Abstract

We present a method for the independent calibration of Raman backscatter water-vapor lidar systems. Particular attention is given to the resolution of instrumental changes in the short and the long terms. The method reposes on the decomposition of the instrument function, which allows the lidar calibration coefficient to be re-expressed as the product of two terms, one describing the instrumental transmission and detection efficiency and the other describing the wavelength-dependent convolution of the Raman backscatter cross sections with the instrument function. The origins of changes in instrument response necessitate the experimental determination of the system detection efficiency. Two external light sources for calibration are assessed: zenith observation of diffuse sunlight and a xenon arc lamp. The results favor use of the diffuse-sunlight measurement but highlight the need for simultaneous sunphotometer measurements to constrain modeled aerosol optical properties. Quantum mechanical models of the Raman cross sections are described, and errors in determining the cross sections and their convolution with the instrument function are discussed in detail. The calibration coefficients deduced by using the independent method are compared with coefficients deduced from Vaisala H-Humicap radiosonde measurements. These results agree to within current calibration errors (15%, unconstrained aerosol parameters), and a change in calibration coefficient following instrument modification is reproduced satisfactorily. Results from modeling and intercomparison studies are extended to estimate the calibration accuracy and the precision of the diffuse-sunlight method with constrained modeled aerosol parameters. Changes in the calibration coefficient in the short and the long terms should be resolved to 4(6)% and 6(9)%, respectively, which is comparable or better than the precision of existing dependent methods of calibration. The reduction of the absolute calibration error remains an outstanding issue for all calibration methods.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
    [CrossRef] [PubMed]
  2. R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. Starr, “A comparison of water vapor measurements made by Raman lidar and radiosondes,” J. Atmos. Oceanic Technol. 12, 1177–1195 (1995).
    [CrossRef]
  3. J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998).
    [CrossRef]
  4. D. D. Turner, J. E. M. Goldsmith, “24-hour Raman lidar water vapor measurements during the Atmospheric Radiation Measurement program’s 1996 and 1997 water vapor intensive observation periods,” J. Atmos. Oceanic Technol. (to be published).
  5. J. Nash, F. J. Schmidlin, “Instruments and observing methods. Report 30. WMO International Radiosonde Intercomparison UK 1984, USA 1985,” (World Meteorological Organization, Case postale 2300, Geneva, 1987).
  6. F. J. Schmidlin, “Report of the WMO radiosonde relative humidity sensor intercomparison: Phase 2, 8-26 September 1995,” (World Meteorological Organization, Case postale 2300, Geneva, 1999).
  7. B. J. Soden, J. R. Lanzante, “An assessment of satellite and radiosonde climatologies of upper-tropospheric water vapor,” J. Clim. 9, 1235–1250 (1996).
    [CrossRef]
  8. B. M. Lesht, J. C. Lilegren, “Comparison of precipitable water vapor measurements obtained by microwave radiometry and radiosondes at the Southern Great Plains CART site,” in Proceedings of the Sixth Atmospheric Radiation Measurement (ARM) Science Team Meeting, San Antonio Tex. (Office of Energy Research, Environmental Sciences Division, U.S. Department of Energy, Washington, D.C. 20585, 1996), pp. 165–168.
  9. P. S. Anderson, “Mechanism for the behavior of hydroactive materials used in humidity sensors,” J. Atmos. Oceanic Technol. 12, 662–667 (1995).
    [CrossRef]
  10. S. Muller, P. J. Beekman, “A test of commercial humidity sensors for use at automatic weather stations,” J. Atmos. Oceanic Technol. 4, 731–735 (1987).
    [CrossRef]
  11. D. Kley, H. G. J. Smit, H. Vomel, V. Ramanathan, P. J. Crutzen, S. Williams, J. Mey-werk, S. J. Oltmans, “Tropospheric water vapor and ozone cross sections in a zonal plane over the central equatorial Pacific,” Q. J. R. Meteorol. Soc. 123, 2009–2040 (1997).
    [CrossRef]
  12. P. Yang, H. Grassl, H. Jager, “An improved humidity sensor,” J. Atmos. Oceanic Technol. 13, 1110–1115 (1996).
    [CrossRef]
  13. H. E. Revercomb, W. F. Feltz, R. O. Knuteson, D. C. Tobin, P. F. W. van Delst, B. A. Whitney, “Accomplishments of the water vapor IOP’s: an overview,” in Proceedings of the Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting, Tucson Ariz. (Office of Energy Research, Environmental Sciences Division, U.S. Department of Energy, Washington, D.C. 20585, 1998), pp. 639–645.
  14. “The Global Energy and Water Cycle Experiment (GEWEX),” World Meteorol. Organ. Bull. 42, 20–27 (1993).
  15. G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988).
    [CrossRef]
  16. C. M. Penney, M. Lapp, “Raman scattering cross section for water vapor,” J. Opt. Soc. Am. 66, 422–425 (1976).
    [CrossRef]
  17. C. M. Penney, L. M. Goldman, M. Lapp, “Raman scattering from flames,” Science 175, 1112–1115 (1972).
    [CrossRef] [PubMed]
  18. D. N. Whiteman, W. F. Murphy, N. W. Walsh, K. D. Evans, “Temperature sensitivity of an atmospheric Raman lidar system based on a XeF excimer laser,” Opt. Lett. 18, 247–249 (1993).
    [CrossRef]
  19. V. J. Sherlock, “Evaluation de la technique du lidar Raman en vue de l’étude climatologique de la vapeur d’eau dans la moyenne et haute troposphère,” Ph.D. dissertation (Université de Paris VI, Paris, 1998).
  20. V. J. Sherlock, A. Garnier, A. Hauchecorne, P. Keckhut, “Implementation and validation of a Raman backscatter lidar measurement of mid and upper tropospheric water vapor,” Appl. Opt. 38, 5838–5850 (1999).
    [CrossRef]
  21. J. M. Flaud, C. Camy-Peyret, “The 2ν2, ν1 and ν3 bands of H2O. Rotational study of the (000) and (020) states,” J. Mol. Phys. 26, 811–823 (1973).
    [CrossRef]
  22. J. M. Flaud, C. Camy-Peyret, “The interacting states (020), (100), and (001) of H216O,” J. Mol. Spectrosc. 51, 142–150 (1974).
    [CrossRef]
  23. R. Gaufrès, “Sur quelques possibilités offertes par la séparation de diffusion de trace en spectroscopic Raman des gaz,” C. R. Acad. Sci. Ser. B T227, 297–298 (1973).
  24. W. F. Murphy, “The rovibrational Raman spectrum of water vapor ν2 and 2ν2,” J. Mol. Phys. 33, 1701–1714 (1977).
    [CrossRef]
  25. L. A. Rahn, D. A. Greenhalgh, “High resolution inverse Raman spectroscopy of the ν1 band of water vapor,” J. Mol. Spectrosc. 119, 11–21 (1986).
    [CrossRef]
  26. W. F. Murphy, “Intensities of rotation and vibration–rotation Raman transitions in assymetric top molecules,” J. Raman Spectrosc. 11, 339–345 (1981).
    [CrossRef]
  27. W. F. Murphy, “The rovibrational Raman spectrum of water vapor ν1 and ν3,” J. Mol. Phys. 36, 727–732 (1978).
    [CrossRef]
  28. R. Gaufrès, S. Spourtouch, “Contours des bandes dans les spectres Raman de gaz,” in Advances in Raman Spectroscopy (Heyden, London, 1973), Vol. 1, pp. 478–492.
  29. J. L. Bribes, R. Gaufrès, M. Monan, M. Lapp, C. M. Penney, “Raman band contours for water vapor as a function of temperature,” Appl. Phys. Lett. 28, 336–337 (1976).
    [CrossRef]
  30. G. Herzberg, Molecular Spectra and Molecular Structure. I Spectra of Diatomic Molecules (Van Norstrand, Princeton, N.J., 1959).
  31. R. M. Measures, Laser Remote Sensing Fundamentals and Applications (Krieger, Malabar, Fla., 1992).
  32. W. F. Murphy, W. Holzer, H. J. Bernstein, “Gas phase Raman intensities: a review of prelaser data,” Appl. Spectrosc. 23, 211–218 (1969).
    [CrossRef]
  33. W. Holzer, Y. LeDuff, “The depolarization ratio of the Raman bands of the vibration of diatomic molecules,” in Advances in Raman Spectroscopy (Heyden, London, 1973), Vol. 1, pp. 109–114.
  34. H. Inaba, T. Kobayasi, “Laser-Raman Radar—laser-Raman scattering methods for remote detection and analysis of atmospheric pollution,” Optoelectron. 4, 101–123 (1972).
  35. N. Abe, M. Ito, “Effects of hydrogen bonding on the Raman intensities of methanol, ethanol, and water,” J. Raman Spectrosc. 7, 161–167 (1978).
    [CrossRef]
  36. D. A. Greenhalgh, R. J. Hall, F. M. Porter, W. A. England, “Application of the rotational diffusion model to the CARS spectra of high-temperature high-pressure water vapor,” J. Raman Spectrosc. 15, 71–79 (1984).
    [CrossRef]
  37. G. C. Herring, B. W. South, “Pressure broadening of vibrational Raman lines in N2 at temperatures below 300 K,” J. Quant. Spectrosc. Radiat. Transfer 52, 835–840 (1994).
    [CrossRef]
  38. J. Wang, G. P. Anderson, H. E. Revercomb, R. O. Knuteson, “Validation of fascod3 and modtran3: comparison of model calculations with ground based and airborne interferometer measurements under clear sky conditions,” Appl. Opt. 35, 6028–6040 (1996).
    [CrossRef] [PubMed]
  39. J. Lenoble, Atmospheric Radiative Transfer (A. Deepak, Hampton, Va., 1993).
  40. G. A. d’Almeida, P. Koepke, E. Shettle, Atmospheric Aerosols Global Climatology and Radiative Characteristics (A. Deepak, Hampton, Va., 1991).
  41. B. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowaik, “Automatic sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ. 66, 1–16 (1998).
    [CrossRef]
  42. M. Weller, U. Leiterer, “Experimental data on spectral aerosol optical thickness and its global distribution,” Beitr. Phys. Atmos. 61, 1–9 (1988).
  43. Y. J. Kaufman, A. Gitelson, E. Ganor, R. S. Fraser, T. Nakajima, S. Mattoo, B. N. Holben, “Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements,” J. Geophys. Res. 99, 10,341–10,356 (1994).
    [CrossRef]
  44. J. C. Larsen, E. W. Chiou, W. P. Chu, M. P. McCormick, L. R. McMaster, S. Oltmans, D. Rind, “A comparison of the Stratospheric Aerosol and Gas Experiment II water vapor to radiosonde measurements,” J. Geophys. Res. 98, 4897–4917 (1993).
    [CrossRef]
  45. A. Heymsfield, National Center for Atmospheric Research, Boulder, Colo. (personal communication, July1998).
  46. R. A. McClatchey, R. W. Fenn, J. E. A. Selby, “Optical properties of the atmosphere,” (U.S. Air Force Geophysics Laboratories, Hanscom Air Force Base, Mass., 1972).
  47. M. Van Weele, T. J. Martin, M. Blumthaler, C. Brogniez, P. N. den Outer, O. Engelsen, J. Lenoble, B. Mayer, G. Pfister, A. Ruggaber, B. Walravens, P. Weihs, B. G. Gardiner, D. Gillotay, D. Haferl, A. Kylling, G. Seckmeyer, W. M. F. Wauben, “From model intercomparison toward benchmark UV spectra for real atmospheric cases,” J. Geophys. Res. (to be published).

1999

1998

J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998).
[CrossRef]

B. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowaik, “Automatic sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ. 66, 1–16 (1998).
[CrossRef]

1997

D. Kley, H. G. J. Smit, H. Vomel, V. Ramanathan, P. J. Crutzen, S. Williams, J. Mey-werk, S. J. Oltmans, “Tropospheric water vapor and ozone cross sections in a zonal plane over the central equatorial Pacific,” Q. J. R. Meteorol. Soc. 123, 2009–2040 (1997).
[CrossRef]

1996

P. Yang, H. Grassl, H. Jager, “An improved humidity sensor,” J. Atmos. Oceanic Technol. 13, 1110–1115 (1996).
[CrossRef]

B. J. Soden, J. R. Lanzante, “An assessment of satellite and radiosonde climatologies of upper-tropospheric water vapor,” J. Clim. 9, 1235–1250 (1996).
[CrossRef]

J. Wang, G. P. Anderson, H. E. Revercomb, R. O. Knuteson, “Validation of fascod3 and modtran3: comparison of model calculations with ground based and airborne interferometer measurements under clear sky conditions,” Appl. Opt. 35, 6028–6040 (1996).
[CrossRef] [PubMed]

1995

P. S. Anderson, “Mechanism for the behavior of hydroactive materials used in humidity sensors,” J. Atmos. Oceanic Technol. 12, 662–667 (1995).
[CrossRef]

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. Starr, “A comparison of water vapor measurements made by Raman lidar and radiosondes,” J. Atmos. Oceanic Technol. 12, 1177–1195 (1995).
[CrossRef]

1994

Y. J. Kaufman, A. Gitelson, E. Ganor, R. S. Fraser, T. Nakajima, S. Mattoo, B. N. Holben, “Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements,” J. Geophys. Res. 99, 10,341–10,356 (1994).
[CrossRef]

G. C. Herring, B. W. South, “Pressure broadening of vibrational Raman lines in N2 at temperatures below 300 K,” J. Quant. Spectrosc. Radiat. Transfer 52, 835–840 (1994).
[CrossRef]

1993

J. C. Larsen, E. W. Chiou, W. P. Chu, M. P. McCormick, L. R. McMaster, S. Oltmans, D. Rind, “A comparison of the Stratospheric Aerosol and Gas Experiment II water vapor to radiosonde measurements,” J. Geophys. Res. 98, 4897–4917 (1993).
[CrossRef]

D. N. Whiteman, W. F. Murphy, N. W. Walsh, K. D. Evans, “Temperature sensitivity of an atmospheric Raman lidar system based on a XeF excimer laser,” Opt. Lett. 18, 247–249 (1993).
[CrossRef]

“The Global Energy and Water Cycle Experiment (GEWEX),” World Meteorol. Organ. Bull. 42, 20–27 (1993).

1992

1988

G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988).
[CrossRef]

M. Weller, U. Leiterer, “Experimental data on spectral aerosol optical thickness and its global distribution,” Beitr. Phys. Atmos. 61, 1–9 (1988).

1987

S. Muller, P. J. Beekman, “A test of commercial humidity sensors for use at automatic weather stations,” J. Atmos. Oceanic Technol. 4, 731–735 (1987).
[CrossRef]

1986

L. A. Rahn, D. A. Greenhalgh, “High resolution inverse Raman spectroscopy of the ν1 band of water vapor,” J. Mol. Spectrosc. 119, 11–21 (1986).
[CrossRef]

1984

D. A. Greenhalgh, R. J. Hall, F. M. Porter, W. A. England, “Application of the rotational diffusion model to the CARS spectra of high-temperature high-pressure water vapor,” J. Raman Spectrosc. 15, 71–79 (1984).
[CrossRef]

1981

W. F. Murphy, “Intensities of rotation and vibration–rotation Raman transitions in assymetric top molecules,” J. Raman Spectrosc. 11, 339–345 (1981).
[CrossRef]

1978

W. F. Murphy, “The rovibrational Raman spectrum of water vapor ν1 and ν3,” J. Mol. Phys. 36, 727–732 (1978).
[CrossRef]

N. Abe, M. Ito, “Effects of hydrogen bonding on the Raman intensities of methanol, ethanol, and water,” J. Raman Spectrosc. 7, 161–167 (1978).
[CrossRef]

1977

W. F. Murphy, “The rovibrational Raman spectrum of water vapor ν2 and 2ν2,” J. Mol. Phys. 33, 1701–1714 (1977).
[CrossRef]

1976

C. M. Penney, M. Lapp, “Raman scattering cross section for water vapor,” J. Opt. Soc. Am. 66, 422–425 (1976).
[CrossRef]

J. L. Bribes, R. Gaufrès, M. Monan, M. Lapp, C. M. Penney, “Raman band contours for water vapor as a function of temperature,” Appl. Phys. Lett. 28, 336–337 (1976).
[CrossRef]

1974

J. M. Flaud, C. Camy-Peyret, “The interacting states (020), (100), and (001) of H216O,” J. Mol. Spectrosc. 51, 142–150 (1974).
[CrossRef]

1973

R. Gaufrès, “Sur quelques possibilités offertes par la séparation de diffusion de trace en spectroscopic Raman des gaz,” C. R. Acad. Sci. Ser. B T227, 297–298 (1973).

J. M. Flaud, C. Camy-Peyret, “The 2ν2, ν1 and ν3 bands of H2O. Rotational study of the (000) and (020) states,” J. Mol. Phys. 26, 811–823 (1973).
[CrossRef]

1972

C. M. Penney, L. M. Goldman, M. Lapp, “Raman scattering from flames,” Science 175, 1112–1115 (1972).
[CrossRef] [PubMed]

H. Inaba, T. Kobayasi, “Laser-Raman Radar—laser-Raman scattering methods for remote detection and analysis of atmospheric pollution,” Optoelectron. 4, 101–123 (1972).

1969

Abe, N.

N. Abe, M. Ito, “Effects of hydrogen bonding on the Raman intensities of methanol, ethanol, and water,” J. Raman Spectrosc. 7, 161–167 (1978).
[CrossRef]

Anderson, G. P.

Anderson, P. S.

P. S. Anderson, “Mechanism for the behavior of hydroactive materials used in humidity sensors,” J. Atmos. Oceanic Technol. 12, 662–667 (1995).
[CrossRef]

Beekman, P. J.

S. Muller, P. J. Beekman, “A test of commercial humidity sensors for use at automatic weather stations,” J. Atmos. Oceanic Technol. 4, 731–735 (1987).
[CrossRef]

Bernstein, H. J.

Bisson, S. E.

Blair, F. H.

Blumthaler, M.

M. Van Weele, T. J. Martin, M. Blumthaler, C. Brogniez, P. N. den Outer, O. Engelsen, J. Lenoble, B. Mayer, G. Pfister, A. Ruggaber, B. Walravens, P. Weihs, B. G. Gardiner, D. Gillotay, D. Haferl, A. Kylling, G. Seckmeyer, W. M. F. Wauben, “From model intercomparison toward benchmark UV spectra for real atmospheric cases,” J. Geophys. Res. (to be published).

Bribes, J. L.

J. L. Bribes, R. Gaufrès, M. Monan, M. Lapp, C. M. Penney, “Raman band contours for water vapor as a function of temperature,” Appl. Phys. Lett. 28, 336–337 (1976).
[CrossRef]

Brogniez, C.

M. Van Weele, T. J. Martin, M. Blumthaler, C. Brogniez, P. N. den Outer, O. Engelsen, J. Lenoble, B. Mayer, G. Pfister, A. Ruggaber, B. Walravens, P. Weihs, B. G. Gardiner, D. Gillotay, D. Haferl, A. Kylling, G. Seckmeyer, W. M. F. Wauben, “From model intercomparison toward benchmark UV spectra for real atmospheric cases,” J. Geophys. Res. (to be published).

Buis, J. P.

B. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowaik, “Automatic sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ. 66, 1–16 (1998).
[CrossRef]

Camy-Peyret, C.

J. M. Flaud, C. Camy-Peyret, “The interacting states (020), (100), and (001) of H216O,” J. Mol. Spectrosc. 51, 142–150 (1974).
[CrossRef]

J. M. Flaud, C. Camy-Peyret, “The 2ν2, ν1 and ν3 bands of H2O. Rotational study of the (000) and (020) states,” J. Mol. Phys. 26, 811–823 (1973).
[CrossRef]

Chiou, E. W.

J. C. Larsen, E. W. Chiou, W. P. Chu, M. P. McCormick, L. R. McMaster, S. Oltmans, D. Rind, “A comparison of the Stratospheric Aerosol and Gas Experiment II water vapor to radiosonde measurements,” J. Geophys. Res. 98, 4897–4917 (1993).
[CrossRef]

Chu, W. P.

J. C. Larsen, E. W. Chiou, W. P. Chu, M. P. McCormick, L. R. McMaster, S. Oltmans, D. Rind, “A comparison of the Stratospheric Aerosol and Gas Experiment II water vapor to radiosonde measurements,” J. Geophys. Res. 98, 4897–4917 (1993).
[CrossRef]

Crutzen, P. J.

D. Kley, H. G. J. Smit, H. Vomel, V. Ramanathan, P. J. Crutzen, S. Williams, J. Mey-werk, S. J. Oltmans, “Tropospheric water vapor and ozone cross sections in a zonal plane over the central equatorial Pacific,” Q. J. R. Meteorol. Soc. 123, 2009–2040 (1997).
[CrossRef]

d’Almeida, G. A.

G. A. d’Almeida, P. Koepke, E. Shettle, Atmospheric Aerosols Global Climatology and Radiative Characteristics (A. Deepak, Hampton, Va., 1991).

den Outer, P. N.

M. Van Weele, T. J. Martin, M. Blumthaler, C. Brogniez, P. N. den Outer, O. Engelsen, J. Lenoble, B. Mayer, G. Pfister, A. Ruggaber, B. Walravens, P. Weihs, B. G. Gardiner, D. Gillotay, D. Haferl, A. Kylling, G. Seckmeyer, W. M. F. Wauben, “From model intercomparison toward benchmark UV spectra for real atmospheric cases,” J. Geophys. Res. (to be published).

Eck, T. F.

B. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowaik, “Automatic sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ. 66, 1–16 (1998).
[CrossRef]

Engelsen, O.

M. Van Weele, T. J. Martin, M. Blumthaler, C. Brogniez, P. N. den Outer, O. Engelsen, J. Lenoble, B. Mayer, G. Pfister, A. Ruggaber, B. Walravens, P. Weihs, B. G. Gardiner, D. Gillotay, D. Haferl, A. Kylling, G. Seckmeyer, W. M. F. Wauben, “From model intercomparison toward benchmark UV spectra for real atmospheric cases,” J. Geophys. Res. (to be published).

England, W. A.

D. A. Greenhalgh, R. J. Hall, F. M. Porter, W. A. England, “Application of the rotational diffusion model to the CARS spectra of high-temperature high-pressure water vapor,” J. Raman Spectrosc. 15, 71–79 (1984).
[CrossRef]

Evans, K. D.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. Starr, “A comparison of water vapor measurements made by Raman lidar and radiosondes,” J. Atmos. Oceanic Technol. 12, 1177–1195 (1995).
[CrossRef]

D. N. Whiteman, W. F. Murphy, N. W. Walsh, K. D. Evans, “Temperature sensitivity of an atmospheric Raman lidar system based on a XeF excimer laser,” Opt. Lett. 18, 247–249 (1993).
[CrossRef]

Feltz, W. F.

H. E. Revercomb, W. F. Feltz, R. O. Knuteson, D. C. Tobin, P. F. W. van Delst, B. A. Whitney, “Accomplishments of the water vapor IOP’s: an overview,” in Proceedings of the Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting, Tucson Ariz. (Office of Energy Research, Environmental Sciences Division, U.S. Department of Energy, Washington, D.C. 20585, 1998), pp. 639–645.

Fenn, R. W.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, “Optical properties of the atmosphere,” (U.S. Air Force Geophysics Laboratories, Hanscom Air Force Base, Mass., 1972).

Ferrare, R. A.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. Starr, “A comparison of water vapor measurements made by Raman lidar and radiosondes,” J. Atmos. Oceanic Technol. 12, 1177–1195 (1995).
[CrossRef]

D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
[CrossRef] [PubMed]

Flaud, J. M.

J. M. Flaud, C. Camy-Peyret, “The interacting states (020), (100), and (001) of H216O,” J. Mol. Spectrosc. 51, 142–150 (1974).
[CrossRef]

J. M. Flaud, C. Camy-Peyret, “The 2ν2, ν1 and ν3 bands of H2O. Rotational study of the (000) and (020) states,” J. Mol. Phys. 26, 811–823 (1973).
[CrossRef]

Fraser, R. S.

Y. J. Kaufman, A. Gitelson, E. Ganor, R. S. Fraser, T. Nakajima, S. Mattoo, B. N. Holben, “Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements,” J. Geophys. Res. 99, 10,341–10,356 (1994).
[CrossRef]

Ganor, E.

Y. J. Kaufman, A. Gitelson, E. Ganor, R. S. Fraser, T. Nakajima, S. Mattoo, B. N. Holben, “Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements,” J. Geophys. Res. 99, 10,341–10,356 (1994).
[CrossRef]

Gardiner, B. G.

M. Van Weele, T. J. Martin, M. Blumthaler, C. Brogniez, P. N. den Outer, O. Engelsen, J. Lenoble, B. Mayer, G. Pfister, A. Ruggaber, B. Walravens, P. Weihs, B. G. Gardiner, D. Gillotay, D. Haferl, A. Kylling, G. Seckmeyer, W. M. F. Wauben, “From model intercomparison toward benchmark UV spectra for real atmospheric cases,” J. Geophys. Res. (to be published).

Garnier, A.

Gaufrès, R.

J. L. Bribes, R. Gaufrès, M. Monan, M. Lapp, C. M. Penney, “Raman band contours for water vapor as a function of temperature,” Appl. Phys. Lett. 28, 336–337 (1976).
[CrossRef]

R. Gaufrès, “Sur quelques possibilités offertes par la séparation de diffusion de trace en spectroscopic Raman des gaz,” C. R. Acad. Sci. Ser. B T227, 297–298 (1973).

R. Gaufrès, S. Spourtouch, “Contours des bandes dans les spectres Raman de gaz,” in Advances in Raman Spectroscopy (Heyden, London, 1973), Vol. 1, pp. 478–492.

Gillotay, D.

M. Van Weele, T. J. Martin, M. Blumthaler, C. Brogniez, P. N. den Outer, O. Engelsen, J. Lenoble, B. Mayer, G. Pfister, A. Ruggaber, B. Walravens, P. Weihs, B. G. Gardiner, D. Gillotay, D. Haferl, A. Kylling, G. Seckmeyer, W. M. F. Wauben, “From model intercomparison toward benchmark UV spectra for real atmospheric cases,” J. Geophys. Res. (to be published).

Gitelson, A.

Y. J. Kaufman, A. Gitelson, E. Ganor, R. S. Fraser, T. Nakajima, S. Mattoo, B. N. Holben, “Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements,” J. Geophys. Res. 99, 10,341–10,356 (1994).
[CrossRef]

Goldman, L. M.

C. M. Penney, L. M. Goldman, M. Lapp, “Raman scattering from flames,” Science 175, 1112–1115 (1972).
[CrossRef] [PubMed]

Goldsmith, J. E. M.

J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998).
[CrossRef]

D. D. Turner, J. E. M. Goldsmith, “24-hour Raman lidar water vapor measurements during the Atmospheric Radiation Measurement program’s 1996 and 1997 water vapor intensive observation periods,” J. Atmos. Oceanic Technol. (to be published).

Grassl, H.

P. Yang, H. Grassl, H. Jager, “An improved humidity sensor,” J. Atmos. Oceanic Technol. 13, 1110–1115 (1996).
[CrossRef]

Greenhalgh, D. A.

L. A. Rahn, D. A. Greenhalgh, “High resolution inverse Raman spectroscopy of the ν1 band of water vapor,” J. Mol. Spectrosc. 119, 11–21 (1986).
[CrossRef]

D. A. Greenhalgh, R. J. Hall, F. M. Porter, W. A. England, “Application of the rotational diffusion model to the CARS spectra of high-temperature high-pressure water vapor,” J. Raman Spectrosc. 15, 71–79 (1984).
[CrossRef]

Haferl, D.

M. Van Weele, T. J. Martin, M. Blumthaler, C. Brogniez, P. N. den Outer, O. Engelsen, J. Lenoble, B. Mayer, G. Pfister, A. Ruggaber, B. Walravens, P. Weihs, B. G. Gardiner, D. Gillotay, D. Haferl, A. Kylling, G. Seckmeyer, W. M. F. Wauben, “From model intercomparison toward benchmark UV spectra for real atmospheric cases,” J. Geophys. Res. (to be published).

Hall, R. J.

D. A. Greenhalgh, R. J. Hall, F. M. Porter, W. A. England, “Application of the rotational diffusion model to the CARS spectra of high-temperature high-pressure water vapor,” J. Raman Spectrosc. 15, 71–79 (1984).
[CrossRef]

Hauchecorne, A.

Herring, G. C.

G. C. Herring, B. W. South, “Pressure broadening of vibrational Raman lines in N2 at temperatures below 300 K,” J. Quant. Spectrosc. Radiat. Transfer 52, 835–840 (1994).
[CrossRef]

Herzberg, G.

G. Herzberg, Molecular Spectra and Molecular Structure. I Spectra of Diatomic Molecules (Van Norstrand, Princeton, N.J., 1959).

Heymsfield, A.

A. Heymsfield, National Center for Atmospheric Research, Boulder, Colo. (personal communication, July1998).

Holben, B.

B. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowaik, “Automatic sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ. 66, 1–16 (1998).
[CrossRef]

Holben, B. N.

Y. J. Kaufman, A. Gitelson, E. Ganor, R. S. Fraser, T. Nakajima, S. Mattoo, B. N. Holben, “Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements,” J. Geophys. Res. 99, 10,341–10,356 (1994).
[CrossRef]

Holzer, W.

W. F. Murphy, W. Holzer, H. J. Bernstein, “Gas phase Raman intensities: a review of prelaser data,” Appl. Spectrosc. 23, 211–218 (1969).
[CrossRef]

W. Holzer, Y. LeDuff, “The depolarization ratio of the Raman bands of the vibration of diatomic molecules,” in Advances in Raman Spectroscopy (Heyden, London, 1973), Vol. 1, pp. 109–114.

Inaba, H.

H. Inaba, T. Kobayasi, “Laser-Raman Radar—laser-Raman scattering methods for remote detection and analysis of atmospheric pollution,” Optoelectron. 4, 101–123 (1972).

Ito, M.

N. Abe, M. Ito, “Effects of hydrogen bonding on the Raman intensities of methanol, ethanol, and water,” J. Raman Spectrosc. 7, 161–167 (1978).
[CrossRef]

Jager, H.

P. Yang, H. Grassl, H. Jager, “An improved humidity sensor,” J. Atmos. Oceanic Technol. 13, 1110–1115 (1996).
[CrossRef]

Jankowaik, I.

B. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowaik, “Automatic sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ. 66, 1–16 (1998).
[CrossRef]

Kaufman, Y. J.

B. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowaik, “Automatic sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ. 66, 1–16 (1998).
[CrossRef]

Y. J. Kaufman, A. Gitelson, E. Ganor, R. S. Fraser, T. Nakajima, S. Mattoo, B. N. Holben, “Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements,” J. Geophys. Res. 99, 10,341–10,356 (1994).
[CrossRef]

Keckhut, P.

Kley, D.

D. Kley, H. G. J. Smit, H. Vomel, V. Ramanathan, P. J. Crutzen, S. Williams, J. Mey-werk, S. J. Oltmans, “Tropospheric water vapor and ozone cross sections in a zonal plane over the central equatorial Pacific,” Q. J. R. Meteorol. Soc. 123, 2009–2040 (1997).
[CrossRef]

Knuteson, R. O.

J. Wang, G. P. Anderson, H. E. Revercomb, R. O. Knuteson, “Validation of fascod3 and modtran3: comparison of model calculations with ground based and airborne interferometer measurements under clear sky conditions,” Appl. Opt. 35, 6028–6040 (1996).
[CrossRef] [PubMed]

H. E. Revercomb, W. F. Feltz, R. O. Knuteson, D. C. Tobin, P. F. W. van Delst, B. A. Whitney, “Accomplishments of the water vapor IOP’s: an overview,” in Proceedings of the Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting, Tucson Ariz. (Office of Energy Research, Environmental Sciences Division, U.S. Department of Energy, Washington, D.C. 20585, 1998), pp. 639–645.

Kobayasi, T.

H. Inaba, T. Kobayasi, “Laser-Raman Radar—laser-Raman scattering methods for remote detection and analysis of atmospheric pollution,” Optoelectron. 4, 101–123 (1972).

Koepke, P.

G. A. d’Almeida, P. Koepke, E. Shettle, Atmospheric Aerosols Global Climatology and Radiative Characteristics (A. Deepak, Hampton, Va., 1991).

Kylling, A.

M. Van Weele, T. J. Martin, M. Blumthaler, C. Brogniez, P. N. den Outer, O. Engelsen, J. Lenoble, B. Mayer, G. Pfister, A. Ruggaber, B. Walravens, P. Weihs, B. G. Gardiner, D. Gillotay, D. Haferl, A. Kylling, G. Seckmeyer, W. M. F. Wauben, “From model intercomparison toward benchmark UV spectra for real atmospheric cases,” J. Geophys. Res. (to be published).

Lanzante, J. R.

B. J. Soden, J. R. Lanzante, “An assessment of satellite and radiosonde climatologies of upper-tropospheric water vapor,” J. Clim. 9, 1235–1250 (1996).
[CrossRef]

Lapp, M.

J. L. Bribes, R. Gaufrès, M. Monan, M. Lapp, C. M. Penney, “Raman band contours for water vapor as a function of temperature,” Appl. Phys. Lett. 28, 336–337 (1976).
[CrossRef]

C. M. Penney, M. Lapp, “Raman scattering cross section for water vapor,” J. Opt. Soc. Am. 66, 422–425 (1976).
[CrossRef]

C. M. Penney, L. M. Goldman, M. Lapp, “Raman scattering from flames,” Science 175, 1112–1115 (1972).
[CrossRef] [PubMed]

Larsen, J. C.

J. C. Larsen, E. W. Chiou, W. P. Chu, M. P. McCormick, L. R. McMaster, S. Oltmans, D. Rind, “A comparison of the Stratospheric Aerosol and Gas Experiment II water vapor to radiosonde measurements,” J. Geophys. Res. 98, 4897–4917 (1993).
[CrossRef]

Lavenu, F.

B. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowaik, “Automatic sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ. 66, 1–16 (1998).
[CrossRef]

LeDuff, Y.

W. Holzer, Y. LeDuff, “The depolarization ratio of the Raman bands of the vibration of diatomic molecules,” in Advances in Raman Spectroscopy (Heyden, London, 1973), Vol. 1, pp. 109–114.

Leiterer, U.

M. Weller, U. Leiterer, “Experimental data on spectral aerosol optical thickness and its global distribution,” Beitr. Phys. Atmos. 61, 1–9 (1988).

Lenoble, J.

M. Van Weele, T. J. Martin, M. Blumthaler, C. Brogniez, P. N. den Outer, O. Engelsen, J. Lenoble, B. Mayer, G. Pfister, A. Ruggaber, B. Walravens, P. Weihs, B. G. Gardiner, D. Gillotay, D. Haferl, A. Kylling, G. Seckmeyer, W. M. F. Wauben, “From model intercomparison toward benchmark UV spectra for real atmospheric cases,” J. Geophys. Res. (to be published).

J. Lenoble, Atmospheric Radiative Transfer (A. Deepak, Hampton, Va., 1993).

Lesht, B. M.

B. M. Lesht, J. C. Lilegren, “Comparison of precipitable water vapor measurements obtained by microwave radiometry and radiosondes at the Southern Great Plains CART site,” in Proceedings of the Sixth Atmospheric Radiation Measurement (ARM) Science Team Meeting, San Antonio Tex. (Office of Energy Research, Environmental Sciences Division, U.S. Department of Energy, Washington, D.C. 20585, 1996), pp. 165–168.

Lilegren, J. C.

B. M. Lesht, J. C. Lilegren, “Comparison of precipitable water vapor measurements obtained by microwave radiometry and radiosondes at the Southern Great Plains CART site,” in Proceedings of the Sixth Atmospheric Radiation Measurement (ARM) Science Team Meeting, San Antonio Tex. (Office of Energy Research, Environmental Sciences Division, U.S. Department of Energy, Washington, D.C. 20585, 1996), pp. 165–168.

Martin, T. J.

M. Van Weele, T. J. Martin, M. Blumthaler, C. Brogniez, P. N. den Outer, O. Engelsen, J. Lenoble, B. Mayer, G. Pfister, A. Ruggaber, B. Walravens, P. Weihs, B. G. Gardiner, D. Gillotay, D. Haferl, A. Kylling, G. Seckmeyer, W. M. F. Wauben, “From model intercomparison toward benchmark UV spectra for real atmospheric cases,” J. Geophys. Res. (to be published).

Mattoo, S.

Y. J. Kaufman, A. Gitelson, E. Ganor, R. S. Fraser, T. Nakajima, S. Mattoo, B. N. Holben, “Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements,” J. Geophys. Res. 99, 10,341–10,356 (1994).
[CrossRef]

Mayer, B.

M. Van Weele, T. J. Martin, M. Blumthaler, C. Brogniez, P. N. den Outer, O. Engelsen, J. Lenoble, B. Mayer, G. Pfister, A. Ruggaber, B. Walravens, P. Weihs, B. G. Gardiner, D. Gillotay, D. Haferl, A. Kylling, G. Seckmeyer, W. M. F. Wauben, “From model intercomparison toward benchmark UV spectra for real atmospheric cases,” J. Geophys. Res. (to be published).

McClatchey, R. A.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, “Optical properties of the atmosphere,” (U.S. Air Force Geophysics Laboratories, Hanscom Air Force Base, Mass., 1972).

McCormick, M. P.

J. C. Larsen, E. W. Chiou, W. P. Chu, M. P. McCormick, L. R. McMaster, S. Oltmans, D. Rind, “A comparison of the Stratospheric Aerosol and Gas Experiment II water vapor to radiosonde measurements,” J. Geophys. Res. 98, 4897–4917 (1993).
[CrossRef]

McMaster, L. R.

J. C. Larsen, E. W. Chiou, W. P. Chu, M. P. McCormick, L. R. McMaster, S. Oltmans, D. Rind, “A comparison of the Stratospheric Aerosol and Gas Experiment II water vapor to radiosonde measurements,” J. Geophys. Res. 98, 4897–4917 (1993).
[CrossRef]

Measures, R. M.

R. M. Measures, Laser Remote Sensing Fundamentals and Applications (Krieger, Malabar, Fla., 1992).

Melfi, S. H.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. Starr, “A comparison of water vapor measurements made by Raman lidar and radiosondes,” J. Atmos. Oceanic Technol. 12, 1177–1195 (1995).
[CrossRef]

D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
[CrossRef] [PubMed]

Mey-werk, J.

D. Kley, H. G. J. Smit, H. Vomel, V. Ramanathan, P. J. Crutzen, S. Williams, J. Mey-werk, S. J. Oltmans, “Tropospheric water vapor and ozone cross sections in a zonal plane over the central equatorial Pacific,” Q. J. R. Meteorol. Soc. 123, 2009–2040 (1997).
[CrossRef]

Mitev, V.

G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988).
[CrossRef]

Monan, M.

J. L. Bribes, R. Gaufrès, M. Monan, M. Lapp, C. M. Penney, “Raman band contours for water vapor as a function of temperature,” Appl. Phys. Lett. 28, 336–337 (1976).
[CrossRef]

Muller, S.

S. Muller, P. J. Beekman, “A test of commercial humidity sensors for use at automatic weather stations,” J. Atmos. Oceanic Technol. 4, 731–735 (1987).
[CrossRef]

Murphy, W. F.

D. N. Whiteman, W. F. Murphy, N. W. Walsh, K. D. Evans, “Temperature sensitivity of an atmospheric Raman lidar system based on a XeF excimer laser,” Opt. Lett. 18, 247–249 (1993).
[CrossRef]

W. F. Murphy, “Intensities of rotation and vibration–rotation Raman transitions in assymetric top molecules,” J. Raman Spectrosc. 11, 339–345 (1981).
[CrossRef]

W. F. Murphy, “The rovibrational Raman spectrum of water vapor ν1 and ν3,” J. Mol. Phys. 36, 727–732 (1978).
[CrossRef]

W. F. Murphy, “The rovibrational Raman spectrum of water vapor ν2 and 2ν2,” J. Mol. Phys. 33, 1701–1714 (1977).
[CrossRef]

W. F. Murphy, W. Holzer, H. J. Bernstein, “Gas phase Raman intensities: a review of prelaser data,” Appl. Spectrosc. 23, 211–218 (1969).
[CrossRef]

Nakajima, T.

B. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowaik, “Automatic sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ. 66, 1–16 (1998).
[CrossRef]

Y. J. Kaufman, A. Gitelson, E. Ganor, R. S. Fraser, T. Nakajima, S. Mattoo, B. N. Holben, “Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements,” J. Geophys. Res. 99, 10,341–10,356 (1994).
[CrossRef]

Nash, J.

J. Nash, F. J. Schmidlin, “Instruments and observing methods. Report 30. WMO International Radiosonde Intercomparison UK 1984, USA 1985,” (World Meteorological Organization, Case postale 2300, Geneva, 1987).

Oltmans, S.

J. C. Larsen, E. W. Chiou, W. P. Chu, M. P. McCormick, L. R. McMaster, S. Oltmans, D. Rind, “A comparison of the Stratospheric Aerosol and Gas Experiment II water vapor to radiosonde measurements,” J. Geophys. Res. 98, 4897–4917 (1993).
[CrossRef]

Oltmans, S. J.

D. Kley, H. G. J. Smit, H. Vomel, V. Ramanathan, P. J. Crutzen, S. Williams, J. Mey-werk, S. J. Oltmans, “Tropospheric water vapor and ozone cross sections in a zonal plane over the central equatorial Pacific,” Q. J. R. Meteorol. Soc. 123, 2009–2040 (1997).
[CrossRef]

Penney, C. M.

J. L. Bribes, R. Gaufrès, M. Monan, M. Lapp, C. M. Penney, “Raman band contours for water vapor as a function of temperature,” Appl. Phys. Lett. 28, 336–337 (1976).
[CrossRef]

C. M. Penney, M. Lapp, “Raman scattering cross section for water vapor,” J. Opt. Soc. Am. 66, 422–425 (1976).
[CrossRef]

C. M. Penney, L. M. Goldman, M. Lapp, “Raman scattering from flames,” Science 175, 1112–1115 (1972).
[CrossRef] [PubMed]

Pfister, G.

M. Van Weele, T. J. Martin, M. Blumthaler, C. Brogniez, P. N. den Outer, O. Engelsen, J. Lenoble, B. Mayer, G. Pfister, A. Ruggaber, B. Walravens, P. Weihs, B. G. Gardiner, D. Gillotay, D. Haferl, A. Kylling, G. Seckmeyer, W. M. F. Wauben, “From model intercomparison toward benchmark UV spectra for real atmospheric cases,” J. Geophys. Res. (to be published).

Porter, F. M.

D. A. Greenhalgh, R. J. Hall, F. M. Porter, W. A. England, “Application of the rotational diffusion model to the CARS spectra of high-temperature high-pressure water vapor,” J. Raman Spectrosc. 15, 71–79 (1984).
[CrossRef]

Rahn, L. A.

L. A. Rahn, D. A. Greenhalgh, “High resolution inverse Raman spectroscopy of the ν1 band of water vapor,” J. Mol. Spectrosc. 119, 11–21 (1986).
[CrossRef]

Ramanathan, V.

D. Kley, H. G. J. Smit, H. Vomel, V. Ramanathan, P. J. Crutzen, S. Williams, J. Mey-werk, S. J. Oltmans, “Tropospheric water vapor and ozone cross sections in a zonal plane over the central equatorial Pacific,” Q. J. R. Meteorol. Soc. 123, 2009–2040 (1997).
[CrossRef]

Reagan, J. A.

B. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowaik, “Automatic sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ. 66, 1–16 (1998).
[CrossRef]

Revercomb, H. E.

J. Wang, G. P. Anderson, H. E. Revercomb, R. O. Knuteson, “Validation of fascod3 and modtran3: comparison of model calculations with ground based and airborne interferometer measurements under clear sky conditions,” Appl. Opt. 35, 6028–6040 (1996).
[CrossRef] [PubMed]

H. E. Revercomb, W. F. Feltz, R. O. Knuteson, D. C. Tobin, P. F. W. van Delst, B. A. Whitney, “Accomplishments of the water vapor IOP’s: an overview,” in Proceedings of the Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting, Tucson Ariz. (Office of Energy Research, Environmental Sciences Division, U.S. Department of Energy, Washington, D.C. 20585, 1998), pp. 639–645.

Rind, D.

J. C. Larsen, E. W. Chiou, W. P. Chu, M. P. McCormick, L. R. McMaster, S. Oltmans, D. Rind, “A comparison of the Stratospheric Aerosol and Gas Experiment II water vapor to radiosonde measurements,” J. Geophys. Res. 98, 4897–4917 (1993).
[CrossRef]

Ruggaber, A.

M. Van Weele, T. J. Martin, M. Blumthaler, C. Brogniez, P. N. den Outer, O. Engelsen, J. Lenoble, B. Mayer, G. Pfister, A. Ruggaber, B. Walravens, P. Weihs, B. G. Gardiner, D. Gillotay, D. Haferl, A. Kylling, G. Seckmeyer, W. M. F. Wauben, “From model intercomparison toward benchmark UV spectra for real atmospheric cases,” J. Geophys. Res. (to be published).

Schmidlin, F. J.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. Starr, “A comparison of water vapor measurements made by Raman lidar and radiosondes,” J. Atmos. Oceanic Technol. 12, 1177–1195 (1995).
[CrossRef]

J. Nash, F. J. Schmidlin, “Instruments and observing methods. Report 30. WMO International Radiosonde Intercomparison UK 1984, USA 1985,” (World Meteorological Organization, Case postale 2300, Geneva, 1987).

F. J. Schmidlin, “Report of the WMO radiosonde relative humidity sensor intercomparison: Phase 2, 8-26 September 1995,” (World Meteorological Organization, Case postale 2300, Geneva, 1999).

Seckmeyer, G.

M. Van Weele, T. J. Martin, M. Blumthaler, C. Brogniez, P. N. den Outer, O. Engelsen, J. Lenoble, B. Mayer, G. Pfister, A. Ruggaber, B. Walravens, P. Weihs, B. G. Gardiner, D. Gillotay, D. Haferl, A. Kylling, G. Seckmeyer, W. M. F. Wauben, “From model intercomparison toward benchmark UV spectra for real atmospheric cases,” J. Geophys. Res. (to be published).

Selby, J. E. A.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, “Optical properties of the atmosphere,” (U.S. Air Force Geophysics Laboratories, Hanscom Air Force Base, Mass., 1972).

Sherlock, V. J.

V. J. Sherlock, A. Garnier, A. Hauchecorne, P. Keckhut, “Implementation and validation of a Raman backscatter lidar measurement of mid and upper tropospheric water vapor,” Appl. Opt. 38, 5838–5850 (1999).
[CrossRef]

V. J. Sherlock, “Evaluation de la technique du lidar Raman en vue de l’étude climatologique de la vapeur d’eau dans la moyenne et haute troposphère,” Ph.D. dissertation (Université de Paris VI, Paris, 1998).

Shettle, E.

G. A. d’Almeida, P. Koepke, E. Shettle, Atmospheric Aerosols Global Climatology and Radiative Characteristics (A. Deepak, Hampton, Va., 1991).

Slutsker, I.

B. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowaik, “Automatic sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ. 66, 1–16 (1998).
[CrossRef]

Smit, H. G. J.

D. Kley, H. G. J. Smit, H. Vomel, V. Ramanathan, P. J. Crutzen, S. Williams, J. Mey-werk, S. J. Oltmans, “Tropospheric water vapor and ozone cross sections in a zonal plane over the central equatorial Pacific,” Q. J. R. Meteorol. Soc. 123, 2009–2040 (1997).
[CrossRef]

Soden, B. J.

B. J. Soden, J. R. Lanzante, “An assessment of satellite and radiosonde climatologies of upper-tropospheric water vapor,” J. Clim. 9, 1235–1250 (1996).
[CrossRef]

South, B. W.

G. C. Herring, B. W. South, “Pressure broadening of vibrational Raman lines in N2 at temperatures below 300 K,” J. Quant. Spectrosc. Radiat. Transfer 52, 835–840 (1994).
[CrossRef]

Spourtouch, S.

R. Gaufrès, S. Spourtouch, “Contours des bandes dans les spectres Raman de gaz,” in Advances in Raman Spectroscopy (Heyden, London, 1973), Vol. 1, pp. 478–492.

Starr, D.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. Starr, “A comparison of water vapor measurements made by Raman lidar and radiosondes,” J. Atmos. Oceanic Technol. 12, 1177–1195 (1995).
[CrossRef]

Tanre, D.

B. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowaik, “Automatic sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ. 66, 1–16 (1998).
[CrossRef]

Thomas, L.

G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988).
[CrossRef]

Tobin, D. C.

H. E. Revercomb, W. F. Feltz, R. O. Knuteson, D. C. Tobin, P. F. W. van Delst, B. A. Whitney, “Accomplishments of the water vapor IOP’s: an overview,” in Proceedings of the Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting, Tucson Ariz. (Office of Energy Research, Environmental Sciences Division, U.S. Department of Energy, Washington, D.C. 20585, 1998), pp. 639–645.

Turner, D. D.

J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998).
[CrossRef]

D. D. Turner, J. E. M. Goldsmith, “24-hour Raman lidar water vapor measurements during the Atmospheric Radiation Measurement program’s 1996 and 1997 water vapor intensive observation periods,” J. Atmos. Oceanic Technol. (to be published).

van Delst, P. F. W.

H. E. Revercomb, W. F. Feltz, R. O. Knuteson, D. C. Tobin, P. F. W. van Delst, B. A. Whitney, “Accomplishments of the water vapor IOP’s: an overview,” in Proceedings of the Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting, Tucson Ariz. (Office of Energy Research, Environmental Sciences Division, U.S. Department of Energy, Washington, D.C. 20585, 1998), pp. 639–645.

Van Weele, M.

M. Van Weele, T. J. Martin, M. Blumthaler, C. Brogniez, P. N. den Outer, O. Engelsen, J. Lenoble, B. Mayer, G. Pfister, A. Ruggaber, B. Walravens, P. Weihs, B. G. Gardiner, D. Gillotay, D. Haferl, A. Kylling, G. Seckmeyer, W. M. F. Wauben, “From model intercomparison toward benchmark UV spectra for real atmospheric cases,” J. Geophys. Res. (to be published).

Vaughan, G.

G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988).
[CrossRef]

Vermote, E.

B. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowaik, “Automatic sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ. 66, 1–16 (1998).
[CrossRef]

Vomel, H.

D. Kley, H. G. J. Smit, H. Vomel, V. Ramanathan, P. J. Crutzen, S. Williams, J. Mey-werk, S. J. Oltmans, “Tropospheric water vapor and ozone cross sections in a zonal plane over the central equatorial Pacific,” Q. J. R. Meteorol. Soc. 123, 2009–2040 (1997).
[CrossRef]

Walravens, B.

M. Van Weele, T. J. Martin, M. Blumthaler, C. Brogniez, P. N. den Outer, O. Engelsen, J. Lenoble, B. Mayer, G. Pfister, A. Ruggaber, B. Walravens, P. Weihs, B. G. Gardiner, D. Gillotay, D. Haferl, A. Kylling, G. Seckmeyer, W. M. F. Wauben, “From model intercomparison toward benchmark UV spectra for real atmospheric cases,” J. Geophys. Res. (to be published).

Walsh, N. W.

Wang, J.

Wareing, D. P.

G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988).
[CrossRef]

Wauben, W. M. F.

M. Van Weele, T. J. Martin, M. Blumthaler, C. Brogniez, P. N. den Outer, O. Engelsen, J. Lenoble, B. Mayer, G. Pfister, A. Ruggaber, B. Walravens, P. Weihs, B. G. Gardiner, D. Gillotay, D. Haferl, A. Kylling, G. Seckmeyer, W. M. F. Wauben, “From model intercomparison toward benchmark UV spectra for real atmospheric cases,” J. Geophys. Res. (to be published).

Weihs, P.

M. Van Weele, T. J. Martin, M. Blumthaler, C. Brogniez, P. N. den Outer, O. Engelsen, J. Lenoble, B. Mayer, G. Pfister, A. Ruggaber, B. Walravens, P. Weihs, B. G. Gardiner, D. Gillotay, D. Haferl, A. Kylling, G. Seckmeyer, W. M. F. Wauben, “From model intercomparison toward benchmark UV spectra for real atmospheric cases,” J. Geophys. Res. (to be published).

Weller, M.

M. Weller, U. Leiterer, “Experimental data on spectral aerosol optical thickness and its global distribution,” Beitr. Phys. Atmos. 61, 1–9 (1988).

Whiteman, D. N.

Whitney, B. A.

H. E. Revercomb, W. F. Feltz, R. O. Knuteson, D. C. Tobin, P. F. W. van Delst, B. A. Whitney, “Accomplishments of the water vapor IOP’s: an overview,” in Proceedings of the Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting, Tucson Ariz. (Office of Energy Research, Environmental Sciences Division, U.S. Department of Energy, Washington, D.C. 20585, 1998), pp. 639–645.

Williams, S.

D. Kley, H. G. J. Smit, H. Vomel, V. Ramanathan, P. J. Crutzen, S. Williams, J. Mey-werk, S. J. Oltmans, “Tropospheric water vapor and ozone cross sections in a zonal plane over the central equatorial Pacific,” Q. J. R. Meteorol. Soc. 123, 2009–2040 (1997).
[CrossRef]

Yang, P.

P. Yang, H. Grassl, H. Jager, “An improved humidity sensor,” J. Atmos. Oceanic Technol. 13, 1110–1115 (1996).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

J. L. Bribes, R. Gaufrès, M. Monan, M. Lapp, C. M. Penney, “Raman band contours for water vapor as a function of temperature,” Appl. Phys. Lett. 28, 336–337 (1976).
[CrossRef]

Appl. Spectrosc.

Beitr. Phys. Atmos.

M. Weller, U. Leiterer, “Experimental data on spectral aerosol optical thickness and its global distribution,” Beitr. Phys. Atmos. 61, 1–9 (1988).

C. R. Acad. Sci. Ser. B

R. Gaufrès, “Sur quelques possibilités offertes par la séparation de diffusion de trace en spectroscopic Raman des gaz,” C. R. Acad. Sci. Ser. B T227, 297–298 (1973).

J. Atmos. Oceanic Technol.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. Starr, “A comparison of water vapor measurements made by Raman lidar and radiosondes,” J. Atmos. Oceanic Technol. 12, 1177–1195 (1995).
[CrossRef]

P. S. Anderson, “Mechanism for the behavior of hydroactive materials used in humidity sensors,” J. Atmos. Oceanic Technol. 12, 662–667 (1995).
[CrossRef]

S. Muller, P. J. Beekman, “A test of commercial humidity sensors for use at automatic weather stations,” J. Atmos. Oceanic Technol. 4, 731–735 (1987).
[CrossRef]

P. Yang, H. Grassl, H. Jager, “An improved humidity sensor,” J. Atmos. Oceanic Technol. 13, 1110–1115 (1996).
[CrossRef]

J. Clim.

B. J. Soden, J. R. Lanzante, “An assessment of satellite and radiosonde climatologies of upper-tropospheric water vapor,” J. Clim. 9, 1235–1250 (1996).
[CrossRef]

J. Geophys. Res.

Y. J. Kaufman, A. Gitelson, E. Ganor, R. S. Fraser, T. Nakajima, S. Mattoo, B. N. Holben, “Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements,” J. Geophys. Res. 99, 10,341–10,356 (1994).
[CrossRef]

J. C. Larsen, E. W. Chiou, W. P. Chu, M. P. McCormick, L. R. McMaster, S. Oltmans, D. Rind, “A comparison of the Stratospheric Aerosol and Gas Experiment II water vapor to radiosonde measurements,” J. Geophys. Res. 98, 4897–4917 (1993).
[CrossRef]

J. Mol. Phys.

W. F. Murphy, “The rovibrational Raman spectrum of water vapor ν2 and 2ν2,” J. Mol. Phys. 33, 1701–1714 (1977).
[CrossRef]

J. M. Flaud, C. Camy-Peyret, “The 2ν2, ν1 and ν3 bands of H2O. Rotational study of the (000) and (020) states,” J. Mol. Phys. 26, 811–823 (1973).
[CrossRef]

W. F. Murphy, “The rovibrational Raman spectrum of water vapor ν1 and ν3,” J. Mol. Phys. 36, 727–732 (1978).
[CrossRef]

J. Mol. Spectrosc.

J. M. Flaud, C. Camy-Peyret, “The interacting states (020), (100), and (001) of H216O,” J. Mol. Spectrosc. 51, 142–150 (1974).
[CrossRef]

L. A. Rahn, D. A. Greenhalgh, “High resolution inverse Raman spectroscopy of the ν1 band of water vapor,” J. Mol. Spectrosc. 119, 11–21 (1986).
[CrossRef]

J. Opt. Soc. Am.

J. Quant. Spectrosc. Radiat. Transfer

G. C. Herring, B. W. South, “Pressure broadening of vibrational Raman lines in N2 at temperatures below 300 K,” J. Quant. Spectrosc. Radiat. Transfer 52, 835–840 (1994).
[CrossRef]

J. Raman Spectrosc.

W. F. Murphy, “Intensities of rotation and vibration–rotation Raman transitions in assymetric top molecules,” J. Raman Spectrosc. 11, 339–345 (1981).
[CrossRef]

N. Abe, M. Ito, “Effects of hydrogen bonding on the Raman intensities of methanol, ethanol, and water,” J. Raman Spectrosc. 7, 161–167 (1978).
[CrossRef]

D. A. Greenhalgh, R. J. Hall, F. M. Porter, W. A. England, “Application of the rotational diffusion model to the CARS spectra of high-temperature high-pressure water vapor,” J. Raman Spectrosc. 15, 71–79 (1984).
[CrossRef]

Opt. Lett.

Optoelectron.

H. Inaba, T. Kobayasi, “Laser-Raman Radar—laser-Raman scattering methods for remote detection and analysis of atmospheric pollution,” Optoelectron. 4, 101–123 (1972).

Q. J. R. Meteorol. Soc.

G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988).
[CrossRef]

D. Kley, H. G. J. Smit, H. Vomel, V. Ramanathan, P. J. Crutzen, S. Williams, J. Mey-werk, S. J. Oltmans, “Tropospheric water vapor and ozone cross sections in a zonal plane over the central equatorial Pacific,” Q. J. R. Meteorol. Soc. 123, 2009–2040 (1997).
[CrossRef]

Remote Sensing Environ.

B. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowaik, “Automatic sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ. 66, 1–16 (1998).
[CrossRef]

Science

C. M. Penney, L. M. Goldman, M. Lapp, “Raman scattering from flames,” Science 175, 1112–1115 (1972).
[CrossRef] [PubMed]

World Meteorol. Organ. Bull.

“The Global Energy and Water Cycle Experiment (GEWEX),” World Meteorol. Organ. Bull. 42, 20–27 (1993).

Other

H. E. Revercomb, W. F. Feltz, R. O. Knuteson, D. C. Tobin, P. F. W. van Delst, B. A. Whitney, “Accomplishments of the water vapor IOP’s: an overview,” in Proceedings of the Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting, Tucson Ariz. (Office of Energy Research, Environmental Sciences Division, U.S. Department of Energy, Washington, D.C. 20585, 1998), pp. 639–645.

B. M. Lesht, J. C. Lilegren, “Comparison of precipitable water vapor measurements obtained by microwave radiometry and radiosondes at the Southern Great Plains CART site,” in Proceedings of the Sixth Atmospheric Radiation Measurement (ARM) Science Team Meeting, San Antonio Tex. (Office of Energy Research, Environmental Sciences Division, U.S. Department of Energy, Washington, D.C. 20585, 1996), pp. 165–168.

D. D. Turner, J. E. M. Goldsmith, “24-hour Raman lidar water vapor measurements during the Atmospheric Radiation Measurement program’s 1996 and 1997 water vapor intensive observation periods,” J. Atmos. Oceanic Technol. (to be published).

J. Nash, F. J. Schmidlin, “Instruments and observing methods. Report 30. WMO International Radiosonde Intercomparison UK 1984, USA 1985,” (World Meteorological Organization, Case postale 2300, Geneva, 1987).

F. J. Schmidlin, “Report of the WMO radiosonde relative humidity sensor intercomparison: Phase 2, 8-26 September 1995,” (World Meteorological Organization, Case postale 2300, Geneva, 1999).

V. J. Sherlock, “Evaluation de la technique du lidar Raman en vue de l’étude climatologique de la vapeur d’eau dans la moyenne et haute troposphère,” Ph.D. dissertation (Université de Paris VI, Paris, 1998).

W. Holzer, Y. LeDuff, “The depolarization ratio of the Raman bands of the vibration of diatomic molecules,” in Advances in Raman Spectroscopy (Heyden, London, 1973), Vol. 1, pp. 109–114.

R. Gaufrès, S. Spourtouch, “Contours des bandes dans les spectres Raman de gaz,” in Advances in Raman Spectroscopy (Heyden, London, 1973), Vol. 1, pp. 478–492.

G. Herzberg, Molecular Spectra and Molecular Structure. I Spectra of Diatomic Molecules (Van Norstrand, Princeton, N.J., 1959).

R. M. Measures, Laser Remote Sensing Fundamentals and Applications (Krieger, Malabar, Fla., 1992).

J. Lenoble, Atmospheric Radiative Transfer (A. Deepak, Hampton, Va., 1993).

G. A. d’Almeida, P. Koepke, E. Shettle, Atmospheric Aerosols Global Climatology and Radiative Characteristics (A. Deepak, Hampton, Va., 1991).

A. Heymsfield, National Center for Atmospheric Research, Boulder, Colo. (personal communication, July1998).

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, “Optical properties of the atmosphere,” (U.S. Air Force Geophysics Laboratories, Hanscom Air Force Base, Mass., 1972).

M. Van Weele, T. J. Martin, M. Blumthaler, C. Brogniez, P. N. den Outer, O. Engelsen, J. Lenoble, B. Mayer, G. Pfister, A. Ruggaber, B. Walravens, P. Weihs, B. G. Gardiner, D. Gillotay, D. Haferl, A. Kylling, G. Seckmeyer, W. M. F. Wauben, “From model intercomparison toward benchmark UV spectra for real atmospheric cases,” J. Geophys. Res. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Flow diagram of the steps in determining the lidar calibration coefficient.

Fig. 2
Fig. 2

Q-branch band contours for the ν 1 transitions of (a) N2 and (b) H2O at 300 and 210 K, calculated by using a trace-scattering model. A triangular slit function with a full width at half-maximum of 0.07 nm has been applied to an unbroadened (Dirac delta) representation of lines when the band contour is calculated. The OHP lidar instrument function for the two Raman channels is also traced for reference. Band asymmetry, due to rotational–vibrational interactions, and temperature dependence are clearly illustrated.

Fig. 3
Fig. 3

Model simulations for the zenith observation of diffuse sunlight. The modeled downwelling radiances, simulated for a pure molecular atmosphere with scattering and absorption, are convolved with the instrument function. The ratio of these convolved radiances is traced here as a function of the solar zenith angle.

Fig. 4
Fig. 4

Model simulations for the zenith observation of diffuse sunlight. The modeled downwelling radiances are simulated here for a molecular atmosphere with ozone absorption and a wide range of boundary layer aerosol conditions. In each case the ratio of the convolved radiances is traced as a function of the solar zenith angle. For each curve the boundary layer optical depth (OT), Angström coefficient (AC), and asymmetry parameter g are given. (a) Continental class of aerosols. (b) Maritime-mineral class. The overall decrease in the ratio of the convolved radiances, compared with the continental class, and the marked variation in the ratio for solar zenith angles in the 20–60° range are related to the presence of large particles.

Fig. 5
Fig. 5

Experimental measurements of downwelling zenith radiances. The ratio of observed zenith radiances is traced as a function of the solar zenith angle for two fiber-optic cables for a series of 12 sunrise and sunset observations between May 1997 and March 1998. Measurements on periods where illumination conditions of the receiving optics remained unchanged are illustrated on the same graph, and each day is represented with a different point style. The experimental observations have been corrected for the relative attenuation of signals due to the optical density D(λ). Selected examples of restricted range model simulations are illustrated for comparison. The simulations are identified by the aerosol simulation parameters appearing in the graph key and are scaled by the factors T N2 /T H2 O: May 1997 (in descending order); 1.98, 1.92, 1.94, August 1997; 2.13, September–October 1997; 2.04, November 1997–March 1998; 2.48.

Tables (8)

Tables Icon

Table 1 Summary of Recent Experimental Determinations of the Raman ν 1 Q-Branch Cross Section for Water Vapora

Tables Icon

Table 2 Summary of Evaluation of Effective Cross Sections and Associated Errorsa,b

Tables Icon

Table 3 Simulation Parametersa

Tables Icon

Table 4 Characteristic Measures for the Solar Zenith Angle Dependence on the Ratio of Downwelling Zenith Radiances r(χ)

Tables Icon

Table 5 Summary of Errors in the Diffuse Sunlight Determination of T N2 /T H2 O

Tables Icon

Table 6 Results from diffuse sunlight calibration

Tables Icon

Table 7 Results for Determination of T N2 /T H2 O when a Xenon Arc Lampa is Used

Tables Icon

Table 8 Summary of Errors in the Xenon Lamp Calibration

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

C= LN2λσN2λdλ LH2OλσH2OλdλMH2OMairnN2nair.
LYλ=IYλTY with TY=i Tiλ0,Y.
C=TN2TH2O IN2λσN2λdλ IH2OλσH2Oλdλ.
ΔλYFλLYλdλΔλY FλLYλdλ0.01.
|vJτα0vJτ|=2J+11/2α00KaKγJτaKγJτ,
Iv+1, J, τv, J, τ=C0gJ,τ2J+1v+1ωJ,τ4QrotQvib×exp-hckT G0v, J,
ωJ,τ=ω0-ΔGv+1, J, τv, J, τ,
ρi=6γi245αi2+7γi2.
 FλLN2λdλ FλLH2Oλdλ=TN2TH2OΔλN2 FλIN2λdλΔλH2O FλIH2Oλdλ.
 FλLN2λdλ FλLH2Oλdλ=TN2TH2ODλ0,N2Dλ0,H2O×ΔλN2 FλIN2λdλΔλH2O FλIH2Oλdλ,
TN2TH2O= FλLN2λdλ FλLH2Oλdλ×Dλ0,N2Dλ0,H2OΔλN2 FλIN2λdλΔλH2O FλIH2Oλdλ-1,
μ dLτ, μ, ϕdτ=Lτ, μ, ϕ-Jτ, μ, ϕ,
L=n=1 Ln,
J1=ω4π Pμ, ϕ, -μ, ϕ0F0 exp-τμ0,
Jnτ, μ, ϕ=ω4π02π-11 Pμ, ϕ, μ, ϕLn-1×τ, μ, ϕdμdϕ.

Metrics