Abstract

Implementation of a Raman lidar measurement of middle and upper tropospheric water vapor is described for a system that uses a 532-nm exciting wavelength, fiber-optic signal transfer, and Q-branch selection. Particular attention is given to the minimizatoin of systematic biases introduced by fluorescent reemission of energy associated with elastic backscatter returns. We compare lidar profiles with collocated radiosonde measurements by using the Vaisala H-Humicap capacitive captor. The variations in the water-vapor concentrations on vertical scales of the order of 1 km in the upper troposphere observed by the two instruments present significant differences. Independent characterization of random and systematic lidar measurement errors and radiosonde sensor response characteristics lead to the conclusion that these differences are due to radiosonde sensor response. These intercomparisons indicate that the lidar measurement can provide important information on water-vapor distributions in the radiatively important 8–11-km region.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Clough, M. J. Iacono, J. L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor,” J. Geophys. Res. 97, 15,761–15,785 (1992).
    [CrossRef]
  2. A. Sinha, J. E. Harries, “Water vapor and greenhouse trapping: the role of far-infrared absorption,” Geophys. Res. Lett. 22, 2147–2150 (1995).
    [CrossRef]
  3. W. P. Elliot, D. J. Gaffen, “On the utility of radiosonde humidity archives for climate studies,” Bull. Am. Meteorol. Soc. 72, 1507–1520 (1991).
    [CrossRef]
  4. J. Nash, F. J. Schmidlin, “Instruments and observing methods. Report 30. WMO International Radiosonde Intercomparison UK 1984, USA 1985,” (World Meteorological Organisation, Case postale 2300, Geneva, 1987).
  5. F. J. Schmidlin, “Report of the WMO radiosonde relative humidity sensor intercomparison: Phase 2, 8–26 September 1995,” (World Meteorological Organisation, Case postale 2300, Geneva, 1999).
  6. R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. Starr, “A comparison of water vapor measurements made by Raman lidar and radiosondes,” J. Atmos. Oceanic Technol. 12, 1177–1195 (1995).
    [CrossRef]
  7. B. J. Soden, J. R. Lanzante, “An assessment of satellite and radiosonde climatologies of upper-tropospheric water vapor,” J. Clim. 9, 1235–1250 (1996).
    [CrossRef]
  8. A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michealis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
    [CrossRef]
  9. D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
    [CrossRef] [PubMed]
  10. G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988).
    [CrossRef]
  11. J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998).
    [CrossRef]
  12. U. Leiterer, H. Dier, T. Naebert, “Improvements in radiosonde humidity profiles using RS80/RS90 radiosondes of Vaisala,” Beitr. Phys. Atmos. 70, 319–336 (1997).
  13. P. Keckhut, A. Hauchecorne, M. L. Chanin, “A critical review of the database acquired for the long-term surveillance of the middle atmosphere by the French Rayleigh lidars,” J. Atmos. Oceanic Technol. 10, 850–867 (1993).
    [CrossRef]
  14. C. M. Penney, M. Lapp, “Raman scattering cross section for water vapor,” J. Opt. Soc. Am. 66, 422–425 (1976).
    [CrossRef]
  15. D. N. Whiteman, W. F. Murphy, N. W. Walsh, K. D. Evans, “Temperature sensitivity of an atmospheric Raman lidar system based on a XeF excimer laser,” Opt. Lett. 18, 247–249 (1993).
    [CrossRef]
  16. W. F. Murphy, “The rovibrational Raman spectrum of water vapor ν2 and 2ν2,” J. Mol. Phys. 33, 1701–1714 (1977).
    [CrossRef]
  17. W. F. Murphy, “The rovibrational Raman spectrum of water vapor ν1 and ν3,” J. Mol. Phys. 36, 727–732 (1978).
    [CrossRef]
  18. H. Inaba, T. Kobayasi, “Laser-Raman radar—laser-Raman scattering methods for remote detection and analysis of atmospheric pollution,” Optoelectronics 4, 101–123 (1972).
  19. V. J. Sherlock, A. Hauchecorne, J. Lenoble, “Methodology for the independent calibration of Raman backscatter water-vapor lidar systems,” Appl. Opt. 38, 5816–5837 (1999).
    [CrossRef]
  20. J. P. Dakin, A. J. King, “Limitations of a single optical fiber fluorimeter system due to background fluorescence,” IEEE Proc. 131, 273–275 (1984).
  21. S. H. Melfi, K. Evans, J. Li, D. Whiteman, R. Ferrare, G. Schwemmer, “Observation of Raman scattering by cloud droplets in the atmosphere,” Appl. Opt. 36, 3551–3559 (1997).
    [CrossRef] [PubMed]
  22. D. L. Snyder, M. I. Miller, Random Point Processes in Space and Time (Springer-Verlag, Berlin, 1991).
    [CrossRef]
  23. G. A. d’Almeida, P. Koepke, E. Shettle, Atmospheric Aerosols Global Climatology and Radiative Characteristics (A. Deepak, Hampton, Va., 1991).
  24. M. Weller, U. Leiterer, “Experimental data on spectral aerosol optical thickness and its global distribution,” Beitr. Phys. Atmos. 61, 1–9 (1988).
  25. B. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowaik, “Automatic sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ. 66, 1–16 (1998).
    [CrossRef]
  26. J. Wang, G. P. Anderson, H. E. Revercomb, R. O. Knuteson, “Validation of fascod3 and modtran3: comparison of model calculations with ground based and airborne interferometer measurements under clear-sky conditions,” Appl. Opt. 35, 6028–6040 (1996).
    [CrossRef] [PubMed]
  27. B. M. Lesht, J. C. Lilegren, “Comparison of precipitable water vapor measurements obtained by microwave radiometry and radiosondes at the Southern Great Plains CART site,” in Proceedings of the Sixth Atmospheric Radiation Measurement (ARM) Science Team Meeting, San Antonio, Tex. (Office of Energy Research, Environmental Sciences Division, U.S. Department of Energy, Washington, D.C. 20585, 1996), pp. 165–168.
  28. D. D. Turner, J. E. M. Goldsmith, “24-hour Raman lidar water vapor measurements during the Atmospheric Radiation Measurement program’s 1996 and 1997 water vapor intensive observation periods,” J. Atmos. Oceanic Technol. (to be published).
  29. K. Emanuel, Atmospheric Convection (Oxford University, London, 1994).
  30. D. Kley, H. G. J. Smit, H. Vomel, V. Ramanathan, P. J. Crutzen, S. Williams, J. Meywerk, S. J. Oltmans, “Tropospheric water vapor and ozone cross sections in a zonal plane over the central equatorial Pacific,” Q. J. R. Meteorol. Soc. 123, 2009–2040 (1997).
    [CrossRef]
  31. “Report of calibration,” (National Institute of Standards and Technology, Gaithersburg, Md. 20899, 1990).
  32. A. Paukkunen, “Sensor heating to enhance reliability of radiosonde humidity measurement,” (Vaisala Oy, P.O. Box 26, FIN00421 Helsinki, Finland).
  33. A. Heymsfield, National Center for Atmospheric Research, Boulder, Colo. (personal communication, July1998).
  34. C. G. Wade, “An evaluation of problems affecting the measurement of low relative humidity on the United States radiosonde,” J. Atmos. Ocean Technol. 11, 687–700 (1994).
    [CrossRef]
  35. J. E. Harries, “Atmospheric radiation and atmospheric humidity,” Q. J. R. Meteorol. Soc. 123, 2173–2186 (1997).
    [CrossRef]

1999

1998

J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998).
[CrossRef]

B. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowaik, “Automatic sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ. 66, 1–16 (1998).
[CrossRef]

1997

D. Kley, H. G. J. Smit, H. Vomel, V. Ramanathan, P. J. Crutzen, S. Williams, J. Meywerk, S. J. Oltmans, “Tropospheric water vapor and ozone cross sections in a zonal plane over the central equatorial Pacific,” Q. J. R. Meteorol. Soc. 123, 2009–2040 (1997).
[CrossRef]

J. E. Harries, “Atmospheric radiation and atmospheric humidity,” Q. J. R. Meteorol. Soc. 123, 2173–2186 (1997).
[CrossRef]

U. Leiterer, H. Dier, T. Naebert, “Improvements in radiosonde humidity profiles using RS80/RS90 radiosondes of Vaisala,” Beitr. Phys. Atmos. 70, 319–336 (1997).

S. H. Melfi, K. Evans, J. Li, D. Whiteman, R. Ferrare, G. Schwemmer, “Observation of Raman scattering by cloud droplets in the atmosphere,” Appl. Opt. 36, 3551–3559 (1997).
[CrossRef] [PubMed]

1996

1995

A. Sinha, J. E. Harries, “Water vapor and greenhouse trapping: the role of far-infrared absorption,” Geophys. Res. Lett. 22, 2147–2150 (1995).
[CrossRef]

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. Starr, “A comparison of water vapor measurements made by Raman lidar and radiosondes,” J. Atmos. Oceanic Technol. 12, 1177–1195 (1995).
[CrossRef]

1994

C. G. Wade, “An evaluation of problems affecting the measurement of low relative humidity on the United States radiosonde,” J. Atmos. Ocean Technol. 11, 687–700 (1994).
[CrossRef]

1993

D. N. Whiteman, W. F. Murphy, N. W. Walsh, K. D. Evans, “Temperature sensitivity of an atmospheric Raman lidar system based on a XeF excimer laser,” Opt. Lett. 18, 247–249 (1993).
[CrossRef]

P. Keckhut, A. Hauchecorne, M. L. Chanin, “A critical review of the database acquired for the long-term surveillance of the middle atmosphere by the French Rayleigh lidars,” J. Atmos. Oceanic Technol. 10, 850–867 (1993).
[CrossRef]

1992

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michealis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

S. A. Clough, M. J. Iacono, J. L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor,” J. Geophys. Res. 97, 15,761–15,785 (1992).
[CrossRef]

D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
[CrossRef] [PubMed]

1991

W. P. Elliot, D. J. Gaffen, “On the utility of radiosonde humidity archives for climate studies,” Bull. Am. Meteorol. Soc. 72, 1507–1520 (1991).
[CrossRef]

1988

G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988).
[CrossRef]

M. Weller, U. Leiterer, “Experimental data on spectral aerosol optical thickness and its global distribution,” Beitr. Phys. Atmos. 61, 1–9 (1988).

1984

J. P. Dakin, A. J. King, “Limitations of a single optical fiber fluorimeter system due to background fluorescence,” IEEE Proc. 131, 273–275 (1984).

1978

W. F. Murphy, “The rovibrational Raman spectrum of water vapor ν1 and ν3,” J. Mol. Phys. 36, 727–732 (1978).
[CrossRef]

1977

W. F. Murphy, “The rovibrational Raman spectrum of water vapor ν2 and 2ν2,” J. Mol. Phys. 33, 1701–1714 (1977).
[CrossRef]

1976

1972

H. Inaba, T. Kobayasi, “Laser-Raman radar—laser-Raman scattering methods for remote detection and analysis of atmospheric pollution,” Optoelectronics 4, 101–123 (1972).

Anderson, G. P.

Ansmann, A.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michealis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Bisson, S. E.

Blair, F. H.

Buis, J. P.

B. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowaik, “Automatic sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ. 66, 1–16 (1998).
[CrossRef]

Chanin, M. L.

P. Keckhut, A. Hauchecorne, M. L. Chanin, “A critical review of the database acquired for the long-term surveillance of the middle atmosphere by the French Rayleigh lidars,” J. Atmos. Oceanic Technol. 10, 850–867 (1993).
[CrossRef]

Clough, S. A.

S. A. Clough, M. J. Iacono, J. L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor,” J. Geophys. Res. 97, 15,761–15,785 (1992).
[CrossRef]

Crutzen, P. J.

D. Kley, H. G. J. Smit, H. Vomel, V. Ramanathan, P. J. Crutzen, S. Williams, J. Meywerk, S. J. Oltmans, “Tropospheric water vapor and ozone cross sections in a zonal plane over the central equatorial Pacific,” Q. J. R. Meteorol. Soc. 123, 2009–2040 (1997).
[CrossRef]

d’Almeida, G. A.

G. A. d’Almeida, P. Koepke, E. Shettle, Atmospheric Aerosols Global Climatology and Radiative Characteristics (A. Deepak, Hampton, Va., 1991).

Dakin, J. P.

J. P. Dakin, A. J. King, “Limitations of a single optical fiber fluorimeter system due to background fluorescence,” IEEE Proc. 131, 273–275 (1984).

Dier, H.

U. Leiterer, H. Dier, T. Naebert, “Improvements in radiosonde humidity profiles using RS80/RS90 radiosondes of Vaisala,” Beitr. Phys. Atmos. 70, 319–336 (1997).

Eck, T. F.

B. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowaik, “Automatic sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ. 66, 1–16 (1998).
[CrossRef]

Elliot, W. P.

W. P. Elliot, D. J. Gaffen, “On the utility of radiosonde humidity archives for climate studies,” Bull. Am. Meteorol. Soc. 72, 1507–1520 (1991).
[CrossRef]

Emanuel, K.

K. Emanuel, Atmospheric Convection (Oxford University, London, 1994).

Evans, K.

Evans, K. D.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. Starr, “A comparison of water vapor measurements made by Raman lidar and radiosondes,” J. Atmos. Oceanic Technol. 12, 1177–1195 (1995).
[CrossRef]

D. N. Whiteman, W. F. Murphy, N. W. Walsh, K. D. Evans, “Temperature sensitivity of an atmospheric Raman lidar system based on a XeF excimer laser,” Opt. Lett. 18, 247–249 (1993).
[CrossRef]

Ferrare, R.

Ferrare, R. A.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. Starr, “A comparison of water vapor measurements made by Raman lidar and radiosondes,” J. Atmos. Oceanic Technol. 12, 1177–1195 (1995).
[CrossRef]

D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
[CrossRef] [PubMed]

Gaffen, D. J.

W. P. Elliot, D. J. Gaffen, “On the utility of radiosonde humidity archives for climate studies,” Bull. Am. Meteorol. Soc. 72, 1507–1520 (1991).
[CrossRef]

Goldsmith, J. E. M.

J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998).
[CrossRef]

D. D. Turner, J. E. M. Goldsmith, “24-hour Raman lidar water vapor measurements during the Atmospheric Radiation Measurement program’s 1996 and 1997 water vapor intensive observation periods,” J. Atmos. Oceanic Technol. (to be published).

Harries, J. E.

J. E. Harries, “Atmospheric radiation and atmospheric humidity,” Q. J. R. Meteorol. Soc. 123, 2173–2186 (1997).
[CrossRef]

A. Sinha, J. E. Harries, “Water vapor and greenhouse trapping: the role of far-infrared absorption,” Geophys. Res. Lett. 22, 2147–2150 (1995).
[CrossRef]

Hauchecorne, A.

V. J. Sherlock, A. Hauchecorne, J. Lenoble, “Methodology for the independent calibration of Raman backscatter water-vapor lidar systems,” Appl. Opt. 38, 5816–5837 (1999).
[CrossRef]

P. Keckhut, A. Hauchecorne, M. L. Chanin, “A critical review of the database acquired for the long-term surveillance of the middle atmosphere by the French Rayleigh lidars,” J. Atmos. Oceanic Technol. 10, 850–867 (1993).
[CrossRef]

Heymsfield, A.

A. Heymsfield, National Center for Atmospheric Research, Boulder, Colo. (personal communication, July1998).

Holben, B.

B. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowaik, “Automatic sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ. 66, 1–16 (1998).
[CrossRef]

Iacono, M. J.

S. A. Clough, M. J. Iacono, J. L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor,” J. Geophys. Res. 97, 15,761–15,785 (1992).
[CrossRef]

Inaba, H.

H. Inaba, T. Kobayasi, “Laser-Raman radar—laser-Raman scattering methods for remote detection and analysis of atmospheric pollution,” Optoelectronics 4, 101–123 (1972).

Jankowaik, I.

B. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowaik, “Automatic sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ. 66, 1–16 (1998).
[CrossRef]

Kaufman, Y. J.

B. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowaik, “Automatic sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ. 66, 1–16 (1998).
[CrossRef]

Keckhut, P.

P. Keckhut, A. Hauchecorne, M. L. Chanin, “A critical review of the database acquired for the long-term surveillance of the middle atmosphere by the French Rayleigh lidars,” J. Atmos. Oceanic Technol. 10, 850–867 (1993).
[CrossRef]

King, A. J.

J. P. Dakin, A. J. King, “Limitations of a single optical fiber fluorimeter system due to background fluorescence,” IEEE Proc. 131, 273–275 (1984).

Kley, D.

D. Kley, H. G. J. Smit, H. Vomel, V. Ramanathan, P. J. Crutzen, S. Williams, J. Meywerk, S. J. Oltmans, “Tropospheric water vapor and ozone cross sections in a zonal plane over the central equatorial Pacific,” Q. J. R. Meteorol. Soc. 123, 2009–2040 (1997).
[CrossRef]

Knuteson, R. O.

Kobayasi, T.

H. Inaba, T. Kobayasi, “Laser-Raman radar—laser-Raman scattering methods for remote detection and analysis of atmospheric pollution,” Optoelectronics 4, 101–123 (1972).

Koepke, P.

G. A. d’Almeida, P. Koepke, E. Shettle, Atmospheric Aerosols Global Climatology and Radiative Characteristics (A. Deepak, Hampton, Va., 1991).

Lahmann, W.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michealis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Lanzante, J. R.

B. J. Soden, J. R. Lanzante, “An assessment of satellite and radiosonde climatologies of upper-tropospheric water vapor,” J. Clim. 9, 1235–1250 (1996).
[CrossRef]

Lapp, M.

Lavenu, F.

B. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowaik, “Automatic sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ. 66, 1–16 (1998).
[CrossRef]

Leiterer, U.

U. Leiterer, H. Dier, T. Naebert, “Improvements in radiosonde humidity profiles using RS80/RS90 radiosondes of Vaisala,” Beitr. Phys. Atmos. 70, 319–336 (1997).

M. Weller, U. Leiterer, “Experimental data on spectral aerosol optical thickness and its global distribution,” Beitr. Phys. Atmos. 61, 1–9 (1988).

Lenoble, J.

Lesht, B. M.

B. M. Lesht, J. C. Lilegren, “Comparison of precipitable water vapor measurements obtained by microwave radiometry and radiosondes at the Southern Great Plains CART site,” in Proceedings of the Sixth Atmospheric Radiation Measurement (ARM) Science Team Meeting, San Antonio, Tex. (Office of Energy Research, Environmental Sciences Division, U.S. Department of Energy, Washington, D.C. 20585, 1996), pp. 165–168.

Li, J.

Lilegren, J. C.

B. M. Lesht, J. C. Lilegren, “Comparison of precipitable water vapor measurements obtained by microwave radiometry and radiosondes at the Southern Great Plains CART site,” in Proceedings of the Sixth Atmospheric Radiation Measurement (ARM) Science Team Meeting, San Antonio, Tex. (Office of Energy Research, Environmental Sciences Division, U.S. Department of Energy, Washington, D.C. 20585, 1996), pp. 165–168.

Melfi, S. H.

Meywerk, J.

D. Kley, H. G. J. Smit, H. Vomel, V. Ramanathan, P. J. Crutzen, S. Williams, J. Meywerk, S. J. Oltmans, “Tropospheric water vapor and ozone cross sections in a zonal plane over the central equatorial Pacific,” Q. J. R. Meteorol. Soc. 123, 2009–2040 (1997).
[CrossRef]

Michealis, W.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michealis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Miller, M. I.

D. L. Snyder, M. I. Miller, Random Point Processes in Space and Time (Springer-Verlag, Berlin, 1991).
[CrossRef]

Mitev, V.

G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988).
[CrossRef]

Moncet, J. L.

S. A. Clough, M. J. Iacono, J. L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor,” J. Geophys. Res. 97, 15,761–15,785 (1992).
[CrossRef]

Murphy, W. F.

D. N. Whiteman, W. F. Murphy, N. W. Walsh, K. D. Evans, “Temperature sensitivity of an atmospheric Raman lidar system based on a XeF excimer laser,” Opt. Lett. 18, 247–249 (1993).
[CrossRef]

W. F. Murphy, “The rovibrational Raman spectrum of water vapor ν1 and ν3,” J. Mol. Phys. 36, 727–732 (1978).
[CrossRef]

W. F. Murphy, “The rovibrational Raman spectrum of water vapor ν2 and 2ν2,” J. Mol. Phys. 33, 1701–1714 (1977).
[CrossRef]

Naebert, T.

U. Leiterer, H. Dier, T. Naebert, “Improvements in radiosonde humidity profiles using RS80/RS90 radiosondes of Vaisala,” Beitr. Phys. Atmos. 70, 319–336 (1997).

Nakajima, T.

B. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowaik, “Automatic sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ. 66, 1–16 (1998).
[CrossRef]

Nash, J.

J. Nash, F. J. Schmidlin, “Instruments and observing methods. Report 30. WMO International Radiosonde Intercomparison UK 1984, USA 1985,” (World Meteorological Organisation, Case postale 2300, Geneva, 1987).

Oltmans, S. J.

D. Kley, H. G. J. Smit, H. Vomel, V. Ramanathan, P. J. Crutzen, S. Williams, J. Meywerk, S. J. Oltmans, “Tropospheric water vapor and ozone cross sections in a zonal plane over the central equatorial Pacific,” Q. J. R. Meteorol. Soc. 123, 2009–2040 (1997).
[CrossRef]

Paukkunen, A.

A. Paukkunen, “Sensor heating to enhance reliability of radiosonde humidity measurement,” (Vaisala Oy, P.O. Box 26, FIN00421 Helsinki, Finland).

Penney, C. M.

Ramanathan, V.

D. Kley, H. G. J. Smit, H. Vomel, V. Ramanathan, P. J. Crutzen, S. Williams, J. Meywerk, S. J. Oltmans, “Tropospheric water vapor and ozone cross sections in a zonal plane over the central equatorial Pacific,” Q. J. R. Meteorol. Soc. 123, 2009–2040 (1997).
[CrossRef]

Reagan, J. A.

B. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowaik, “Automatic sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ. 66, 1–16 (1998).
[CrossRef]

Revercomb, H. E.

Riebesell, M.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michealis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Schmidlin, F. J.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. Starr, “A comparison of water vapor measurements made by Raman lidar and radiosondes,” J. Atmos. Oceanic Technol. 12, 1177–1195 (1995).
[CrossRef]

J. Nash, F. J. Schmidlin, “Instruments and observing methods. Report 30. WMO International Radiosonde Intercomparison UK 1984, USA 1985,” (World Meteorological Organisation, Case postale 2300, Geneva, 1987).

F. J. Schmidlin, “Report of the WMO radiosonde relative humidity sensor intercomparison: Phase 2, 8–26 September 1995,” (World Meteorological Organisation, Case postale 2300, Geneva, 1999).

Schwemmer, G.

Sherlock, V. J.

Shettle, E.

G. A. d’Almeida, P. Koepke, E. Shettle, Atmospheric Aerosols Global Climatology and Radiative Characteristics (A. Deepak, Hampton, Va., 1991).

Sinha, A.

A. Sinha, J. E. Harries, “Water vapor and greenhouse trapping: the role of far-infrared absorption,” Geophys. Res. Lett. 22, 2147–2150 (1995).
[CrossRef]

Slutsker, I.

B. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowaik, “Automatic sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ. 66, 1–16 (1998).
[CrossRef]

Smit, H. G. J.

D. Kley, H. G. J. Smit, H. Vomel, V. Ramanathan, P. J. Crutzen, S. Williams, J. Meywerk, S. J. Oltmans, “Tropospheric water vapor and ozone cross sections in a zonal plane over the central equatorial Pacific,” Q. J. R. Meteorol. Soc. 123, 2009–2040 (1997).
[CrossRef]

Snyder, D. L.

D. L. Snyder, M. I. Miller, Random Point Processes in Space and Time (Springer-Verlag, Berlin, 1991).
[CrossRef]

Soden, B. J.

B. J. Soden, J. R. Lanzante, “An assessment of satellite and radiosonde climatologies of upper-tropospheric water vapor,” J. Clim. 9, 1235–1250 (1996).
[CrossRef]

Starr, D.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. Starr, “A comparison of water vapor measurements made by Raman lidar and radiosondes,” J. Atmos. Oceanic Technol. 12, 1177–1195 (1995).
[CrossRef]

Tanre, D.

B. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowaik, “Automatic sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ. 66, 1–16 (1998).
[CrossRef]

Thomas, L.

G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988).
[CrossRef]

Turner, D. D.

J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998).
[CrossRef]

D. D. Turner, J. E. M. Goldsmith, “24-hour Raman lidar water vapor measurements during the Atmospheric Radiation Measurement program’s 1996 and 1997 water vapor intensive observation periods,” J. Atmos. Oceanic Technol. (to be published).

Vaughan, G.

G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988).
[CrossRef]

Vermote, E.

B. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowaik, “Automatic sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ. 66, 1–16 (1998).
[CrossRef]

Vomel, H.

D. Kley, H. G. J. Smit, H. Vomel, V. Ramanathan, P. J. Crutzen, S. Williams, J. Meywerk, S. J. Oltmans, “Tropospheric water vapor and ozone cross sections in a zonal plane over the central equatorial Pacific,” Q. J. R. Meteorol. Soc. 123, 2009–2040 (1997).
[CrossRef]

Voss, E.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michealis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Wade, C. G.

C. G. Wade, “An evaluation of problems affecting the measurement of low relative humidity on the United States radiosonde,” J. Atmos. Ocean Technol. 11, 687–700 (1994).
[CrossRef]

Walsh, N. W.

Wandinger, U.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michealis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Wang, J.

Wareing, D. P.

G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988).
[CrossRef]

Weitkamp, C.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michealis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Weller, M.

M. Weller, U. Leiterer, “Experimental data on spectral aerosol optical thickness and its global distribution,” Beitr. Phys. Atmos. 61, 1–9 (1988).

Whiteman, D.

Whiteman, D. N.

Williams, S.

D. Kley, H. G. J. Smit, H. Vomel, V. Ramanathan, P. J. Crutzen, S. Williams, J. Meywerk, S. J. Oltmans, “Tropospheric water vapor and ozone cross sections in a zonal plane over the central equatorial Pacific,” Q. J. R. Meteorol. Soc. 123, 2009–2040 (1997).
[CrossRef]

Appl. Opt.

Appl. Phys. B

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michealis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Beitr. Phys. Atmos.

U. Leiterer, H. Dier, T. Naebert, “Improvements in radiosonde humidity profiles using RS80/RS90 radiosondes of Vaisala,” Beitr. Phys. Atmos. 70, 319–336 (1997).

M. Weller, U. Leiterer, “Experimental data on spectral aerosol optical thickness and its global distribution,” Beitr. Phys. Atmos. 61, 1–9 (1988).

Bull. Am. Meteorol. Soc.

W. P. Elliot, D. J. Gaffen, “On the utility of radiosonde humidity archives for climate studies,” Bull. Am. Meteorol. Soc. 72, 1507–1520 (1991).
[CrossRef]

Geophys. Res. Lett.

A. Sinha, J. E. Harries, “Water vapor and greenhouse trapping: the role of far-infrared absorption,” Geophys. Res. Lett. 22, 2147–2150 (1995).
[CrossRef]

IEEE Proc.

J. P. Dakin, A. J. King, “Limitations of a single optical fiber fluorimeter system due to background fluorescence,” IEEE Proc. 131, 273–275 (1984).

J. Atmos. Ocean Technol.

C. G. Wade, “An evaluation of problems affecting the measurement of low relative humidity on the United States radiosonde,” J. Atmos. Ocean Technol. 11, 687–700 (1994).
[CrossRef]

J. Atmos. Oceanic Technol.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. Starr, “A comparison of water vapor measurements made by Raman lidar and radiosondes,” J. Atmos. Oceanic Technol. 12, 1177–1195 (1995).
[CrossRef]

P. Keckhut, A. Hauchecorne, M. L. Chanin, “A critical review of the database acquired for the long-term surveillance of the middle atmosphere by the French Rayleigh lidars,” J. Atmos. Oceanic Technol. 10, 850–867 (1993).
[CrossRef]

J. Clim.

B. J. Soden, J. R. Lanzante, “An assessment of satellite and radiosonde climatologies of upper-tropospheric water vapor,” J. Clim. 9, 1235–1250 (1996).
[CrossRef]

J. Geophys. Res.

S. A. Clough, M. J. Iacono, J. L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor,” J. Geophys. Res. 97, 15,761–15,785 (1992).
[CrossRef]

J. Mol. Phys.

W. F. Murphy, “The rovibrational Raman spectrum of water vapor ν2 and 2ν2,” J. Mol. Phys. 33, 1701–1714 (1977).
[CrossRef]

W. F. Murphy, “The rovibrational Raman spectrum of water vapor ν1 and ν3,” J. Mol. Phys. 36, 727–732 (1978).
[CrossRef]

J. Opt. Soc. Am.

Opt. Lett.

Optoelectronics

H. Inaba, T. Kobayasi, “Laser-Raman radar—laser-Raman scattering methods for remote detection and analysis of atmospheric pollution,” Optoelectronics 4, 101–123 (1972).

Q. J. R. Meteorol. Soc.

G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988).
[CrossRef]

J. E. Harries, “Atmospheric radiation and atmospheric humidity,” Q. J. R. Meteorol. Soc. 123, 2173–2186 (1997).
[CrossRef]

D. Kley, H. G. J. Smit, H. Vomel, V. Ramanathan, P. J. Crutzen, S. Williams, J. Meywerk, S. J. Oltmans, “Tropospheric water vapor and ozone cross sections in a zonal plane over the central equatorial Pacific,” Q. J. R. Meteorol. Soc. 123, 2009–2040 (1997).
[CrossRef]

Remote Sensing Environ.

B. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowaik, “Automatic sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ. 66, 1–16 (1998).
[CrossRef]

Other

“Report of calibration,” (National Institute of Standards and Technology, Gaithersburg, Md. 20899, 1990).

A. Paukkunen, “Sensor heating to enhance reliability of radiosonde humidity measurement,” (Vaisala Oy, P.O. Box 26, FIN00421 Helsinki, Finland).

A. Heymsfield, National Center for Atmospheric Research, Boulder, Colo. (personal communication, July1998).

D. L. Snyder, M. I. Miller, Random Point Processes in Space and Time (Springer-Verlag, Berlin, 1991).
[CrossRef]

G. A. d’Almeida, P. Koepke, E. Shettle, Atmospheric Aerosols Global Climatology and Radiative Characteristics (A. Deepak, Hampton, Va., 1991).

J. Nash, F. J. Schmidlin, “Instruments and observing methods. Report 30. WMO International Radiosonde Intercomparison UK 1984, USA 1985,” (World Meteorological Organisation, Case postale 2300, Geneva, 1987).

F. J. Schmidlin, “Report of the WMO radiosonde relative humidity sensor intercomparison: Phase 2, 8–26 September 1995,” (World Meteorological Organisation, Case postale 2300, Geneva, 1999).

B. M. Lesht, J. C. Lilegren, “Comparison of precipitable water vapor measurements obtained by microwave radiometry and radiosondes at the Southern Great Plains CART site,” in Proceedings of the Sixth Atmospheric Radiation Measurement (ARM) Science Team Meeting, San Antonio, Tex. (Office of Energy Research, Environmental Sciences Division, U.S. Department of Energy, Washington, D.C. 20585, 1996), pp. 165–168.

D. D. Turner, J. E. M. Goldsmith, “24-hour Raman lidar water vapor measurements during the Atmospheric Radiation Measurement program’s 1996 and 1997 water vapor intensive observation periods,” J. Atmos. Oceanic Technol. (to be published).

K. Emanuel, Atmospheric Convection (Oxford University, London, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic representation of the optics used for separating the Raman water-vapor and molecular nitrogen returns: A, fiber-optic cable; B1–B3, focusing lens; C1, C2, dichroic beam splitters; D, low-pass filter; E, holographic filter; F1, F2, G, three-cavity interference filters; H, high-pass filter. Transmission characteristics are given in Table 1.

Fig. 2
Fig. 2

Relative transmission of the Raman returns Γ(z)-1 illustrated for the case of pure molecular scattering (Rayleigh) and for four cases of boundary aerosol loading including molecular extinction and ozone absorption (Aerosols 1–4). Aerosols 1–3 represent the typical range of boundary aerosol loading: The aerosol optical thickness τ(600 nm) varies from 0.1 to 0.3, and the Angström coefficient γ is 1.5. Aerosol 4 illustrates extreme aerosol loading conditions (high humidity or urban pollution), τ = 0.6 and γ = 1.0. Attenuation of the signal at 660 nm due to water-vapor absorption is illustrated for two constant humidity atmospheres: RH of 100% and RH of 50%. These simulations give an upper bound (<3%) for the effects of water-vapor absorption because the spectral distribution of the Raman lines has not been taken into account when the signal attenuation is calculated.

Fig. 3
Fig. 3

Comparison of lidar measurements and a collocated H-Humicap radiosounding before the change to the OH-rich fiber-optic cables. The fluorescence contribution introduces a systematic bias into the lidar measurement and gives rise to the asymptotic behavior at more than 8 km. There is good agreement between the observed lidar profile and that predicted from the radiosonde measurement and the independent fluorescence estimate (dashed curve): The biases introduced by the fiber fluorescence between 3.75 and 4.25 km and above 8 km are clearly illustrated.

Fig. 4
Fig. 4

Two examples of lidar radiosonde intercomparisons after the change to the OH-rich fiber–optic cables: (a), (b) mixing ratio as a function of altitude as observed by the two instruments; (c), (d) relative humidity (with respect to water) illustrated as a function of altitude. The dot–dash curve in (c) and (d) shows the relative humidity corresponding to saturation over ice. The origin of the differences between the two measurements, particularly in the upper troposphere, is discussed in the text.

Tables (3)

Tables Icon

Table 1 Transmission Characteristics of the Optical Components Used to Select the Raman Backscatter Signals

Tables Icon

Table 2 Principal Characteristics of the OHP Rayleigh–Raman Lidar

Tables Icon

Table 3 Summary of the Principal Sources and Characteristic Magnitudes of Measurement Errors for the OHP Raman Water-Vapor Lidar

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

qz=CΓzSH2OzSN2z=CΓzNH2Oz-bH2O^NN2z-bN2^,
Γz=exp- z0z αλN2, zdzexp-z0z αλH2O, zdz,
C= LN2λσN2λ LH2OλσH2OλMH2OMdry airnN2ndry air,
fl^=CηSRayl.MiezSN2z=CησRayl1+nAzσAznzσRaylσN2.
q¯=1ni=1n qi,  σ2=1n2i=1n σi2.
VSH2O1/2SH2Oz=1NH2Oz1/21+R/Ncb1/21-R,

Metrics