Abstract

A diffraction modulator that exploits the transverse electro-optic effect in ferroelectric liquid crystals is proposed for applications in displays and in spatial light modulators. Experiments with a short-pitch ferroelectric liquid crystal aligned homeotropically show an achromatic contrast ratio of greater than 100:1 available with oblique readout. The sources of the contrast deterioration and the tolerance of the proposed scheme to this deterioration are analyzed. For selected directions of readout the light output obtains low sensitivity to the polarization of the readout light. Nonlaser light sources can be used in a practical display setup based on the proposed principle.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Eshener, S. Dickmann, D. A. Mlynski, “Liquid crystal light valves for schlieren optical projection,” Displays 16, 35–41 (1995).
    [CrossRef]
  2. J. Chen, P. J. Bos, H. Vithana, D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67, 2588–2590 (1995).
    [CrossRef]
  3. M. J. O’Gallaghan, M. A. Handschy, “Diffractive ferroelectric liquid-crystal shutters for unpolarized light,” Opt. Lett. 16, 770–772 (1991).
    [CrossRef]
  4. K. Harada, M. Itoh, I. Kompanets, H. Matsuda, A. Parfenov, N. Tamaoki, T. Yatagai, “Diffraction-based spatial light modulation: transverse electro-optic effect,” Opt. Rev. 5, 89–92 (1998).
    [CrossRef]
  5. A. V. Parfenov, V. G. Chigrinov, A. F. Denisov, E. P. Pozhidaev, “Ferroelectric SmC* liquid crystal image transducer,” Ferroelectrics 85, 303–312 (1988).
    [CrossRef]
  6. L. M. Blinov, V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials, Springer Series in Partially Ordered Systems (Springer-Verlag, Berlin, 1994), p. 464.
  7. J. Funfschilling, M. Schadt, “Performance of conventional and novel deformed helix ferroelectric liquid crystal display operating modes,” Jpn. J. Appl. Phys. 35, 5765–5774 (1996).
    [CrossRef]
  8. A. Parfenov, “Deformation of ferroelectric short-pitch helical liquid crystal by transverse electric field: application for diffraction-based light modulator,” Appl. Phys. Lett. 73, 3489–3491 (1998).
    [CrossRef]
  9. I. Abdulhalim, G. Moddel, “Electrically and optically controlled light modulation and color switching using helix distortion of ferroelectric liquid crystals,” Mol. Cryst. Liq. Cryst. 200, 79–101 (1991).
    [CrossRef]
  10. K. Shimura, “Performance estimation of projection display system using a diffraction-based liquid crystal light modulator,” in Projection Displays III, M. H. Wu, ed., Proc. SPIE3013, 157–164 (1997).
    [CrossRef]
  11. A. V. Parfenov, P. Vashurin, I. Kompanets, Yu Mironov, “The image contrast enhancement with LC transducer” Preprint 250 (Lebedev Physics Institute, Moscow, 1985), pp. 1–27.

1998 (2)

K. Harada, M. Itoh, I. Kompanets, H. Matsuda, A. Parfenov, N. Tamaoki, T. Yatagai, “Diffraction-based spatial light modulation: transverse electro-optic effect,” Opt. Rev. 5, 89–92 (1998).
[CrossRef]

A. Parfenov, “Deformation of ferroelectric short-pitch helical liquid crystal by transverse electric field: application for diffraction-based light modulator,” Appl. Phys. Lett. 73, 3489–3491 (1998).
[CrossRef]

1996 (1)

J. Funfschilling, M. Schadt, “Performance of conventional and novel deformed helix ferroelectric liquid crystal display operating modes,” Jpn. J. Appl. Phys. 35, 5765–5774 (1996).
[CrossRef]

1995 (2)

J. Eshener, S. Dickmann, D. A. Mlynski, “Liquid crystal light valves for schlieren optical projection,” Displays 16, 35–41 (1995).
[CrossRef]

J. Chen, P. J. Bos, H. Vithana, D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67, 2588–2590 (1995).
[CrossRef]

1991 (2)

M. J. O’Gallaghan, M. A. Handschy, “Diffractive ferroelectric liquid-crystal shutters for unpolarized light,” Opt. Lett. 16, 770–772 (1991).
[CrossRef]

I. Abdulhalim, G. Moddel, “Electrically and optically controlled light modulation and color switching using helix distortion of ferroelectric liquid crystals,” Mol. Cryst. Liq. Cryst. 200, 79–101 (1991).
[CrossRef]

1988 (1)

A. V. Parfenov, V. G. Chigrinov, A. F. Denisov, E. P. Pozhidaev, “Ferroelectric SmC* liquid crystal image transducer,” Ferroelectrics 85, 303–312 (1988).
[CrossRef]

Abdulhalim, I.

I. Abdulhalim, G. Moddel, “Electrically and optically controlled light modulation and color switching using helix distortion of ferroelectric liquid crystals,” Mol. Cryst. Liq. Cryst. 200, 79–101 (1991).
[CrossRef]

Blinov, L. M.

L. M. Blinov, V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials, Springer Series in Partially Ordered Systems (Springer-Verlag, Berlin, 1994), p. 464.

Bos, P. J.

J. Chen, P. J. Bos, H. Vithana, D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67, 2588–2590 (1995).
[CrossRef]

Chen, J.

J. Chen, P. J. Bos, H. Vithana, D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67, 2588–2590 (1995).
[CrossRef]

Chigrinov, V. G.

A. V. Parfenov, V. G. Chigrinov, A. F. Denisov, E. P. Pozhidaev, “Ferroelectric SmC* liquid crystal image transducer,” Ferroelectrics 85, 303–312 (1988).
[CrossRef]

L. M. Blinov, V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials, Springer Series in Partially Ordered Systems (Springer-Verlag, Berlin, 1994), p. 464.

Denisov, A. F.

A. V. Parfenov, V. G. Chigrinov, A. F. Denisov, E. P. Pozhidaev, “Ferroelectric SmC* liquid crystal image transducer,” Ferroelectrics 85, 303–312 (1988).
[CrossRef]

Dickmann, S.

J. Eshener, S. Dickmann, D. A. Mlynski, “Liquid crystal light valves for schlieren optical projection,” Displays 16, 35–41 (1995).
[CrossRef]

Eshener, J.

J. Eshener, S. Dickmann, D. A. Mlynski, “Liquid crystal light valves for schlieren optical projection,” Displays 16, 35–41 (1995).
[CrossRef]

Funfschilling, J.

J. Funfschilling, M. Schadt, “Performance of conventional and novel deformed helix ferroelectric liquid crystal display operating modes,” Jpn. J. Appl. Phys. 35, 5765–5774 (1996).
[CrossRef]

Handschy, M. A.

Harada, K.

K. Harada, M. Itoh, I. Kompanets, H. Matsuda, A. Parfenov, N. Tamaoki, T. Yatagai, “Diffraction-based spatial light modulation: transverse electro-optic effect,” Opt. Rev. 5, 89–92 (1998).
[CrossRef]

Itoh, M.

K. Harada, M. Itoh, I. Kompanets, H. Matsuda, A. Parfenov, N. Tamaoki, T. Yatagai, “Diffraction-based spatial light modulation: transverse electro-optic effect,” Opt. Rev. 5, 89–92 (1998).
[CrossRef]

Johnson, D. L.

J. Chen, P. J. Bos, H. Vithana, D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67, 2588–2590 (1995).
[CrossRef]

Kompanets, I.

K. Harada, M. Itoh, I. Kompanets, H. Matsuda, A. Parfenov, N. Tamaoki, T. Yatagai, “Diffraction-based spatial light modulation: transverse electro-optic effect,” Opt. Rev. 5, 89–92 (1998).
[CrossRef]

A. V. Parfenov, P. Vashurin, I. Kompanets, Yu Mironov, “The image contrast enhancement with LC transducer” Preprint 250 (Lebedev Physics Institute, Moscow, 1985), pp. 1–27.

Matsuda, H.

K. Harada, M. Itoh, I. Kompanets, H. Matsuda, A. Parfenov, N. Tamaoki, T. Yatagai, “Diffraction-based spatial light modulation: transverse electro-optic effect,” Opt. Rev. 5, 89–92 (1998).
[CrossRef]

Mironov, Yu

A. V. Parfenov, P. Vashurin, I. Kompanets, Yu Mironov, “The image contrast enhancement with LC transducer” Preprint 250 (Lebedev Physics Institute, Moscow, 1985), pp. 1–27.

Mlynski, D. A.

J. Eshener, S. Dickmann, D. A. Mlynski, “Liquid crystal light valves for schlieren optical projection,” Displays 16, 35–41 (1995).
[CrossRef]

Moddel, G.

I. Abdulhalim, G. Moddel, “Electrically and optically controlled light modulation and color switching using helix distortion of ferroelectric liquid crystals,” Mol. Cryst. Liq. Cryst. 200, 79–101 (1991).
[CrossRef]

O’Gallaghan, M. J.

Parfenov, A.

A. Parfenov, “Deformation of ferroelectric short-pitch helical liquid crystal by transverse electric field: application for diffraction-based light modulator,” Appl. Phys. Lett. 73, 3489–3491 (1998).
[CrossRef]

K. Harada, M. Itoh, I. Kompanets, H. Matsuda, A. Parfenov, N. Tamaoki, T. Yatagai, “Diffraction-based spatial light modulation: transverse electro-optic effect,” Opt. Rev. 5, 89–92 (1998).
[CrossRef]

Parfenov, A. V.

A. V. Parfenov, V. G. Chigrinov, A. F. Denisov, E. P. Pozhidaev, “Ferroelectric SmC* liquid crystal image transducer,” Ferroelectrics 85, 303–312 (1988).
[CrossRef]

A. V. Parfenov, P. Vashurin, I. Kompanets, Yu Mironov, “The image contrast enhancement with LC transducer” Preprint 250 (Lebedev Physics Institute, Moscow, 1985), pp. 1–27.

Pozhidaev, E. P.

A. V. Parfenov, V. G. Chigrinov, A. F. Denisov, E. P. Pozhidaev, “Ferroelectric SmC* liquid crystal image transducer,” Ferroelectrics 85, 303–312 (1988).
[CrossRef]

Schadt, M.

J. Funfschilling, M. Schadt, “Performance of conventional and novel deformed helix ferroelectric liquid crystal display operating modes,” Jpn. J. Appl. Phys. 35, 5765–5774 (1996).
[CrossRef]

Shimura, K.

K. Shimura, “Performance estimation of projection display system using a diffraction-based liquid crystal light modulator,” in Projection Displays III, M. H. Wu, ed., Proc. SPIE3013, 157–164 (1997).
[CrossRef]

Tamaoki, N.

K. Harada, M. Itoh, I. Kompanets, H. Matsuda, A. Parfenov, N. Tamaoki, T. Yatagai, “Diffraction-based spatial light modulation: transverse electro-optic effect,” Opt. Rev. 5, 89–92 (1998).
[CrossRef]

Vashurin, P.

A. V. Parfenov, P. Vashurin, I. Kompanets, Yu Mironov, “The image contrast enhancement with LC transducer” Preprint 250 (Lebedev Physics Institute, Moscow, 1985), pp. 1–27.

Vithana, H.

J. Chen, P. J. Bos, H. Vithana, D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67, 2588–2590 (1995).
[CrossRef]

Yatagai, T.

K. Harada, M. Itoh, I. Kompanets, H. Matsuda, A. Parfenov, N. Tamaoki, T. Yatagai, “Diffraction-based spatial light modulation: transverse electro-optic effect,” Opt. Rev. 5, 89–92 (1998).
[CrossRef]

Appl. Phys. Lett. (2)

J. Chen, P. J. Bos, H. Vithana, D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67, 2588–2590 (1995).
[CrossRef]

A. Parfenov, “Deformation of ferroelectric short-pitch helical liquid crystal by transverse electric field: application for diffraction-based light modulator,” Appl. Phys. Lett. 73, 3489–3491 (1998).
[CrossRef]

Displays (1)

J. Eshener, S. Dickmann, D. A. Mlynski, “Liquid crystal light valves for schlieren optical projection,” Displays 16, 35–41 (1995).
[CrossRef]

Ferroelectrics (1)

A. V. Parfenov, V. G. Chigrinov, A. F. Denisov, E. P. Pozhidaev, “Ferroelectric SmC* liquid crystal image transducer,” Ferroelectrics 85, 303–312 (1988).
[CrossRef]

Jpn. J. Appl. Phys. (1)

J. Funfschilling, M. Schadt, “Performance of conventional and novel deformed helix ferroelectric liquid crystal display operating modes,” Jpn. J. Appl. Phys. 35, 5765–5774 (1996).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

I. Abdulhalim, G. Moddel, “Electrically and optically controlled light modulation and color switching using helix distortion of ferroelectric liquid crystals,” Mol. Cryst. Liq. Cryst. 200, 79–101 (1991).
[CrossRef]

Opt. Lett. (1)

Opt. Rev. (1)

K. Harada, M. Itoh, I. Kompanets, H. Matsuda, A. Parfenov, N. Tamaoki, T. Yatagai, “Diffraction-based spatial light modulation: transverse electro-optic effect,” Opt. Rev. 5, 89–92 (1998).
[CrossRef]

Other (3)

L. M. Blinov, V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials, Springer Series in Partially Ordered Systems (Springer-Verlag, Berlin, 1994), p. 464.

K. Shimura, “Performance estimation of projection display system using a diffraction-based liquid crystal light modulator,” in Projection Displays III, M. H. Wu, ed., Proc. SPIE3013, 157–164 (1997).
[CrossRef]

A. V. Parfenov, P. Vashurin, I. Kompanets, Yu Mironov, “The image contrast enhancement with LC transducer” Preprint 250 (Lebedev Physics Institute, Moscow, 1985), pp. 1–27.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Geometry of FLC EO cell with IDS: D, period of electric field (E); d period of IDS pattern; L, thickness of EO layer.

Fig. 2
Fig. 2

Simplified optical scheme for diffraction modulation for a single phase-modulating diffracting pixel, which splits a readout beam into diffraction orders. Some of the diffraction orders (namely, +1 of figure) are transmitted by the amplitude filter and provide input for reconstruction of the amplitude image.

Fig. 3
Fig. 3

Light power distribution between diffraction orders in Fourier plane taken without voltage and under voltage (7 Vrms applied to the IDS) for normal and oblique readouts. Right-hand side, photograph of the spectrum plane taken with and without voltage applied to the FLC cell. Arrows mark new orders of diffraction with high modulation contrast. The relative accuracy of power measurement is better than 10% (valid for all graphics here).

Fig. 4
Fig. 4

Diffraction efficiency measured in single first order for sinusoidal applied voltage at 1 kHz. The sin2 approximation curve is assigned to the experimental data.

Fig. 5
Fig. 5

Two main variants of basic geometry for light modulation with obliquely incident readout light beam. (Θ, incidence angle; Φ, azimuthal angle of electric vector E of the light wave). Left- and right-hand sides, readout is in planes parallel and perpendicular, respectively, to IDS electrodes.

Fig. 6
Fig. 6

Dependence of amplitude of response versus rotation angle of sample (i.e., angle between electrical field in the sample and polarization of the light) for given incidence angles (0–50 deg). Leftmost part, incidence in a plane of IDS stripes, rightmost part, normal to IDS. The absolute accuracy of angular measurement is estimated as 5 deg (valid for all graphics here).

Fig. 7
Fig. 7

Low signal response dependence on the frequency of applied voltage (Vrms = 7 V; angle of incidence, 30 deg.) shown in log–log scale and normalized on its maximum value (at lower frequency). Insert, optical response at 1-kHz frequency with triangle voltage applied. Open and filled triangles, data corresponding to readouts in the plane’s perpendicular and parallel, respectively, to the IDS.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Eout=Ein exp-iM sin Ωx,
E  k=0 JkMexpikΩx+k=0-1kJkMexp-ikΩx.
K2ϕ/z2+γϕ/t=PsE sin ϕ+ε0ΔεE2 sin ϕ cos ϕ/2,
ΔΦ0.7θs2ΔnE/Ec2L/λ.
ΔΦ4θsΘΔnE/EcL/λ.
Δx=fΔλ/D,  Δλ=λ2-λ1.

Metrics