Abstract

The intrinsic error propagation in a technique that uses total reflection geometry for the measurement of χ(3) is calculated. The results show how accurately the parameters should be measured to obtain the χ(3) value with the required precision. The film thickness should be slightly less than the fundamental wavelength to reduce the χ(3) error that propagates from other parameters.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, H. S. Nalwa, “Organic materials for third-order nonlinear optics,” Adv. Mater. 5, 341–358 (1993).
  2. M. Kiguchi, M. Kato, N. Kumegawa, Y. Taniguchi, “Technique for evaluating second order nonlinear optical materials in powder form,” J. Appl. Phys. 75, 4332–4339 (1994).
    [CrossRef]
  3. M. Kiguchi, “Comparison of error properties of techniques used for measuring second-order nonlinear optical coefficients with least-square fitting,” J. Opt. Soc. Am. B 12, 871–875 (1995).
    [CrossRef]
  4. M. Kato, M. Kiguchi, Y. Taniguchi, “Second-order nonlinear optical susceptibility measurement of crystal with a glass prism in total-reflection geometry,” Appl. Opt. 33, 4776–4780 (1994).
    [CrossRef] [PubMed]
  5. M. Kiguchi, M. Kato, Y. Taniguchi, “Observation of third-harmonic generation in polydiacetylene films using internal reflection geometry,” Mol. Cryst. Liq. Cryst. 267, 101–106 (1995).
    [CrossRef]
  6. N. Bloembergen, P. S. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev. 128, 606–622 (1962).
    [CrossRef]

1995 (2)

M. Kiguchi, M. Kato, Y. Taniguchi, “Observation of third-harmonic generation in polydiacetylene films using internal reflection geometry,” Mol. Cryst. Liq. Cryst. 267, 101–106 (1995).
[CrossRef]

M. Kiguchi, “Comparison of error properties of techniques used for measuring second-order nonlinear optical coefficients with least-square fitting,” J. Opt. Soc. Am. B 12, 871–875 (1995).
[CrossRef]

1994 (2)

M. Kato, M. Kiguchi, Y. Taniguchi, “Second-order nonlinear optical susceptibility measurement of crystal with a glass prism in total-reflection geometry,” Appl. Opt. 33, 4776–4780 (1994).
[CrossRef] [PubMed]

M. Kiguchi, M. Kato, N. Kumegawa, Y. Taniguchi, “Technique for evaluating second order nonlinear optical materials in powder form,” J. Appl. Phys. 75, 4332–4339 (1994).
[CrossRef]

1993 (1)

See, for example, H. S. Nalwa, “Organic materials for third-order nonlinear optics,” Adv. Mater. 5, 341–358 (1993).

1962 (1)

N. Bloembergen, P. S. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev. 128, 606–622 (1962).
[CrossRef]

Bloembergen, N.

N. Bloembergen, P. S. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev. 128, 606–622 (1962).
[CrossRef]

Kato, M.

M. Kiguchi, M. Kato, Y. Taniguchi, “Observation of third-harmonic generation in polydiacetylene films using internal reflection geometry,” Mol. Cryst. Liq. Cryst. 267, 101–106 (1995).
[CrossRef]

M. Kato, M. Kiguchi, Y. Taniguchi, “Second-order nonlinear optical susceptibility measurement of crystal with a glass prism in total-reflection geometry,” Appl. Opt. 33, 4776–4780 (1994).
[CrossRef] [PubMed]

M. Kiguchi, M. Kato, N. Kumegawa, Y. Taniguchi, “Technique for evaluating second order nonlinear optical materials in powder form,” J. Appl. Phys. 75, 4332–4339 (1994).
[CrossRef]

Kiguchi, M.

M. Kiguchi, M. Kato, Y. Taniguchi, “Observation of third-harmonic generation in polydiacetylene films using internal reflection geometry,” Mol. Cryst. Liq. Cryst. 267, 101–106 (1995).
[CrossRef]

M. Kiguchi, “Comparison of error properties of techniques used for measuring second-order nonlinear optical coefficients with least-square fitting,” J. Opt. Soc. Am. B 12, 871–875 (1995).
[CrossRef]

M. Kato, M. Kiguchi, Y. Taniguchi, “Second-order nonlinear optical susceptibility measurement of crystal with a glass prism in total-reflection geometry,” Appl. Opt. 33, 4776–4780 (1994).
[CrossRef] [PubMed]

M. Kiguchi, M. Kato, N. Kumegawa, Y. Taniguchi, “Technique for evaluating second order nonlinear optical materials in powder form,” J. Appl. Phys. 75, 4332–4339 (1994).
[CrossRef]

Kumegawa, N.

M. Kiguchi, M. Kato, N. Kumegawa, Y. Taniguchi, “Technique for evaluating second order nonlinear optical materials in powder form,” J. Appl. Phys. 75, 4332–4339 (1994).
[CrossRef]

Nalwa, H. S.

See, for example, H. S. Nalwa, “Organic materials for third-order nonlinear optics,” Adv. Mater. 5, 341–358 (1993).

Pershan, P. S.

N. Bloembergen, P. S. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev. 128, 606–622 (1962).
[CrossRef]

Taniguchi, Y.

M. Kiguchi, M. Kato, Y. Taniguchi, “Observation of third-harmonic generation in polydiacetylene films using internal reflection geometry,” Mol. Cryst. Liq. Cryst. 267, 101–106 (1995).
[CrossRef]

M. Kato, M. Kiguchi, Y. Taniguchi, “Second-order nonlinear optical susceptibility measurement of crystal with a glass prism in total-reflection geometry,” Appl. Opt. 33, 4776–4780 (1994).
[CrossRef] [PubMed]

M. Kiguchi, M. Kato, N. Kumegawa, Y. Taniguchi, “Technique for evaluating second order nonlinear optical materials in powder form,” J. Appl. Phys. 75, 4332–4339 (1994).
[CrossRef]

Adv. Mater. (1)

See, for example, H. S. Nalwa, “Organic materials for third-order nonlinear optics,” Adv. Mater. 5, 341–358 (1993).

Appl. Opt. (1)

J. Appl. Phys. (1)

M. Kiguchi, M. Kato, N. Kumegawa, Y. Taniguchi, “Technique for evaluating second order nonlinear optical materials in powder form,” J. Appl. Phys. 75, 4332–4339 (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

Mol. Cryst. Liq. Cryst. (1)

M. Kiguchi, M. Kato, Y. Taniguchi, “Observation of third-harmonic generation in polydiacetylene films using internal reflection geometry,” Mol. Cryst. Liq. Cryst. 267, 101–106 (1995).
[CrossRef]

Phys. Rev. (1)

N. Bloembergen, P. S. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev. 128, 606–622 (1962).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

THEW arrangement. n p , n m , and n t represent the refractive indices of the prism, the nonlinear medium, and the air, respectively.

Fig. 2
Fig. 2

Error propagation ratios from the refractive index at ω to χ(3) for a typical film thickness.

Fig. 3
Fig. 3

Error propagation ratios from the refractive index at 3ω to χ(3) for a typical film thickness.

Fig. 4
Fig. 4

Error propagation ratios from the film thickness to χ(3) for a typical film thickness.

Fig. 5
Fig. 5

Error propagation ratios from each parameter to χ(3) as a function of film thickness normalized by the fundamental wavelength.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P3ω=|4πp3D-1nm3ω2-nmω2-1nmω cos θs-nt3ω cos θTcos ϕM-cos ϕS+int3ω cos θTnm3ω cos θM-1×nm3ω cos θM sin ϕS-nmω cos θS sin ϕM+inm3ω cos θM sin ϕM-nmω cos θS sin ϕS2×cos θR/cos θin,
p3=χ3EωEωEω, ϕS=nmωωL cos θS/c, ϕM=nm3ωωL cos θM/c, D=cos ϕMnt3ω cos θT+np3ω cos θR-i sin ϕMnp3ωnt3ω cos θR cos θTnm3ω cos θM-1+nm3ω cos θM.
npω cos θin=np3ω cos θR=nmω cos θS=nm3ω cos θM=nt3ω cos θT,

Metrics