Abstract

We demonstrate the formation, in a single process step, of periodic arrays of features of surface relief with submicrometer lateral dimensions in hybrid organic and inorganic solgel glasses by using elastomeric molding techniques. Lasers formed with molded photonic crystal resonators that consist of triangular, square, and honeycomb lattices of cylindrical posts and holes show emission spectra and lasing thresholds that are similar to devices formed by conventional high-resolution photolithographic patterning of thick layers of thermally grown oxide.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Lukosz, K. Tiefenthaler, “Embossing technique for fabricating integrated optical components in hard inorganic waveguiding materials,” Opt. Lett. 8, 537–539 (1983).
    [CrossRef] [PubMed]
  2. K. Heuberger, W. Lukosz, “Embossing technique for fabricating surface relief gratings on hard oxide waveguides,” Appl. Opt. 25, 1499–1504 (1986).
    [CrossRef] [PubMed]
  3. R. L. Roncone, L. A. Weller-Brophy, L. Weisenbach, B. J. J. Zelinski, “Embossed gratings in sol-gel waveguides: pre-emboss heat treatment effects,” J. Non-Cryst. Solids 128, 111–117 (1991).
    [CrossRef]
  4. H. Krug, N. Merl, H. Schmidt, “Fine patterning of thin sol-gel films,” J. Non-Cryst. Solids 147–148, 447–450 (1992).
    [CrossRef]
  5. C. Marzolin, S. P. Smith, M. Prentiss, G. M. Whitesides, “Fabrication of glass microstructures by micromolding of sol-gel precursors,” Adv. Mater. 10, 571–574 (1998).
    [CrossRef]
  6. J. A. Rogers, M. Meier, A. Dodabalapur, “Using printing and molding techniques to produce distributed feedback and Bragg reflector resonators for plastic lasers,” Appl. Phys. Lett. 73, 1766–1768 (1998).
    [CrossRef]
  7. J. A. Rogers, M. Meier, A. Dodabalapur, “Distributed feedback ridge waveguide lasers fabricated by nanoscale printing and molding on non-planar substrates,” Appl. Phys. Lett. 74, 3257–3259 (1999).
    [CrossRef]
  8. M. Meier, A. Dodabalapur, J. A. Rogers, A. G. Timko, A. Mekis, R. E. Slusher, C. A. Murray, O. Nalamasu, “Emission characteristics of two-dimensional organic photonic crystal lasers fabricated by replica molding.” J. Appl. Phys. (to be published).
  9. S. Motakef, J. M. Boulton, D. R. Uhlmann, “Organic–inorganic optical materials,” Opt. Lett. 19, 1125–1127 (1994).
    [CrossRef] [PubMed]
  10. G. Phillip, H. Schmidt, “The reactivity of TiO2 and ZrO2 in organically modified silicates,” J. Non-Cryst. Solids 82, 31–36 (1986).
    [CrossRef]
  11. M. Yoshida, P. N. Prasad, “Fabrication of channel waveguides from sol-gel processed polyvinylpyrrolidone/SiO2 composite materials,” Appl. Opt. 35, 1500–1506 (1996).
    [CrossRef] [PubMed]
  12. N. Tohge, A. Matsuda, T. Minami, Y. Matsuno, S. Katayama, Y. Ikeda, “Fine patterning on glass substrates by the sol-gel method,” J. Non-Cryst. Solids 100, 501–505 (1988).
    [CrossRef]
  13. Y. Sorek, M. Zevin, R. Reisfeld, “Zirconia and zirconia-ORMOSIL planar waveguides prepared at toom temperature,” Chem. Mater. 9, 670–676 (1997).
    [CrossRef]
  14. C. K. Jørgensen, R. Reisfeld, eds., Structure and Bonding, Vol. 85 of Optical and Electronic Phenomena in Sol-Gel Glasses and Modern Application (Springer-Verlag, Berlin, 1996).
  15. C. J. Brinker, G. W. Scherer, Sol-gel Science: The Physics and Chemistry of Sol-gel Processing (Academic, San Diego, Calif., 1990).
  16. M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7–9 (1999).
    [CrossRef]

1999 (2)

J. A. Rogers, M. Meier, A. Dodabalapur, “Distributed feedback ridge waveguide lasers fabricated by nanoscale printing and molding on non-planar substrates,” Appl. Phys. Lett. 74, 3257–3259 (1999).
[CrossRef]

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7–9 (1999).
[CrossRef]

1998 (2)

C. Marzolin, S. P. Smith, M. Prentiss, G. M. Whitesides, “Fabrication of glass microstructures by micromolding of sol-gel precursors,” Adv. Mater. 10, 571–574 (1998).
[CrossRef]

J. A. Rogers, M. Meier, A. Dodabalapur, “Using printing and molding techniques to produce distributed feedback and Bragg reflector resonators for plastic lasers,” Appl. Phys. Lett. 73, 1766–1768 (1998).
[CrossRef]

1997 (1)

Y. Sorek, M. Zevin, R. Reisfeld, “Zirconia and zirconia-ORMOSIL planar waveguides prepared at toom temperature,” Chem. Mater. 9, 670–676 (1997).
[CrossRef]

1996 (1)

1994 (1)

1992 (1)

H. Krug, N. Merl, H. Schmidt, “Fine patterning of thin sol-gel films,” J. Non-Cryst. Solids 147–148, 447–450 (1992).
[CrossRef]

1991 (1)

R. L. Roncone, L. A. Weller-Brophy, L. Weisenbach, B. J. J. Zelinski, “Embossed gratings in sol-gel waveguides: pre-emboss heat treatment effects,” J. Non-Cryst. Solids 128, 111–117 (1991).
[CrossRef]

1988 (1)

N. Tohge, A. Matsuda, T. Minami, Y. Matsuno, S. Katayama, Y. Ikeda, “Fine patterning on glass substrates by the sol-gel method,” J. Non-Cryst. Solids 100, 501–505 (1988).
[CrossRef]

1986 (2)

G. Phillip, H. Schmidt, “The reactivity of TiO2 and ZrO2 in organically modified silicates,” J. Non-Cryst. Solids 82, 31–36 (1986).
[CrossRef]

K. Heuberger, W. Lukosz, “Embossing technique for fabricating surface relief gratings on hard oxide waveguides,” Appl. Opt. 25, 1499–1504 (1986).
[CrossRef] [PubMed]

1983 (1)

Boulton, J. M.

Brinker, C. J.

C. J. Brinker, G. W. Scherer, Sol-gel Science: The Physics and Chemistry of Sol-gel Processing (Academic, San Diego, Calif., 1990).

Dodabalapur, A.

J. A. Rogers, M. Meier, A. Dodabalapur, “Distributed feedback ridge waveguide lasers fabricated by nanoscale printing and molding on non-planar substrates,” Appl. Phys. Lett. 74, 3257–3259 (1999).
[CrossRef]

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7–9 (1999).
[CrossRef]

J. A. Rogers, M. Meier, A. Dodabalapur, “Using printing and molding techniques to produce distributed feedback and Bragg reflector resonators for plastic lasers,” Appl. Phys. Lett. 73, 1766–1768 (1998).
[CrossRef]

M. Meier, A. Dodabalapur, J. A. Rogers, A. G. Timko, A. Mekis, R. E. Slusher, C. A. Murray, O. Nalamasu, “Emission characteristics of two-dimensional organic photonic crystal lasers fabricated by replica molding.” J. Appl. Phys. (to be published).

Heuberger, K.

Ikeda, Y.

N. Tohge, A. Matsuda, T. Minami, Y. Matsuno, S. Katayama, Y. Ikeda, “Fine patterning on glass substrates by the sol-gel method,” J. Non-Cryst. Solids 100, 501–505 (1988).
[CrossRef]

Joannopoulos, J. D.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7–9 (1999).
[CrossRef]

Katayama, S.

N. Tohge, A. Matsuda, T. Minami, Y. Matsuno, S. Katayama, Y. Ikeda, “Fine patterning on glass substrates by the sol-gel method,” J. Non-Cryst. Solids 100, 501–505 (1988).
[CrossRef]

Krug, H.

H. Krug, N. Merl, H. Schmidt, “Fine patterning of thin sol-gel films,” J. Non-Cryst. Solids 147–148, 447–450 (1992).
[CrossRef]

Lukosz, W.

Marzolin, C.

C. Marzolin, S. P. Smith, M. Prentiss, G. M. Whitesides, “Fabrication of glass microstructures by micromolding of sol-gel precursors,” Adv. Mater. 10, 571–574 (1998).
[CrossRef]

Matsuda, A.

N. Tohge, A. Matsuda, T. Minami, Y. Matsuno, S. Katayama, Y. Ikeda, “Fine patterning on glass substrates by the sol-gel method,” J. Non-Cryst. Solids 100, 501–505 (1988).
[CrossRef]

Matsuno, Y.

N. Tohge, A. Matsuda, T. Minami, Y. Matsuno, S. Katayama, Y. Ikeda, “Fine patterning on glass substrates by the sol-gel method,” J. Non-Cryst. Solids 100, 501–505 (1988).
[CrossRef]

Meier, M.

J. A. Rogers, M. Meier, A. Dodabalapur, “Distributed feedback ridge waveguide lasers fabricated by nanoscale printing and molding on non-planar substrates,” Appl. Phys. Lett. 74, 3257–3259 (1999).
[CrossRef]

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7–9 (1999).
[CrossRef]

J. A. Rogers, M. Meier, A. Dodabalapur, “Using printing and molding techniques to produce distributed feedback and Bragg reflector resonators for plastic lasers,” Appl. Phys. Lett. 73, 1766–1768 (1998).
[CrossRef]

M. Meier, A. Dodabalapur, J. A. Rogers, A. G. Timko, A. Mekis, R. E. Slusher, C. A. Murray, O. Nalamasu, “Emission characteristics of two-dimensional organic photonic crystal lasers fabricated by replica molding.” J. Appl. Phys. (to be published).

Mekis, A.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7–9 (1999).
[CrossRef]

M. Meier, A. Dodabalapur, J. A. Rogers, A. G. Timko, A. Mekis, R. E. Slusher, C. A. Murray, O. Nalamasu, “Emission characteristics of two-dimensional organic photonic crystal lasers fabricated by replica molding.” J. Appl. Phys. (to be published).

Merl, N.

H. Krug, N. Merl, H. Schmidt, “Fine patterning of thin sol-gel films,” J. Non-Cryst. Solids 147–148, 447–450 (1992).
[CrossRef]

Minami, T.

N. Tohge, A. Matsuda, T. Minami, Y. Matsuno, S. Katayama, Y. Ikeda, “Fine patterning on glass substrates by the sol-gel method,” J. Non-Cryst. Solids 100, 501–505 (1988).
[CrossRef]

Motakef, S.

Murray, C. A.

M. Meier, A. Dodabalapur, J. A. Rogers, A. G. Timko, A. Mekis, R. E. Slusher, C. A. Murray, O. Nalamasu, “Emission characteristics of two-dimensional organic photonic crystal lasers fabricated by replica molding.” J. Appl. Phys. (to be published).

Nalamasu, O.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7–9 (1999).
[CrossRef]

M. Meier, A. Dodabalapur, J. A. Rogers, A. G. Timko, A. Mekis, R. E. Slusher, C. A. Murray, O. Nalamasu, “Emission characteristics of two-dimensional organic photonic crystal lasers fabricated by replica molding.” J. Appl. Phys. (to be published).

Phillip, G.

G. Phillip, H. Schmidt, “The reactivity of TiO2 and ZrO2 in organically modified silicates,” J. Non-Cryst. Solids 82, 31–36 (1986).
[CrossRef]

Prasad, P. N.

Prentiss, M.

C. Marzolin, S. P. Smith, M. Prentiss, G. M. Whitesides, “Fabrication of glass microstructures by micromolding of sol-gel precursors,” Adv. Mater. 10, 571–574 (1998).
[CrossRef]

Reisfeld, R.

Y. Sorek, M. Zevin, R. Reisfeld, “Zirconia and zirconia-ORMOSIL planar waveguides prepared at toom temperature,” Chem. Mater. 9, 670–676 (1997).
[CrossRef]

Rogers, J. A.

J. A. Rogers, M. Meier, A. Dodabalapur, “Distributed feedback ridge waveguide lasers fabricated by nanoscale printing and molding on non-planar substrates,” Appl. Phys. Lett. 74, 3257–3259 (1999).
[CrossRef]

J. A. Rogers, M. Meier, A. Dodabalapur, “Using printing and molding techniques to produce distributed feedback and Bragg reflector resonators for plastic lasers,” Appl. Phys. Lett. 73, 1766–1768 (1998).
[CrossRef]

M. Meier, A. Dodabalapur, J. A. Rogers, A. G. Timko, A. Mekis, R. E. Slusher, C. A. Murray, O. Nalamasu, “Emission characteristics of two-dimensional organic photonic crystal lasers fabricated by replica molding.” J. Appl. Phys. (to be published).

Roncone, R. L.

R. L. Roncone, L. A. Weller-Brophy, L. Weisenbach, B. J. J. Zelinski, “Embossed gratings in sol-gel waveguides: pre-emboss heat treatment effects,” J. Non-Cryst. Solids 128, 111–117 (1991).
[CrossRef]

Scherer, G. W.

C. J. Brinker, G. W. Scherer, Sol-gel Science: The Physics and Chemistry of Sol-gel Processing (Academic, San Diego, Calif., 1990).

Schmidt, H.

H. Krug, N. Merl, H. Schmidt, “Fine patterning of thin sol-gel films,” J. Non-Cryst. Solids 147–148, 447–450 (1992).
[CrossRef]

G. Phillip, H. Schmidt, “The reactivity of TiO2 and ZrO2 in organically modified silicates,” J. Non-Cryst. Solids 82, 31–36 (1986).
[CrossRef]

Slusher, R. E.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7–9 (1999).
[CrossRef]

M. Meier, A. Dodabalapur, J. A. Rogers, A. G. Timko, A. Mekis, R. E. Slusher, C. A. Murray, O. Nalamasu, “Emission characteristics of two-dimensional organic photonic crystal lasers fabricated by replica molding.” J. Appl. Phys. (to be published).

Smith, S. P.

C. Marzolin, S. P. Smith, M. Prentiss, G. M. Whitesides, “Fabrication of glass microstructures by micromolding of sol-gel precursors,” Adv. Mater. 10, 571–574 (1998).
[CrossRef]

Sorek, Y.

Y. Sorek, M. Zevin, R. Reisfeld, “Zirconia and zirconia-ORMOSIL planar waveguides prepared at toom temperature,” Chem. Mater. 9, 670–676 (1997).
[CrossRef]

Tiefenthaler, K.

Timko, A.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7–9 (1999).
[CrossRef]

Timko, A. G.

M. Meier, A. Dodabalapur, J. A. Rogers, A. G. Timko, A. Mekis, R. E. Slusher, C. A. Murray, O. Nalamasu, “Emission characteristics of two-dimensional organic photonic crystal lasers fabricated by replica molding.” J. Appl. Phys. (to be published).

Tohge, N.

N. Tohge, A. Matsuda, T. Minami, Y. Matsuno, S. Katayama, Y. Ikeda, “Fine patterning on glass substrates by the sol-gel method,” J. Non-Cryst. Solids 100, 501–505 (1988).
[CrossRef]

Uhlmann, D. R.

Weisenbach, L.

R. L. Roncone, L. A. Weller-Brophy, L. Weisenbach, B. J. J. Zelinski, “Embossed gratings in sol-gel waveguides: pre-emboss heat treatment effects,” J. Non-Cryst. Solids 128, 111–117 (1991).
[CrossRef]

Weller-Brophy, L. A.

R. L. Roncone, L. A. Weller-Brophy, L. Weisenbach, B. J. J. Zelinski, “Embossed gratings in sol-gel waveguides: pre-emboss heat treatment effects,” J. Non-Cryst. Solids 128, 111–117 (1991).
[CrossRef]

Whitesides, G. M.

C. Marzolin, S. P. Smith, M. Prentiss, G. M. Whitesides, “Fabrication of glass microstructures by micromolding of sol-gel precursors,” Adv. Mater. 10, 571–574 (1998).
[CrossRef]

Yoshida, M.

Zelinski, B. J. J.

R. L. Roncone, L. A. Weller-Brophy, L. Weisenbach, B. J. J. Zelinski, “Embossed gratings in sol-gel waveguides: pre-emboss heat treatment effects,” J. Non-Cryst. Solids 128, 111–117 (1991).
[CrossRef]

Zevin, M.

Y. Sorek, M. Zevin, R. Reisfeld, “Zirconia and zirconia-ORMOSIL planar waveguides prepared at toom temperature,” Chem. Mater. 9, 670–676 (1997).
[CrossRef]

Adv. Mater. (1)

C. Marzolin, S. P. Smith, M. Prentiss, G. M. Whitesides, “Fabrication of glass microstructures by micromolding of sol-gel precursors,” Adv. Mater. 10, 571–574 (1998).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7–9 (1999).
[CrossRef]

J. A. Rogers, M. Meier, A. Dodabalapur, “Using printing and molding techniques to produce distributed feedback and Bragg reflector resonators for plastic lasers,” Appl. Phys. Lett. 73, 1766–1768 (1998).
[CrossRef]

J. A. Rogers, M. Meier, A. Dodabalapur, “Distributed feedback ridge waveguide lasers fabricated by nanoscale printing and molding on non-planar substrates,” Appl. Phys. Lett. 74, 3257–3259 (1999).
[CrossRef]

Chem. Mater. (1)

Y. Sorek, M. Zevin, R. Reisfeld, “Zirconia and zirconia-ORMOSIL planar waveguides prepared at toom temperature,” Chem. Mater. 9, 670–676 (1997).
[CrossRef]

J. Non-Cryst. Solids (4)

N. Tohge, A. Matsuda, T. Minami, Y. Matsuno, S. Katayama, Y. Ikeda, “Fine patterning on glass substrates by the sol-gel method,” J. Non-Cryst. Solids 100, 501–505 (1988).
[CrossRef]

G. Phillip, H. Schmidt, “The reactivity of TiO2 and ZrO2 in organically modified silicates,” J. Non-Cryst. Solids 82, 31–36 (1986).
[CrossRef]

R. L. Roncone, L. A. Weller-Brophy, L. Weisenbach, B. J. J. Zelinski, “Embossed gratings in sol-gel waveguides: pre-emboss heat treatment effects,” J. Non-Cryst. Solids 128, 111–117 (1991).
[CrossRef]

H. Krug, N. Merl, H. Schmidt, “Fine patterning of thin sol-gel films,” J. Non-Cryst. Solids 147–148, 447–450 (1992).
[CrossRef]

Opt. Lett. (2)

Other (3)

M. Meier, A. Dodabalapur, J. A. Rogers, A. G. Timko, A. Mekis, R. E. Slusher, C. A. Murray, O. Nalamasu, “Emission characteristics of two-dimensional organic photonic crystal lasers fabricated by replica molding.” J. Appl. Phys. (to be published).

C. K. Jørgensen, R. Reisfeld, eds., Structure and Bonding, Vol. 85 of Optical and Electronic Phenomena in Sol-Gel Glasses and Modern Application (Springer-Verlag, Berlin, 1996).

C. J. Brinker, G. W. Scherer, Sol-gel Science: The Physics and Chemistry of Sol-gel Processing (Academic, San Diego, Calif., 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Fabrication of lasers by elastomeric molding of a solgel precursor. Polydimethylsiloxane (PDMS) was cast and cured against a photolithographically generated master. A drop of solgel precursor on a substrate is compressed between the PDMS mold and the surface. Gelation at room temperature for 24 h was followed by drying at 60 °C for 24 h. Removal of the PDMS mold yielded a thin embossed solid film. Deposition of an organic gain material [∼200 nm of tris(8-hydroxyquinoline) aluminum (Alq) doped with 0.5–5.0 % wt of the laser dye 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyryl)-4H-pyram II (DCMII)] onto this film yielded a working photopumped laser.

Fig. 2
Fig. 2

Scanning electron micrographs of photonic crystal structures (50 nm deep) embossed on a thin (2-µm) film of ORMOSIL. These micrographs show that both raised and depressed submicrometer features of surface relief can be prepared by embossing by use of an elastomeric mold. (a) Structures of submicrometer features patterned over large areas with high fidelity. (b) A 2-µm-thick film coated on a silicon wafer with a 2-µm-thick thermal oxide layer embossed with raised features. The inset shows a similar film embossed with depressed features. (c)–(f) Triangular arrays of raised and depressed features of surface relief with various periods.

Fig. 3
Fig. 3

Emission spectra from lasers that use resonators formed by molding arrays of cylindrical holes in layers of ORMOSIL on silicon. (a) Spectrum for a laser that uses a resonator that consists of cylindrical depressions ∼50 nm deep, with 400-nm diameters and center-to-center separations of 600 nm in a triangular lattice. (b) Spectrum for a similar laser that uses depressions with diameters of 260 nm, depths of ∼50 nm, and separated by 640 nm.

Fig. 4
Fig. 4

Emission intensity (arbitrary units) as a function of the intensity of the pump light for the laser whose emission spectrum is illustrated in Fig. 3(b). As expected, these intensities are linearly related when the device is lasing. The threshold measured from these data is consistent with similar measurements on lasers that use resonators formed with conventional photolithographic procedures in thermally grown oxide.

Metrics