Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Model of the diffuse reflectivity of fly ash and its application to an optical sensor system for the determination of carbon in fly ash

Not Accessible

Your library or personal account may give you access

Abstract

Fly ash, a fine gray powder, is filtered out of the flue gas in coal-fired power stations. It consists of silicon oxide, metal oxides, and unburned carbon. An optical sensor system for measurement of the carbon content of fly ash is described. Based on a mathematical model, an algorithm is deduced that allows the carbon content to be calculated from two measurements of the diffuse reflectivity of a fly ash sample before and after a surface-grinding process. In this model the fly ash sample is assumed to be composed of three types of cube: light-scattering cubes, soft absorbing cubes (carbon), and hard absorbing cubes (iron oxide).

© 1999 Optical Society of America

Full Article  |  PDF Article
More Like This
Optimal boiler control through real-time monitoring of unburned carbon in fly ash by laser-induced breakdown spectroscopy

Miki Kurihara, Koji Ikeda, Yoshinori Izawa, Yoshihiro Deguchi, and Hitoshi Tarui
Appl. Opt. 42(30) 6159-6165 (2003)

Determination of Kubelka–Munk scattering and absorption coefficients by diffuse illumination

Robert Molenaar, Jaap J. ten Bosch, and Jaap R. Zijp
Appl. Opt. 38(10) 2068-2077 (1999)

Some chemical, physical, and optical properties of fly ash particles

Philip J. Wyatt
Appl. Opt. 19(6) 975-983 (1980)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (18)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (52)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved