Abstract

The nonreciprocal effect is the difference Δβ = βforward - βbackward between forward and backward-propagation constants of optical modes. This effect is analyzed for the fundamental TM00 mode of channel waveguides in epitaxially grown magnetic garnet films. To increase |Δβ|, double layers with opposite signs of Faraday rotation are used to prepare the waveguides. It is shown that the temperature dependence of Δβ can be reduced considerably if the layer with positive Faraday rotation, which is at room temperature close to the Curie point, is replaced by a paramagnetic layer with negligible Faraday rotation. Concurrently, however, |Δβ| is decreased by ∼35% at 295 K.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Wolfe, J. F. Dillon, R. A. Lieberman, V. J. Fratello, “Broadband magneto-optic waveguide isolator,” Appl. Phys. Lett. 57, 960–962 (1990).
    [CrossRef]
  2. M. Levy, I. Ilic, R. Scarmozzino, R. M. Osgood, R. Wolfe, C. I. Gutierrez, G. A. Prinz, “Thin-film-magnet magnetooptic waveguide isolator,” IEEE Photonics Technol. Lett. 5, 198–200 (1993).
    [CrossRef]
  3. M. Levy, R. M. Osgood, H. Hegde, F. J. Cadieu, R. Wolfe, V. J. Fratello, “Integrated optical isolators with sputter-deposited thin-film magnets,” IEEE Photonics Technol. Lett. 8, 903–905 (1996).
    [CrossRef]
  4. K. Ando, T. Okoshi, N. Koshizuka, “Waveguide magneto-optic isolator fabricated by laser annealing,” Appl. Phys. Lett. 53, 4–6 (1988).
    [CrossRef]
  5. T. Mizumoto, Y. Kawaoka, Y. Naito, “Waveguide-type optical isolator using the Faraday and the Cotton–Mouton effects,” Trans. Inst. Electron. Commun. Eng. Jpn. Sect. E 69, 968–972 (1986).
  6. H. Hemme, H. Dötsch, P. Hertel, “Integrated optical isolator based on nonreciprocal mode cutoff,” Appl. Opt. 29, 2741–2744 (1990).
    [CrossRef] [PubMed]
  7. S. Yamamoto, Y. Okamura, T. Makimoto, “Analysis and design of semileaky-type thin-film optical waveguide isolator,” IEEE J. Quantum Electron. QE-12, 764–770 (1976).
    [CrossRef]
  8. T. Shintaku, “Integrated optical isolator based on efficient nonreciprocal radiation mode conversion,” Appl. Phys. Lett. 73, 1946–1948 (1998).
    [CrossRef]
  9. A. Erdmann, P. Hertel, H. Dötsch, “Nonreciprocal coupling effects in gyrotropic waveguide structures,” Opt. Quantum Electron. 26, 949–955 (1994).
    [CrossRef]
  10. M. Lohmeyer, M. Shamonin, P. Hertel, “Integrated optical isolator based on radiatively coupled magneto-optic waveguides,” Opt. Eng. 36, 889–895 (1997).
    [CrossRef]
  11. F. Auracher, H. H. Witte, “A new design for an integrated optical isolator,” Opt. Commun. 13, 435–438 (1975).
    [CrossRef]
  12. Y. Okamura, T. Negami, S. Yamamoto, “Integrated optical isolator and circulator using nonreciprocal phase shifters: a proposal,” Appl. Opt. 23, 1886–1889 (1984).
    [CrossRef] [PubMed]
  13. A. F. Popkov, M. Fehndrich, M. Lohmeyer, H. Dötsch, “Nonreciprocal TE-mode phase shift by domain walls in magneto-optic rib waveguides,” Appl. Phys. Lett. 72, 2508–2510 (1998).
    [CrossRef]
  14. M. Fehndrich, A. Josef, L. Wilkens, J. Kleine-Börger, N. Bahlmann, M. Lohmeyer, P. Hertel, H. Dötsch, “Experimental investigation of the nonreciprocal phase shift of a transverse electric mode in a magneto-optic rib waveguide,” Appl. Phys. Lett. 74, 2918–2920 (1999).
    [CrossRef]
  15. N. Bahlmann, M. Lohmeyer, H. Dötsch, P. Hertel, “Integrated magneto-optic Mach–Zehnder interferometer isolator for TE modes,” Electron. Lett. 34, 2122–2123 (1998).
    [CrossRef]
  16. N. Bahlmann, M. Lohmeyer, M. Wallenhorst, H. Dötsch, P. Hertel, “An improved design of an integrated optical isolator based on non-reciprocal Mach–Zehnder interferometry,” Opt. Quantum Electron. 30, 323–334 (1998).
    [CrossRef]
  17. O. Zhuromskyy, M. Lohmeyer, N. Bahlmann, H. Dötsch, P. Hertel, A. F. Popkov, “Analysis of polarization independent Mach–Zehnder type integrated optical isolator,” J. Lightwave Technol. 17, 1200–1205 (1999).
    [CrossRef]
  18. M. Wallenhorst, M. Niemöller, H. Dötsch, P. Hertel, R. Gerhardt, B. Gather, “Enhancement of the nonreciprocal magneto-optic effect of TM modes using iron garnet double layers with opposite Faraday rotation,” J. Appl. Phys. 77, 2902–2905 (1995).
    [CrossRef]
  19. M. Shamonin, P. Hertel, “Analysis of nonreciprocal mode propagation in magneto-optic rib-waveguide structures with the spectral-index method,” Appl. Opt. 33, 6415–6421 (1994).
    [CrossRef] [PubMed]
  20. N. Mabaya, P. E. Lagasse, P. Vandenbulcke, “Finite element analysis of optical waveguides,” IEEE Trans. Microwave Theory Technol. MTT-29, 600–605 (1981).
    [CrossRef]
  21. J. P. Krumme, P. Hansen, “New magneto-optic memory concept based on compensation wall domains,” Appl. Phys. Lett. 23, 576–578 (1973).
    [CrossRef]
  22. P. Hansen, C.-P. Klages, J. Schuldt, K. Witter, “Magnetic and magneto-optical properties of bismuth-substituted lutetium iron garnet films,” Phys. Rev. B 31, 5858–5864 (1985).
    [CrossRef]
  23. N. Bahlmann, V. Chandrasekhara, A. Erdmann, R. Gerhardt, P. Hertel, R. Lehmann, D. Salz, F. J. Schröteler, M. Wallenhorst, H. Dötsch, “Improved design of magnetooptic rib waveguides for optical isolators,” J. Lightwave Technol. 16, 818–822 (1998).
    [CrossRef]
  24. P. Hansen, K. Witter, “Magneto-optical properties of gallium-substituted yttrium iron garnets,” Phys. Rev. B 27, 1498–1506 (1983).
    [CrossRef]

1999 (2)

M. Fehndrich, A. Josef, L. Wilkens, J. Kleine-Börger, N. Bahlmann, M. Lohmeyer, P. Hertel, H. Dötsch, “Experimental investigation of the nonreciprocal phase shift of a transverse electric mode in a magneto-optic rib waveguide,” Appl. Phys. Lett. 74, 2918–2920 (1999).
[CrossRef]

O. Zhuromskyy, M. Lohmeyer, N. Bahlmann, H. Dötsch, P. Hertel, A. F. Popkov, “Analysis of polarization independent Mach–Zehnder type integrated optical isolator,” J. Lightwave Technol. 17, 1200–1205 (1999).
[CrossRef]

1998 (5)

N. Bahlmann, V. Chandrasekhara, A. Erdmann, R. Gerhardt, P. Hertel, R. Lehmann, D. Salz, F. J. Schröteler, M. Wallenhorst, H. Dötsch, “Improved design of magnetooptic rib waveguides for optical isolators,” J. Lightwave Technol. 16, 818–822 (1998).
[CrossRef]

N. Bahlmann, M. Lohmeyer, H. Dötsch, P. Hertel, “Integrated magneto-optic Mach–Zehnder interferometer isolator for TE modes,” Electron. Lett. 34, 2122–2123 (1998).
[CrossRef]

N. Bahlmann, M. Lohmeyer, M. Wallenhorst, H. Dötsch, P. Hertel, “An improved design of an integrated optical isolator based on non-reciprocal Mach–Zehnder interferometry,” Opt. Quantum Electron. 30, 323–334 (1998).
[CrossRef]

A. F. Popkov, M. Fehndrich, M. Lohmeyer, H. Dötsch, “Nonreciprocal TE-mode phase shift by domain walls in magneto-optic rib waveguides,” Appl. Phys. Lett. 72, 2508–2510 (1998).
[CrossRef]

T. Shintaku, “Integrated optical isolator based on efficient nonreciprocal radiation mode conversion,” Appl. Phys. Lett. 73, 1946–1948 (1998).
[CrossRef]

1997 (1)

M. Lohmeyer, M. Shamonin, P. Hertel, “Integrated optical isolator based on radiatively coupled magneto-optic waveguides,” Opt. Eng. 36, 889–895 (1997).
[CrossRef]

1996 (1)

M. Levy, R. M. Osgood, H. Hegde, F. J. Cadieu, R. Wolfe, V. J. Fratello, “Integrated optical isolators with sputter-deposited thin-film magnets,” IEEE Photonics Technol. Lett. 8, 903–905 (1996).
[CrossRef]

1995 (1)

M. Wallenhorst, M. Niemöller, H. Dötsch, P. Hertel, R. Gerhardt, B. Gather, “Enhancement of the nonreciprocal magneto-optic effect of TM modes using iron garnet double layers with opposite Faraday rotation,” J. Appl. Phys. 77, 2902–2905 (1995).
[CrossRef]

1994 (2)

M. Shamonin, P. Hertel, “Analysis of nonreciprocal mode propagation in magneto-optic rib-waveguide structures with the spectral-index method,” Appl. Opt. 33, 6415–6421 (1994).
[CrossRef] [PubMed]

A. Erdmann, P. Hertel, H. Dötsch, “Nonreciprocal coupling effects in gyrotropic waveguide structures,” Opt. Quantum Electron. 26, 949–955 (1994).
[CrossRef]

1993 (1)

M. Levy, I. Ilic, R. Scarmozzino, R. M. Osgood, R. Wolfe, C. I. Gutierrez, G. A. Prinz, “Thin-film-magnet magnetooptic waveguide isolator,” IEEE Photonics Technol. Lett. 5, 198–200 (1993).
[CrossRef]

1990 (2)

R. Wolfe, J. F. Dillon, R. A. Lieberman, V. J. Fratello, “Broadband magneto-optic waveguide isolator,” Appl. Phys. Lett. 57, 960–962 (1990).
[CrossRef]

H. Hemme, H. Dötsch, P. Hertel, “Integrated optical isolator based on nonreciprocal mode cutoff,” Appl. Opt. 29, 2741–2744 (1990).
[CrossRef] [PubMed]

1988 (1)

K. Ando, T. Okoshi, N. Koshizuka, “Waveguide magneto-optic isolator fabricated by laser annealing,” Appl. Phys. Lett. 53, 4–6 (1988).
[CrossRef]

1986 (1)

T. Mizumoto, Y. Kawaoka, Y. Naito, “Waveguide-type optical isolator using the Faraday and the Cotton–Mouton effects,” Trans. Inst. Electron. Commun. Eng. Jpn. Sect. E 69, 968–972 (1986).

1985 (1)

P. Hansen, C.-P. Klages, J. Schuldt, K. Witter, “Magnetic and magneto-optical properties of bismuth-substituted lutetium iron garnet films,” Phys. Rev. B 31, 5858–5864 (1985).
[CrossRef]

1984 (1)

1983 (1)

P. Hansen, K. Witter, “Magneto-optical properties of gallium-substituted yttrium iron garnets,” Phys. Rev. B 27, 1498–1506 (1983).
[CrossRef]

1981 (1)

N. Mabaya, P. E. Lagasse, P. Vandenbulcke, “Finite element analysis of optical waveguides,” IEEE Trans. Microwave Theory Technol. MTT-29, 600–605 (1981).
[CrossRef]

1976 (1)

S. Yamamoto, Y. Okamura, T. Makimoto, “Analysis and design of semileaky-type thin-film optical waveguide isolator,” IEEE J. Quantum Electron. QE-12, 764–770 (1976).
[CrossRef]

1975 (1)

F. Auracher, H. H. Witte, “A new design for an integrated optical isolator,” Opt. Commun. 13, 435–438 (1975).
[CrossRef]

1973 (1)

J. P. Krumme, P. Hansen, “New magneto-optic memory concept based on compensation wall domains,” Appl. Phys. Lett. 23, 576–578 (1973).
[CrossRef]

Ando, K.

K. Ando, T. Okoshi, N. Koshizuka, “Waveguide magneto-optic isolator fabricated by laser annealing,” Appl. Phys. Lett. 53, 4–6 (1988).
[CrossRef]

Auracher, F.

F. Auracher, H. H. Witte, “A new design for an integrated optical isolator,” Opt. Commun. 13, 435–438 (1975).
[CrossRef]

Bahlmann, N.

M. Fehndrich, A. Josef, L. Wilkens, J. Kleine-Börger, N. Bahlmann, M. Lohmeyer, P. Hertel, H. Dötsch, “Experimental investigation of the nonreciprocal phase shift of a transverse electric mode in a magneto-optic rib waveguide,” Appl. Phys. Lett. 74, 2918–2920 (1999).
[CrossRef]

O. Zhuromskyy, M. Lohmeyer, N. Bahlmann, H. Dötsch, P. Hertel, A. F. Popkov, “Analysis of polarization independent Mach–Zehnder type integrated optical isolator,” J. Lightwave Technol. 17, 1200–1205 (1999).
[CrossRef]

N. Bahlmann, V. Chandrasekhara, A. Erdmann, R. Gerhardt, P. Hertel, R. Lehmann, D. Salz, F. J. Schröteler, M. Wallenhorst, H. Dötsch, “Improved design of magnetooptic rib waveguides for optical isolators,” J. Lightwave Technol. 16, 818–822 (1998).
[CrossRef]

N. Bahlmann, M. Lohmeyer, H. Dötsch, P. Hertel, “Integrated magneto-optic Mach–Zehnder interferometer isolator for TE modes,” Electron. Lett. 34, 2122–2123 (1998).
[CrossRef]

N. Bahlmann, M. Lohmeyer, M. Wallenhorst, H. Dötsch, P. Hertel, “An improved design of an integrated optical isolator based on non-reciprocal Mach–Zehnder interferometry,” Opt. Quantum Electron. 30, 323–334 (1998).
[CrossRef]

Cadieu, F. J.

M. Levy, R. M. Osgood, H. Hegde, F. J. Cadieu, R. Wolfe, V. J. Fratello, “Integrated optical isolators with sputter-deposited thin-film magnets,” IEEE Photonics Technol. Lett. 8, 903–905 (1996).
[CrossRef]

Chandrasekhara, V.

Dillon, J. F.

R. Wolfe, J. F. Dillon, R. A. Lieberman, V. J. Fratello, “Broadband magneto-optic waveguide isolator,” Appl. Phys. Lett. 57, 960–962 (1990).
[CrossRef]

Dötsch, H.

M. Fehndrich, A. Josef, L. Wilkens, J. Kleine-Börger, N. Bahlmann, M. Lohmeyer, P. Hertel, H. Dötsch, “Experimental investigation of the nonreciprocal phase shift of a transverse electric mode in a magneto-optic rib waveguide,” Appl. Phys. Lett. 74, 2918–2920 (1999).
[CrossRef]

O. Zhuromskyy, M. Lohmeyer, N. Bahlmann, H. Dötsch, P. Hertel, A. F. Popkov, “Analysis of polarization independent Mach–Zehnder type integrated optical isolator,” J. Lightwave Technol. 17, 1200–1205 (1999).
[CrossRef]

N. Bahlmann, V. Chandrasekhara, A. Erdmann, R. Gerhardt, P. Hertel, R. Lehmann, D. Salz, F. J. Schröteler, M. Wallenhorst, H. Dötsch, “Improved design of magnetooptic rib waveguides for optical isolators,” J. Lightwave Technol. 16, 818–822 (1998).
[CrossRef]

N. Bahlmann, M. Lohmeyer, H. Dötsch, P. Hertel, “Integrated magneto-optic Mach–Zehnder interferometer isolator for TE modes,” Electron. Lett. 34, 2122–2123 (1998).
[CrossRef]

N. Bahlmann, M. Lohmeyer, M. Wallenhorst, H. Dötsch, P. Hertel, “An improved design of an integrated optical isolator based on non-reciprocal Mach–Zehnder interferometry,” Opt. Quantum Electron. 30, 323–334 (1998).
[CrossRef]

A. F. Popkov, M. Fehndrich, M. Lohmeyer, H. Dötsch, “Nonreciprocal TE-mode phase shift by domain walls in magneto-optic rib waveguides,” Appl. Phys. Lett. 72, 2508–2510 (1998).
[CrossRef]

M. Wallenhorst, M. Niemöller, H. Dötsch, P. Hertel, R. Gerhardt, B. Gather, “Enhancement of the nonreciprocal magneto-optic effect of TM modes using iron garnet double layers with opposite Faraday rotation,” J. Appl. Phys. 77, 2902–2905 (1995).
[CrossRef]

A. Erdmann, P. Hertel, H. Dötsch, “Nonreciprocal coupling effects in gyrotropic waveguide structures,” Opt. Quantum Electron. 26, 949–955 (1994).
[CrossRef]

H. Hemme, H. Dötsch, P. Hertel, “Integrated optical isolator based on nonreciprocal mode cutoff,” Appl. Opt. 29, 2741–2744 (1990).
[CrossRef] [PubMed]

Erdmann, A.

Fehndrich, M.

M. Fehndrich, A. Josef, L. Wilkens, J. Kleine-Börger, N. Bahlmann, M. Lohmeyer, P. Hertel, H. Dötsch, “Experimental investigation of the nonreciprocal phase shift of a transverse electric mode in a magneto-optic rib waveguide,” Appl. Phys. Lett. 74, 2918–2920 (1999).
[CrossRef]

A. F. Popkov, M. Fehndrich, M. Lohmeyer, H. Dötsch, “Nonreciprocal TE-mode phase shift by domain walls in magneto-optic rib waveguides,” Appl. Phys. Lett. 72, 2508–2510 (1998).
[CrossRef]

Fratello, V. J.

M. Levy, R. M. Osgood, H. Hegde, F. J. Cadieu, R. Wolfe, V. J. Fratello, “Integrated optical isolators with sputter-deposited thin-film magnets,” IEEE Photonics Technol. Lett. 8, 903–905 (1996).
[CrossRef]

R. Wolfe, J. F. Dillon, R. A. Lieberman, V. J. Fratello, “Broadband magneto-optic waveguide isolator,” Appl. Phys. Lett. 57, 960–962 (1990).
[CrossRef]

Gather, B.

M. Wallenhorst, M. Niemöller, H. Dötsch, P. Hertel, R. Gerhardt, B. Gather, “Enhancement of the nonreciprocal magneto-optic effect of TM modes using iron garnet double layers with opposite Faraday rotation,” J. Appl. Phys. 77, 2902–2905 (1995).
[CrossRef]

Gerhardt, R.

N. Bahlmann, V. Chandrasekhara, A. Erdmann, R. Gerhardt, P. Hertel, R. Lehmann, D. Salz, F. J. Schröteler, M. Wallenhorst, H. Dötsch, “Improved design of magnetooptic rib waveguides for optical isolators,” J. Lightwave Technol. 16, 818–822 (1998).
[CrossRef]

M. Wallenhorst, M. Niemöller, H. Dötsch, P. Hertel, R. Gerhardt, B. Gather, “Enhancement of the nonreciprocal magneto-optic effect of TM modes using iron garnet double layers with opposite Faraday rotation,” J. Appl. Phys. 77, 2902–2905 (1995).
[CrossRef]

Gutierrez, C. I.

M. Levy, I. Ilic, R. Scarmozzino, R. M. Osgood, R. Wolfe, C. I. Gutierrez, G. A. Prinz, “Thin-film-magnet magnetooptic waveguide isolator,” IEEE Photonics Technol. Lett. 5, 198–200 (1993).
[CrossRef]

Hansen, P.

P. Hansen, C.-P. Klages, J. Schuldt, K. Witter, “Magnetic and magneto-optical properties of bismuth-substituted lutetium iron garnet films,” Phys. Rev. B 31, 5858–5864 (1985).
[CrossRef]

P. Hansen, K. Witter, “Magneto-optical properties of gallium-substituted yttrium iron garnets,” Phys. Rev. B 27, 1498–1506 (1983).
[CrossRef]

J. P. Krumme, P. Hansen, “New magneto-optic memory concept based on compensation wall domains,” Appl. Phys. Lett. 23, 576–578 (1973).
[CrossRef]

Hegde, H.

M. Levy, R. M. Osgood, H. Hegde, F. J. Cadieu, R. Wolfe, V. J. Fratello, “Integrated optical isolators with sputter-deposited thin-film magnets,” IEEE Photonics Technol. Lett. 8, 903–905 (1996).
[CrossRef]

Hemme, H.

Hertel, P.

O. Zhuromskyy, M. Lohmeyer, N. Bahlmann, H. Dötsch, P. Hertel, A. F. Popkov, “Analysis of polarization independent Mach–Zehnder type integrated optical isolator,” J. Lightwave Technol. 17, 1200–1205 (1999).
[CrossRef]

M. Fehndrich, A. Josef, L. Wilkens, J. Kleine-Börger, N. Bahlmann, M. Lohmeyer, P. Hertel, H. Dötsch, “Experimental investigation of the nonreciprocal phase shift of a transverse electric mode in a magneto-optic rib waveguide,” Appl. Phys. Lett. 74, 2918–2920 (1999).
[CrossRef]

N. Bahlmann, M. Lohmeyer, H. Dötsch, P. Hertel, “Integrated magneto-optic Mach–Zehnder interferometer isolator for TE modes,” Electron. Lett. 34, 2122–2123 (1998).
[CrossRef]

N. Bahlmann, M. Lohmeyer, M. Wallenhorst, H. Dötsch, P. Hertel, “An improved design of an integrated optical isolator based on non-reciprocal Mach–Zehnder interferometry,” Opt. Quantum Electron. 30, 323–334 (1998).
[CrossRef]

N. Bahlmann, V. Chandrasekhara, A. Erdmann, R. Gerhardt, P. Hertel, R. Lehmann, D. Salz, F. J. Schröteler, M. Wallenhorst, H. Dötsch, “Improved design of magnetooptic rib waveguides for optical isolators,” J. Lightwave Technol. 16, 818–822 (1998).
[CrossRef]

M. Lohmeyer, M. Shamonin, P. Hertel, “Integrated optical isolator based on radiatively coupled magneto-optic waveguides,” Opt. Eng. 36, 889–895 (1997).
[CrossRef]

M. Wallenhorst, M. Niemöller, H. Dötsch, P. Hertel, R. Gerhardt, B. Gather, “Enhancement of the nonreciprocal magneto-optic effect of TM modes using iron garnet double layers with opposite Faraday rotation,” J. Appl. Phys. 77, 2902–2905 (1995).
[CrossRef]

A. Erdmann, P. Hertel, H. Dötsch, “Nonreciprocal coupling effects in gyrotropic waveguide structures,” Opt. Quantum Electron. 26, 949–955 (1994).
[CrossRef]

M. Shamonin, P. Hertel, “Analysis of nonreciprocal mode propagation in magneto-optic rib-waveguide structures with the spectral-index method,” Appl. Opt. 33, 6415–6421 (1994).
[CrossRef] [PubMed]

H. Hemme, H. Dötsch, P. Hertel, “Integrated optical isolator based on nonreciprocal mode cutoff,” Appl. Opt. 29, 2741–2744 (1990).
[CrossRef] [PubMed]

Ilic, I.

M. Levy, I. Ilic, R. Scarmozzino, R. M. Osgood, R. Wolfe, C. I. Gutierrez, G. A. Prinz, “Thin-film-magnet magnetooptic waveguide isolator,” IEEE Photonics Technol. Lett. 5, 198–200 (1993).
[CrossRef]

Josef, A.

M. Fehndrich, A. Josef, L. Wilkens, J. Kleine-Börger, N. Bahlmann, M. Lohmeyer, P. Hertel, H. Dötsch, “Experimental investigation of the nonreciprocal phase shift of a transverse electric mode in a magneto-optic rib waveguide,” Appl. Phys. Lett. 74, 2918–2920 (1999).
[CrossRef]

Kawaoka, Y.

T. Mizumoto, Y. Kawaoka, Y. Naito, “Waveguide-type optical isolator using the Faraday and the Cotton–Mouton effects,” Trans. Inst. Electron. Commun. Eng. Jpn. Sect. E 69, 968–972 (1986).

Klages, C.-P.

P. Hansen, C.-P. Klages, J. Schuldt, K. Witter, “Magnetic and magneto-optical properties of bismuth-substituted lutetium iron garnet films,” Phys. Rev. B 31, 5858–5864 (1985).
[CrossRef]

Kleine-Börger, J.

M. Fehndrich, A. Josef, L. Wilkens, J. Kleine-Börger, N. Bahlmann, M. Lohmeyer, P. Hertel, H. Dötsch, “Experimental investigation of the nonreciprocal phase shift of a transverse electric mode in a magneto-optic rib waveguide,” Appl. Phys. Lett. 74, 2918–2920 (1999).
[CrossRef]

Koshizuka, N.

K. Ando, T. Okoshi, N. Koshizuka, “Waveguide magneto-optic isolator fabricated by laser annealing,” Appl. Phys. Lett. 53, 4–6 (1988).
[CrossRef]

Krumme, J. P.

J. P. Krumme, P. Hansen, “New magneto-optic memory concept based on compensation wall domains,” Appl. Phys. Lett. 23, 576–578 (1973).
[CrossRef]

Lagasse, P. E.

N. Mabaya, P. E. Lagasse, P. Vandenbulcke, “Finite element analysis of optical waveguides,” IEEE Trans. Microwave Theory Technol. MTT-29, 600–605 (1981).
[CrossRef]

Lehmann, R.

Levy, M.

M. Levy, R. M. Osgood, H. Hegde, F. J. Cadieu, R. Wolfe, V. J. Fratello, “Integrated optical isolators with sputter-deposited thin-film magnets,” IEEE Photonics Technol. Lett. 8, 903–905 (1996).
[CrossRef]

M. Levy, I. Ilic, R. Scarmozzino, R. M. Osgood, R. Wolfe, C. I. Gutierrez, G. A. Prinz, “Thin-film-magnet magnetooptic waveguide isolator,” IEEE Photonics Technol. Lett. 5, 198–200 (1993).
[CrossRef]

Lieberman, R. A.

R. Wolfe, J. F. Dillon, R. A. Lieberman, V. J. Fratello, “Broadband magneto-optic waveguide isolator,” Appl. Phys. Lett. 57, 960–962 (1990).
[CrossRef]

Lohmeyer, M.

M. Fehndrich, A. Josef, L. Wilkens, J. Kleine-Börger, N. Bahlmann, M. Lohmeyer, P. Hertel, H. Dötsch, “Experimental investigation of the nonreciprocal phase shift of a transverse electric mode in a magneto-optic rib waveguide,” Appl. Phys. Lett. 74, 2918–2920 (1999).
[CrossRef]

O. Zhuromskyy, M. Lohmeyer, N. Bahlmann, H. Dötsch, P. Hertel, A. F. Popkov, “Analysis of polarization independent Mach–Zehnder type integrated optical isolator,” J. Lightwave Technol. 17, 1200–1205 (1999).
[CrossRef]

A. F. Popkov, M. Fehndrich, M. Lohmeyer, H. Dötsch, “Nonreciprocal TE-mode phase shift by domain walls in magneto-optic rib waveguides,” Appl. Phys. Lett. 72, 2508–2510 (1998).
[CrossRef]

N. Bahlmann, M. Lohmeyer, M. Wallenhorst, H. Dötsch, P. Hertel, “An improved design of an integrated optical isolator based on non-reciprocal Mach–Zehnder interferometry,” Opt. Quantum Electron. 30, 323–334 (1998).
[CrossRef]

N. Bahlmann, M. Lohmeyer, H. Dötsch, P. Hertel, “Integrated magneto-optic Mach–Zehnder interferometer isolator for TE modes,” Electron. Lett. 34, 2122–2123 (1998).
[CrossRef]

M. Lohmeyer, M. Shamonin, P. Hertel, “Integrated optical isolator based on radiatively coupled magneto-optic waveguides,” Opt. Eng. 36, 889–895 (1997).
[CrossRef]

Mabaya, N.

N. Mabaya, P. E. Lagasse, P. Vandenbulcke, “Finite element analysis of optical waveguides,” IEEE Trans. Microwave Theory Technol. MTT-29, 600–605 (1981).
[CrossRef]

Makimoto, T.

S. Yamamoto, Y. Okamura, T. Makimoto, “Analysis and design of semileaky-type thin-film optical waveguide isolator,” IEEE J. Quantum Electron. QE-12, 764–770 (1976).
[CrossRef]

Mizumoto, T.

T. Mizumoto, Y. Kawaoka, Y. Naito, “Waveguide-type optical isolator using the Faraday and the Cotton–Mouton effects,” Trans. Inst. Electron. Commun. Eng. Jpn. Sect. E 69, 968–972 (1986).

Naito, Y.

T. Mizumoto, Y. Kawaoka, Y. Naito, “Waveguide-type optical isolator using the Faraday and the Cotton–Mouton effects,” Trans. Inst. Electron. Commun. Eng. Jpn. Sect. E 69, 968–972 (1986).

Negami, T.

Niemöller, M.

M. Wallenhorst, M. Niemöller, H. Dötsch, P. Hertel, R. Gerhardt, B. Gather, “Enhancement of the nonreciprocal magneto-optic effect of TM modes using iron garnet double layers with opposite Faraday rotation,” J. Appl. Phys. 77, 2902–2905 (1995).
[CrossRef]

Okamura, Y.

Y. Okamura, T. Negami, S. Yamamoto, “Integrated optical isolator and circulator using nonreciprocal phase shifters: a proposal,” Appl. Opt. 23, 1886–1889 (1984).
[CrossRef] [PubMed]

S. Yamamoto, Y. Okamura, T. Makimoto, “Analysis and design of semileaky-type thin-film optical waveguide isolator,” IEEE J. Quantum Electron. QE-12, 764–770 (1976).
[CrossRef]

Okoshi, T.

K. Ando, T. Okoshi, N. Koshizuka, “Waveguide magneto-optic isolator fabricated by laser annealing,” Appl. Phys. Lett. 53, 4–6 (1988).
[CrossRef]

Osgood, R. M.

M. Levy, R. M. Osgood, H. Hegde, F. J. Cadieu, R. Wolfe, V. J. Fratello, “Integrated optical isolators with sputter-deposited thin-film magnets,” IEEE Photonics Technol. Lett. 8, 903–905 (1996).
[CrossRef]

M. Levy, I. Ilic, R. Scarmozzino, R. M. Osgood, R. Wolfe, C. I. Gutierrez, G. A. Prinz, “Thin-film-magnet magnetooptic waveguide isolator,” IEEE Photonics Technol. Lett. 5, 198–200 (1993).
[CrossRef]

Popkov, A. F.

O. Zhuromskyy, M. Lohmeyer, N. Bahlmann, H. Dötsch, P. Hertel, A. F. Popkov, “Analysis of polarization independent Mach–Zehnder type integrated optical isolator,” J. Lightwave Technol. 17, 1200–1205 (1999).
[CrossRef]

A. F. Popkov, M. Fehndrich, M. Lohmeyer, H. Dötsch, “Nonreciprocal TE-mode phase shift by domain walls in magneto-optic rib waveguides,” Appl. Phys. Lett. 72, 2508–2510 (1998).
[CrossRef]

Prinz, G. A.

M. Levy, I. Ilic, R. Scarmozzino, R. M. Osgood, R. Wolfe, C. I. Gutierrez, G. A. Prinz, “Thin-film-magnet magnetooptic waveguide isolator,” IEEE Photonics Technol. Lett. 5, 198–200 (1993).
[CrossRef]

Salz, D.

Scarmozzino, R.

M. Levy, I. Ilic, R. Scarmozzino, R. M. Osgood, R. Wolfe, C. I. Gutierrez, G. A. Prinz, “Thin-film-magnet magnetooptic waveguide isolator,” IEEE Photonics Technol. Lett. 5, 198–200 (1993).
[CrossRef]

Schröteler, F. J.

Schuldt, J.

P. Hansen, C.-P. Klages, J. Schuldt, K. Witter, “Magnetic and magneto-optical properties of bismuth-substituted lutetium iron garnet films,” Phys. Rev. B 31, 5858–5864 (1985).
[CrossRef]

Shamonin, M.

M. Lohmeyer, M. Shamonin, P. Hertel, “Integrated optical isolator based on radiatively coupled magneto-optic waveguides,” Opt. Eng. 36, 889–895 (1997).
[CrossRef]

M. Shamonin, P. Hertel, “Analysis of nonreciprocal mode propagation in magneto-optic rib-waveguide structures with the spectral-index method,” Appl. Opt. 33, 6415–6421 (1994).
[CrossRef] [PubMed]

Shintaku, T.

T. Shintaku, “Integrated optical isolator based on efficient nonreciprocal radiation mode conversion,” Appl. Phys. Lett. 73, 1946–1948 (1998).
[CrossRef]

Vandenbulcke, P.

N. Mabaya, P. E. Lagasse, P. Vandenbulcke, “Finite element analysis of optical waveguides,” IEEE Trans. Microwave Theory Technol. MTT-29, 600–605 (1981).
[CrossRef]

Wallenhorst, M.

N. Bahlmann, M. Lohmeyer, M. Wallenhorst, H. Dötsch, P. Hertel, “An improved design of an integrated optical isolator based on non-reciprocal Mach–Zehnder interferometry,” Opt. Quantum Electron. 30, 323–334 (1998).
[CrossRef]

N. Bahlmann, V. Chandrasekhara, A. Erdmann, R. Gerhardt, P. Hertel, R. Lehmann, D. Salz, F. J. Schröteler, M. Wallenhorst, H. Dötsch, “Improved design of magnetooptic rib waveguides for optical isolators,” J. Lightwave Technol. 16, 818–822 (1998).
[CrossRef]

M. Wallenhorst, M. Niemöller, H. Dötsch, P. Hertel, R. Gerhardt, B. Gather, “Enhancement of the nonreciprocal magneto-optic effect of TM modes using iron garnet double layers with opposite Faraday rotation,” J. Appl. Phys. 77, 2902–2905 (1995).
[CrossRef]

Wilkens, L.

M. Fehndrich, A. Josef, L. Wilkens, J. Kleine-Börger, N. Bahlmann, M. Lohmeyer, P. Hertel, H. Dötsch, “Experimental investigation of the nonreciprocal phase shift of a transverse electric mode in a magneto-optic rib waveguide,” Appl. Phys. Lett. 74, 2918–2920 (1999).
[CrossRef]

Witte, H. H.

F. Auracher, H. H. Witte, “A new design for an integrated optical isolator,” Opt. Commun. 13, 435–438 (1975).
[CrossRef]

Witter, K.

P. Hansen, C.-P. Klages, J. Schuldt, K. Witter, “Magnetic and magneto-optical properties of bismuth-substituted lutetium iron garnet films,” Phys. Rev. B 31, 5858–5864 (1985).
[CrossRef]

P. Hansen, K. Witter, “Magneto-optical properties of gallium-substituted yttrium iron garnets,” Phys. Rev. B 27, 1498–1506 (1983).
[CrossRef]

Wolfe, R.

M. Levy, R. M. Osgood, H. Hegde, F. J. Cadieu, R. Wolfe, V. J. Fratello, “Integrated optical isolators with sputter-deposited thin-film magnets,” IEEE Photonics Technol. Lett. 8, 903–905 (1996).
[CrossRef]

M. Levy, I. Ilic, R. Scarmozzino, R. M. Osgood, R. Wolfe, C. I. Gutierrez, G. A. Prinz, “Thin-film-magnet magnetooptic waveguide isolator,” IEEE Photonics Technol. Lett. 5, 198–200 (1993).
[CrossRef]

R. Wolfe, J. F. Dillon, R. A. Lieberman, V. J. Fratello, “Broadband magneto-optic waveguide isolator,” Appl. Phys. Lett. 57, 960–962 (1990).
[CrossRef]

Yamamoto, S.

Y. Okamura, T. Negami, S. Yamamoto, “Integrated optical isolator and circulator using nonreciprocal phase shifters: a proposal,” Appl. Opt. 23, 1886–1889 (1984).
[CrossRef] [PubMed]

S. Yamamoto, Y. Okamura, T. Makimoto, “Analysis and design of semileaky-type thin-film optical waveguide isolator,” IEEE J. Quantum Electron. QE-12, 764–770 (1976).
[CrossRef]

Zhuromskyy, O.

Appl. Opt. (3)

Appl. Phys. Lett. (6)

J. P. Krumme, P. Hansen, “New magneto-optic memory concept based on compensation wall domains,” Appl. Phys. Lett. 23, 576–578 (1973).
[CrossRef]

A. F. Popkov, M. Fehndrich, M. Lohmeyer, H. Dötsch, “Nonreciprocal TE-mode phase shift by domain walls in magneto-optic rib waveguides,” Appl. Phys. Lett. 72, 2508–2510 (1998).
[CrossRef]

M. Fehndrich, A. Josef, L. Wilkens, J. Kleine-Börger, N. Bahlmann, M. Lohmeyer, P. Hertel, H. Dötsch, “Experimental investigation of the nonreciprocal phase shift of a transverse electric mode in a magneto-optic rib waveguide,” Appl. Phys. Lett. 74, 2918–2920 (1999).
[CrossRef]

T. Shintaku, “Integrated optical isolator based on efficient nonreciprocal radiation mode conversion,” Appl. Phys. Lett. 73, 1946–1948 (1998).
[CrossRef]

R. Wolfe, J. F. Dillon, R. A. Lieberman, V. J. Fratello, “Broadband magneto-optic waveguide isolator,” Appl. Phys. Lett. 57, 960–962 (1990).
[CrossRef]

K. Ando, T. Okoshi, N. Koshizuka, “Waveguide magneto-optic isolator fabricated by laser annealing,” Appl. Phys. Lett. 53, 4–6 (1988).
[CrossRef]

Electron. Lett. (1)

N. Bahlmann, M. Lohmeyer, H. Dötsch, P. Hertel, “Integrated magneto-optic Mach–Zehnder interferometer isolator for TE modes,” Electron. Lett. 34, 2122–2123 (1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Yamamoto, Y. Okamura, T. Makimoto, “Analysis and design of semileaky-type thin-film optical waveguide isolator,” IEEE J. Quantum Electron. QE-12, 764–770 (1976).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

M. Levy, I. Ilic, R. Scarmozzino, R. M. Osgood, R. Wolfe, C. I. Gutierrez, G. A. Prinz, “Thin-film-magnet magnetooptic waveguide isolator,” IEEE Photonics Technol. Lett. 5, 198–200 (1993).
[CrossRef]

M. Levy, R. M. Osgood, H. Hegde, F. J. Cadieu, R. Wolfe, V. J. Fratello, “Integrated optical isolators with sputter-deposited thin-film magnets,” IEEE Photonics Technol. Lett. 8, 903–905 (1996).
[CrossRef]

IEEE Trans. Microwave Theory Technol. (1)

N. Mabaya, P. E. Lagasse, P. Vandenbulcke, “Finite element analysis of optical waveguides,” IEEE Trans. Microwave Theory Technol. MTT-29, 600–605 (1981).
[CrossRef]

J. Appl. Phys. (1)

M. Wallenhorst, M. Niemöller, H. Dötsch, P. Hertel, R. Gerhardt, B. Gather, “Enhancement of the nonreciprocal magneto-optic effect of TM modes using iron garnet double layers with opposite Faraday rotation,” J. Appl. Phys. 77, 2902–2905 (1995).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Commun. (1)

F. Auracher, H. H. Witte, “A new design for an integrated optical isolator,” Opt. Commun. 13, 435–438 (1975).
[CrossRef]

Opt. Eng. (1)

M. Lohmeyer, M. Shamonin, P. Hertel, “Integrated optical isolator based on radiatively coupled magneto-optic waveguides,” Opt. Eng. 36, 889–895 (1997).
[CrossRef]

Opt. Quantum Electron. (2)

N. Bahlmann, M. Lohmeyer, M. Wallenhorst, H. Dötsch, P. Hertel, “An improved design of an integrated optical isolator based on non-reciprocal Mach–Zehnder interferometry,” Opt. Quantum Electron. 30, 323–334 (1998).
[CrossRef]

A. Erdmann, P. Hertel, H. Dötsch, “Nonreciprocal coupling effects in gyrotropic waveguide structures,” Opt. Quantum Electron. 26, 949–955 (1994).
[CrossRef]

Phys. Rev. B (2)

P. Hansen, K. Witter, “Magneto-optical properties of gallium-substituted yttrium iron garnets,” Phys. Rev. B 27, 1498–1506 (1983).
[CrossRef]

P. Hansen, C.-P. Klages, J. Schuldt, K. Witter, “Magnetic and magneto-optical properties of bismuth-substituted lutetium iron garnet films,” Phys. Rev. B 31, 5858–5864 (1985).
[CrossRef]

Trans. Inst. Electron. Commun. Eng. Jpn. Sect. E (1)

T. Mizumoto, Y. Kawaoka, Y. Naito, “Waveguide-type optical isolator using the Faraday and the Cotton–Mouton effects,” Trans. Inst. Electron. Commun. Eng. Jpn. Sect. E 69, 968–972 (1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Basic geometry of the rib waveguide: GGG, gadolinium gallium garnet.

Fig. 2
Fig. 2

Calculated nonreciprocal phase shift Δβ of the TM00 mode for two waveguide structures at λ = 1.3 µm versus total film thickness. The parameters of the N layers are n = 2.33 and ΘF = -1429°/cm; of the P layer, n = 2.27 and ΘF = +592°/cm. The refractive index of the paramagnetic layer is n = 2.2. The rib width W and the rib height h are 2.0 and 0.04 µm, and the refractive indices of the substrate and the cover are 1.95 and 1, respectively. The thickness of the bottom layer is chosen to yield a maximum for the nonreciprocal phase shift |Δβ|.

Fig. 3
Fig. 3

Calculated contour plots of the field component |H y | of the TM00 mode for a single layer (top) and for a double layer (bottom). The difference between neighboring lines is 10% of the maximum of |H y |. These calculations correspond to the maxima of |Δβ| of Fig. 2 for the single layer and for the (para-N) double layer.

Fig. 4
Fig. 4

Calculated temperature dependence on nonreciprocal phase shift Δβ of the TM00 mode for the two double-layer waveguide structures that correspond to the maxima of |Δβ| of Fig. 2.

Fig. 5
Fig. 5

Measured temperature dependence of the Faraday rotations of the four films listed in Table 1. The solid curves for sample 2 are calculated.

Fig. 6
Fig. 6

Measured and calculated temperature dependence of the nonreciprocal phase shift of the TM00 modes of samples 1 and 2.

Tables (1)

Tables Icon

Table 1 Material Parameters of the Investigated Films (λ = 1.3 µm, T = 295 K)

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ˆj=nj20iξj0nj20-iξj0nj2,
ξj2njΘFj/k0,
Δβ=βforward-βbackward=1I  |Hyx, y|2xξn4dxdy,
I= 1n2 |Hyx, y|2dxdy;
Δβ2k0IΘF1n13|Hyd1|2 - |Hy0|2 - ΘF2n23|Hyd1|2 - |Hyd2|2.
SF2SF1=n23n13|Hyd1|2-|Hy0|2|Hyd1|2-|Hyd2|2n23n131-|Hy0|2|Hyd1|2,
ΘFλ, T=|AλMaT|-|DλMdT|,

Metrics