrossRef]

Stoffelen, A.

A. Stoffelen, G.-J. Marseille, “Study on the utility of a Doppler wind lidar for numerical weather prediction and climate,” , Royal Netherlands Meteorological Institute (KNMI), pub., 3730 AE De Bilt, The Netherlands (1998).

Tam, A.

M. S. Lake, J. E. Phelps, J. E. Dyer, D. A. Caudle, A. Tam, J. Escobedo, E. P. Kasl, “A deployable primary mirror for space telescopes,” in Advanced Telescope Design, Fabrication, and Control, B. Roybal, ed., Proc. SPIE3785, (1999).
[CrossRef]

Weng, C. Y.

Wyatt, C. L.

C. L. Wyatt, Radiometric System Design (Macmillan, New York, 1987), Sect. 3.2.4.

Appl. Opt. (8)

Appl. Phys. B (1)

A. Garnier, M. L. Chanin, “Description of a Doppler Rayleigh LIDAR for measuring winds in the middle atmosphere,” Appl. Phys. B 55, 35–40 (1992).
[CrossRef]

Geophys. Res. Lett. (1)

M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

IEEE Trans. Geosci. Remote Sensing (1)

B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I: Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sensing 31, 16–27 (1993).
[CrossRef]

J. Atmos. Terr. Phys. (1)

M. L. Chanin, A. Hauchecorne, A. Garnier, D. Nedelikovic, “Recent lidar developments to monitor stratosphere-troposphere exchange,” J. Atmos. Terr. Phys. 56, 1073–1081 (1994).
[CrossRef]

J. Geophys. Res. (1)

P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, W. R. Skinner, “The High-Resolution Doppler Imager on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10,713–10,723 (1993).
[CrossRef]

J. Phys. E (1)

D. Rees, I. McWhirter, P. B. Hays, T. Dines, “A stable, rugged, capacitance-stabilised piezoelectric scanned Fabry-Perot etalon,” J. Phys. E 14, 1320–1325 (1981).
[CrossRef]

Opt. Eng. (3)

M. J. McGill, M. Marzouk, V. S. Scott, J. D. Spinhirne, “Holographic circle-to-point converter with particular applications for lidar work,” Opt. Eng. 36, 2171–2175 (1997).
[CrossRef]

M. J. McGill, J. D. Spinhirne, “Comparison of two direct-detection Doppler lidar techniques,” Opt. Eng. 37, 2675–2686 (1998).
[CrossRef]

K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

Other (9)

W. R. Skinner, P. B. Hays, “Incoherent Doppler lidar for measurement of atmospheric winds,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, P. B. Hays, eds., Proc. SPIE2266, 383–394 (1994).
[CrossRef]

C. L. Wyatt, Radiometric System Design (Macmillan, New York, 1987), Sect. 3.2.4.

J. A. McKay, “Direct detection Doppler wind lidar for spaceflight,” in Proceedings of the 19th International Laser Radar Conference, Conference Publication 1998-207671 (NASA Scientific and Technical Information Program Office, Hanover, Md., 1998), Part 2, pp. 595–599.

“Definition and preliminary design of the laser atmospheric wind sounder (LAWS),” (GE Astro Space Co., P.O. Box 800, Princeton N.J. 08540, 1992).

“Global wind profiles,” (National Oceanic and Atmospheric Administration, 1305 East West Highway, Silver Spring Md. 20910, 1998).

“Unaccommodated environmental data records: technology status and promising technological areas” (National Polar-orbiting Operational Environmental Satellite System Integrated Program Office, Silver Spring, Md. 20910, 1996).

A. Stoffelen, G.-J. Marseille, “Study on the utility of a Doppler wind lidar for numerical weather prediction and climate,” , Royal Netherlands Meteorological Institute (KNMI), pub., 3730 AE De Bilt, The Netherlands (1998).

M. S. Lake, J. E. Phelps, J. E. Dyer, D. A. Caudle, A. Tam, J. Escobedo, E. P. Kasl, “A deployable primary mirror for space telescopes,” in Advanced Telescope Design, Fabrication, and Control, B. Roybal, ed., Proc. SPIE3785, (1999).
[CrossRef]

G. D. Emmitt, J. Spinhirne, R. Menzies, D. Winker, D. Bowdle, “Target atmospheres for use in DWL concept studies,” 4th draft, February1998. This can be found at http://cyclone.swa.com/LidarProducts/targetAtm/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Functional sketch of the double-edge technique (upper) and fringe-imaging, or multichannel, technique (lower). The fringe imager is sketched as just two channels, illustrating the fundamental similarity between this and the double-edge method. In practice, the fringe-imager method will employ many (24–48) signal channels, yielding a detailed spectral scan of the backscatter signal.

Fig. 2
Fig. 2

Ratio of the statistical uncertainty of the fringe-imager measurement to the ideal-receiver value, as a function of etalon finesse, for ratios of the Gaussian source spectral width to the etalon FSR as indicated. The selected operating point for the fringe imager corresponds to a Doppler uncertainty ratio of 2.66.

Fig. 3
Fig. 3

Statistical uncertainty, ratio to the ideal receiver, for the double-edge Doppler analyzer, versus frequency offset of the laser and the passband, in units of etalon passband width. The operating point has equal responsivity to the Rayleigh and aerosol backscatter signals and is at a minimum in the uncertainty. The three points illustrate the degradation of the uncertainty by decreasing aperture finesse.

Fig. 4
Fig. 4

Line-of-sight Doppler uncertainties for the fringe imager (FI) with 60 mm etalon aperture (dashed curve) and for the double-edge (DE), with various values of working aperture (in millimeters) for each etalon channel (solid curves). Degradation of the double-edge measurement precision is substantial for etalon apertures under 200 mm/channel.

Tables (3)

Tables Icon

Table 1 Parameters of the Fabry–Perot Etalons of the Two Doppler Analyzers

Tables Icon

Table 2 Orbital and System Parameters Taken for the DWL System Performance Estimate

Tables Icon

Table 3 Some DWL System Performance Requirements

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

AΩFI=πDFPI/22λ/h.
DFPIDTELθTELh/4λ1/2.
AΩDE=πDFPI/22λ/Faph.

Metrics