Abstract

We fabricated polymer-dispersed liquid-crystal light valves (PDLCLV’s) consisting of a 30-µm-thick hydrogenated amorphous-silicon film and a 10-µm-thick polymer-dispersed liquid-crystal (PDLC) film composed of nematic liquid-crystal (LC) microdroplets surrounded by polymer. The device can modulate high-power reading light, because the PDLC becomes transparent or opalescent independent of the polarization state of the reading light when either sufficient or no writing light is incident on the PDLCLV. This device has a limiting resolution of 50 lp/mm (lp indicates line pairs), a reading light efficiency of 60%, a ratio of intensity of light incident on the PDLC layer to intensity of light radiated from the layer, and an extinction ratio of 130:1. The optically addressed video projection system with three PDLCLV’s, LC panels of 1048 × 480 pixels as input image sources, a 1-kW Xe lamp, and a schlieren optical system projected television (TV) pictures of 600 and 450 TV lines in the horizontal and the vertical directions on a screen with a diagonal length of 100 in. The total output flux of this system was 1500 lm.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. G. Ledebuhr, “Full-color single-projection-lens liquid-crystal light-valve projector,” in Technical Digest of the Society for Information Display International Symposium 17 (Society for Information Display, Santa Ana, Calif., 1986), pp. 379–382.
  2. P. R. Ashley, J. H. Davis, “Amorphous silicon photoconductor in a liquid crystal spatial light modulator,” Appl. Opt. 26, 241–246 (1987).
    [CrossRef] [PubMed]
  3. D. Armitage, J. I. Thackara, W. D. Eades, “Photoaddressed liquid crystal spatial light modulators,” Appl. Opt. 28, 4763–4771 (1989).
    [CrossRef] [PubMed]
  4. R. D. Stering, R. D. T. Kolste, J. M. Haggerty, T. C. Borah, W. P. Bleha, “Video-rate liquid-crystal light-valve using an amorphous silicon photoconductor,” in Technical Digest of the Society for Information Display International Symposium 21 (Society for Information Display, Santa Ana, Calif., 1990), pp. 327–329.
  5. V. J. Fritz, “Full-color, liquid crystal light valve projector for shipboard use,” in Large Screen and Projection Displays II, W. P. Bleha, ed., Proc. SPIE1255, 59–68 (1990).
    [CrossRef]
  6. R. A. Forber, A. Au. Efron, K. Sayyah, S. T. Wu, “Dynamic IR scene projection using the Hughes liquid crystal light valve,” in Liquid Crystal Materials, Devices, and Applications, P. S. Drzaic, U. Efron, eds., Proc. SPIE1665, 259–273 (1992).
    [CrossRef]
  7. K. Takizawa, T. Fujii, T. Sunaga, K. Kishi, “Three-dimensional large-screen display using reflection-mode spatial light modulators and a single-projection optical system: analysis of retardation-modulation method,” Appl. Opt. 37, 6182–6195 (1998).
    [CrossRef]
  8. S. A. Williams, “History of Eidophor projection in North America,” in Projection Display III, M. H. Wu, ed., Proc. SPIE3013, 7–13 (1997).
    [CrossRef]
  9. T. T. True, “High-performance video projector using two oil-film light valves,” in Technical Digest of the Society for Information Display International Symposium 18 (Society for Information Display, Santa Ana, Calif., 1987), pp. 68–71.
  10. K. Takizawa, H. Kikuchi, H. Fujikake, M. Okada, “Transmission mode spatial light modulator using a Bi12SiO20 crystal and polymer-dispersed liquid crystal layers,” Appl. Phys. Lett. 56, 999–1001 (1989).
    [CrossRef]
  11. K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Polymer-dispersed liquid crystal light valves for projection display application,” in Display Technologies, S. Chen, S. T. Wu, eds., Proc. SPIE1815, 223–232 (1992).
    [CrossRef]
  12. K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Polymer-dispersed liquid crystal light valves for projection display,” Opt. Eng. 32, 1781–1791 (1993).
    [CrossRef]
  13. K. Takizawa, H. Kikuchi, H. Fujikake, K. Kodama, K. Kishi, “Spatial light modulator using polymer-dispersed liquid crystal: dependence of resolution on reading light intensity,” J. Appl. Phys. 75, 3158–3168 (1994).
    [CrossRef]
  14. K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Reflection mode polymer-dispersed liquid crystal light valve,” Jpn. J. Appl. Phys. 33, 1346–1351 (1994).
    [CrossRef]
  15. K. Takizawa, H. Kikuchi, H. Fujikake, T. Fujii, M. Kawakita, M. Yokozawa, A. Murata, “Spatial light modulators using polymer-dispersed liquid crystal and Bi12SiO20 photoconductive layers for projection display,” in Projection Displays, M. H. Wu, ed., Proc. SPIE2407, 136–148 (1995).
    [CrossRef]
  16. K. Takizawa, T. Fujii, M. Kawakita, H. Kikuchi, H. Fujikake, M. Yokozawa, A. Murata, K. Kishi, “Spatial light modulators for projection displays,” Appl. Opt. 36, 5732–5747 (1997).
    [CrossRef] [PubMed]
  17. J. L. Fergason, “Polymer encapsulated nematic liquid crystals for display and light control applications,” in Technical Digest of the Society for Information Display International Symposium 16 (Society for Information Display, Santa Ana, Calif., 1985), pp. 68–70.
  18. J. W. Doane, N. A. Vaz, B.-G. Wu, S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48, 269–271 (1986).
    [CrossRef]
  19. B.-G. Wu, J. L. West, J. W. Doane, “Angular discrimination of light transmission through polymer-dispersed liquid-crystal films,” J. Appl. Phys. 62, 3295–3931 (1987).
    [CrossRef]
  20. A. Golemme, S. Zumer, J. W. Doane, M. E. Neubert, “Deuterium NMR of polymer dispersed liquid crystals,” Phys. Rev. 37, 559–569 (1998).
    [CrossRef]
  21. P. S. Drazaic, “Reorientation dynamics of polymer dispersed nematic liquid crystal films,” Liq. Cryst. 3, 1543–1559 (1988).
    [CrossRef]
  22. G. P. Montgomery, “Polymer-dispersed and encapsulated liquid crystal films,” in Large-Area Chromogenics: Materials and Devices for Transmittance Control, C. G. Granqvist, C. M. Lampert, eds., SPIE Institute Series (Society for Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1990), pp. 577–606.
  23. T. Kajiyama, A. Miyamoto, H. Kikuchi, Y. Morimura, “Aggregation states and electro-optical properties based on light scattering of polymer/(liquid crystal) composite films,” Chem. Lett. 1989, 813–816 (1989).
    [CrossRef]
  24. T. Fujisawa, H. Ogawa, K. Maruyama, “Electro-optic properties and multiplexibility for polymer network liquid crystal display (PN-LCD),” in Digest of the Ninth International Display Research Conference (Institute of Television Engineers of Japan, Kyoto, Japan, 1989), pp. 690–693.
  25. A. Fuh, O. Caporaletti, “Polymer dispersed nematic liquid crystal films: the density ratio and polymer’s curing rate effects,” J. Appl. Phys. 66, 5278–5284 (1989).
    [CrossRef]
  26. M. Okada, K. Takizawa, “Instability and transient responses of an electrooptic bistable device,” IEEE J. Quantum Electron. QE-17, 517–524 (1981).
    [CrossRef]
  27. K. Takizawa, M. Okada, H. Kikuchi, T. Aida, “Bistable spatial light modulator using liquid crystal and Bi12SiO20 crystal layers,” Appl. Phys. Lett. 53, 2359–2361 (1988).
    [CrossRef]
  28. B. Singh, S. McClelland, F. Tams, B. Halon, O. Mesker, D. Furst, “Use of black diamond-like carbon films as a contrast enhancement layer for liquid-crystal displays,” Appl. Phys. Lett. 57, 2288–2290 (1990).
    [CrossRef]
  29. T. Fujio, “High definition television systems: desirable standards, signal forms, and transmission systems,” IEEE Trans. Commun. COM-29, 1882–1891 (1981).
    [CrossRef]
  30. Y. Ninomiya, Y. Ohtsuka, Y. Izumi, S. Gohshi, Y. Iwadate, “An HDTV broadcasting system utilizing a bandwidth compression technique-MUSE,” IEEE Trans. Broadcast. BC-33, 130–160 (1987).
    [CrossRef]
  31. T. Nishizawa, “Present status of HDTV in Japan,” IEICE Trans. Electron. E74, 1557–1581 (1991).
  32. D. Casasent, “Photo DKDP light valve: a review,” Opt. Eng. 17, 365–370 (1978).
  33. L. Wang, G. Moddel, “Resolution limits from charge transport in optically addressed spatial light modulators,” J. Appl. Phys. 78, 6923–6935 (1995).
    [CrossRef]

1998 (2)

1997 (1)

1995 (1)

L. Wang, G. Moddel, “Resolution limits from charge transport in optically addressed spatial light modulators,” J. Appl. Phys. 78, 6923–6935 (1995).
[CrossRef]

1994 (2)

K. Takizawa, H. Kikuchi, H. Fujikake, K. Kodama, K. Kishi, “Spatial light modulator using polymer-dispersed liquid crystal: dependence of resolution on reading light intensity,” J. Appl. Phys. 75, 3158–3168 (1994).
[CrossRef]

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Reflection mode polymer-dispersed liquid crystal light valve,” Jpn. J. Appl. Phys. 33, 1346–1351 (1994).
[CrossRef]

1993 (1)

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Polymer-dispersed liquid crystal light valves for projection display,” Opt. Eng. 32, 1781–1791 (1993).
[CrossRef]

1991 (1)

T. Nishizawa, “Present status of HDTV in Japan,” IEICE Trans. Electron. E74, 1557–1581 (1991).

1990 (1)

B. Singh, S. McClelland, F. Tams, B. Halon, O. Mesker, D. Furst, “Use of black diamond-like carbon films as a contrast enhancement layer for liquid-crystal displays,” Appl. Phys. Lett. 57, 2288–2290 (1990).
[CrossRef]

1989 (4)

T. Kajiyama, A. Miyamoto, H. Kikuchi, Y. Morimura, “Aggregation states and electro-optical properties based on light scattering of polymer/(liquid crystal) composite films,” Chem. Lett. 1989, 813–816 (1989).
[CrossRef]

A. Fuh, O. Caporaletti, “Polymer dispersed nematic liquid crystal films: the density ratio and polymer’s curing rate effects,” J. Appl. Phys. 66, 5278–5284 (1989).
[CrossRef]

K. Takizawa, H. Kikuchi, H. Fujikake, M. Okada, “Transmission mode spatial light modulator using a Bi12SiO20 crystal and polymer-dispersed liquid crystal layers,” Appl. Phys. Lett. 56, 999–1001 (1989).
[CrossRef]

D. Armitage, J. I. Thackara, W. D. Eades, “Photoaddressed liquid crystal spatial light modulators,” Appl. Opt. 28, 4763–4771 (1989).
[CrossRef] [PubMed]

1988 (2)

P. S. Drazaic, “Reorientation dynamics of polymer dispersed nematic liquid crystal films,” Liq. Cryst. 3, 1543–1559 (1988).
[CrossRef]

K. Takizawa, M. Okada, H. Kikuchi, T. Aida, “Bistable spatial light modulator using liquid crystal and Bi12SiO20 crystal layers,” Appl. Phys. Lett. 53, 2359–2361 (1988).
[CrossRef]

1987 (3)

Y. Ninomiya, Y. Ohtsuka, Y. Izumi, S. Gohshi, Y. Iwadate, “An HDTV broadcasting system utilizing a bandwidth compression technique-MUSE,” IEEE Trans. Broadcast. BC-33, 130–160 (1987).
[CrossRef]

B.-G. Wu, J. L. West, J. W. Doane, “Angular discrimination of light transmission through polymer-dispersed liquid-crystal films,” J. Appl. Phys. 62, 3295–3931 (1987).
[CrossRef]

P. R. Ashley, J. H. Davis, “Amorphous silicon photoconductor in a liquid crystal spatial light modulator,” Appl. Opt. 26, 241–246 (1987).
[CrossRef] [PubMed]

1986 (1)

J. W. Doane, N. A. Vaz, B.-G. Wu, S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48, 269–271 (1986).
[CrossRef]

1981 (2)

M. Okada, K. Takizawa, “Instability and transient responses of an electrooptic bistable device,” IEEE J. Quantum Electron. QE-17, 517–524 (1981).
[CrossRef]

T. Fujio, “High definition television systems: desirable standards, signal forms, and transmission systems,” IEEE Trans. Commun. COM-29, 1882–1891 (1981).
[CrossRef]

1978 (1)

D. Casasent, “Photo DKDP light valve: a review,” Opt. Eng. 17, 365–370 (1978).

Aida, T.

K. Takizawa, M. Okada, H. Kikuchi, T. Aida, “Bistable spatial light modulator using liquid crystal and Bi12SiO20 crystal layers,” Appl. Phys. Lett. 53, 2359–2361 (1988).
[CrossRef]

Armitage, D.

Ashley, P. R.

Bleha, W. P.

R. D. Stering, R. D. T. Kolste, J. M. Haggerty, T. C. Borah, W. P. Bleha, “Video-rate liquid-crystal light-valve using an amorphous silicon photoconductor,” in Technical Digest of the Society for Information Display International Symposium 21 (Society for Information Display, Santa Ana, Calif., 1990), pp. 327–329.

Borah, T. C.

R. D. Stering, R. D. T. Kolste, J. M. Haggerty, T. C. Borah, W. P. Bleha, “Video-rate liquid-crystal light-valve using an amorphous silicon photoconductor,” in Technical Digest of the Society for Information Display International Symposium 21 (Society for Information Display, Santa Ana, Calif., 1990), pp. 327–329.

Caporaletti, O.

A. Fuh, O. Caporaletti, “Polymer dispersed nematic liquid crystal films: the density ratio and polymer’s curing rate effects,” J. Appl. Phys. 66, 5278–5284 (1989).
[CrossRef]

Casasent, D.

D. Casasent, “Photo DKDP light valve: a review,” Opt. Eng. 17, 365–370 (1978).

Davis, J. H.

Doane, J. W.

A. Golemme, S. Zumer, J. W. Doane, M. E. Neubert, “Deuterium NMR of polymer dispersed liquid crystals,” Phys. Rev. 37, 559–569 (1998).
[CrossRef]

B.-G. Wu, J. L. West, J. W. Doane, “Angular discrimination of light transmission through polymer-dispersed liquid-crystal films,” J. Appl. Phys. 62, 3295–3931 (1987).
[CrossRef]

J. W. Doane, N. A. Vaz, B.-G. Wu, S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48, 269–271 (1986).
[CrossRef]

Drazaic, P. S.

P. S. Drazaic, “Reorientation dynamics of polymer dispersed nematic liquid crystal films,” Liq. Cryst. 3, 1543–1559 (1988).
[CrossRef]

Eades, W. D.

Efron, A. Au.

R. A. Forber, A. Au. Efron, K. Sayyah, S. T. Wu, “Dynamic IR scene projection using the Hughes liquid crystal light valve,” in Liquid Crystal Materials, Devices, and Applications, P. S. Drzaic, U. Efron, eds., Proc. SPIE1665, 259–273 (1992).
[CrossRef]

Fergason, J. L.

J. L. Fergason, “Polymer encapsulated nematic liquid crystals for display and light control applications,” in Technical Digest of the Society for Information Display International Symposium 16 (Society for Information Display, Santa Ana, Calif., 1985), pp. 68–70.

Forber, R. A.

R. A. Forber, A. Au. Efron, K. Sayyah, S. T. Wu, “Dynamic IR scene projection using the Hughes liquid crystal light valve,” in Liquid Crystal Materials, Devices, and Applications, P. S. Drzaic, U. Efron, eds., Proc. SPIE1665, 259–273 (1992).
[CrossRef]

Fritz, V. J.

V. J. Fritz, “Full-color, liquid crystal light valve projector for shipboard use,” in Large Screen and Projection Displays II, W. P. Bleha, ed., Proc. SPIE1255, 59–68 (1990).
[CrossRef]

Fuh, A.

A. Fuh, O. Caporaletti, “Polymer dispersed nematic liquid crystal films: the density ratio and polymer’s curing rate effects,” J. Appl. Phys. 66, 5278–5284 (1989).
[CrossRef]

Fujii, T.

Fujikake, H.

K. Takizawa, T. Fujii, M. Kawakita, H. Kikuchi, H. Fujikake, M. Yokozawa, A. Murata, K. Kishi, “Spatial light modulators for projection displays,” Appl. Opt. 36, 5732–5747 (1997).
[CrossRef] [PubMed]

K. Takizawa, H. Kikuchi, H. Fujikake, K. Kodama, K. Kishi, “Spatial light modulator using polymer-dispersed liquid crystal: dependence of resolution on reading light intensity,” J. Appl. Phys. 75, 3158–3168 (1994).
[CrossRef]

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Reflection mode polymer-dispersed liquid crystal light valve,” Jpn. J. Appl. Phys. 33, 1346–1351 (1994).
[CrossRef]

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Polymer-dispersed liquid crystal light valves for projection display,” Opt. Eng. 32, 1781–1791 (1993).
[CrossRef]

K. Takizawa, H. Kikuchi, H. Fujikake, M. Okada, “Transmission mode spatial light modulator using a Bi12SiO20 crystal and polymer-dispersed liquid crystal layers,” Appl. Phys. Lett. 56, 999–1001 (1989).
[CrossRef]

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Polymer-dispersed liquid crystal light valves for projection display application,” in Display Technologies, S. Chen, S. T. Wu, eds., Proc. SPIE1815, 223–232 (1992).
[CrossRef]

K. Takizawa, H. Kikuchi, H. Fujikake, T. Fujii, M. Kawakita, M. Yokozawa, A. Murata, “Spatial light modulators using polymer-dispersed liquid crystal and Bi12SiO20 photoconductive layers for projection display,” in Projection Displays, M. H. Wu, ed., Proc. SPIE2407, 136–148 (1995).
[CrossRef]

Fujio, T.

T. Fujio, “High definition television systems: desirable standards, signal forms, and transmission systems,” IEEE Trans. Commun. COM-29, 1882–1891 (1981).
[CrossRef]

Fujisawa, T.

T. Fujisawa, H. Ogawa, K. Maruyama, “Electro-optic properties and multiplexibility for polymer network liquid crystal display (PN-LCD),” in Digest of the Ninth International Display Research Conference (Institute of Television Engineers of Japan, Kyoto, Japan, 1989), pp. 690–693.

Furst, D.

B. Singh, S. McClelland, F. Tams, B. Halon, O. Mesker, D. Furst, “Use of black diamond-like carbon films as a contrast enhancement layer for liquid-crystal displays,” Appl. Phys. Lett. 57, 2288–2290 (1990).
[CrossRef]

Gohshi, S.

Y. Ninomiya, Y. Ohtsuka, Y. Izumi, S. Gohshi, Y. Iwadate, “An HDTV broadcasting system utilizing a bandwidth compression technique-MUSE,” IEEE Trans. Broadcast. BC-33, 130–160 (1987).
[CrossRef]

Golemme, A.

A. Golemme, S. Zumer, J. W. Doane, M. E. Neubert, “Deuterium NMR of polymer dispersed liquid crystals,” Phys. Rev. 37, 559–569 (1998).
[CrossRef]

Haggerty, J. M.

R. D. Stering, R. D. T. Kolste, J. M. Haggerty, T. C. Borah, W. P. Bleha, “Video-rate liquid-crystal light-valve using an amorphous silicon photoconductor,” in Technical Digest of the Society for Information Display International Symposium 21 (Society for Information Display, Santa Ana, Calif., 1990), pp. 327–329.

Halon, B.

B. Singh, S. McClelland, F. Tams, B. Halon, O. Mesker, D. Furst, “Use of black diamond-like carbon films as a contrast enhancement layer for liquid-crystal displays,” Appl. Phys. Lett. 57, 2288–2290 (1990).
[CrossRef]

Iwadate, Y.

Y. Ninomiya, Y. Ohtsuka, Y. Izumi, S. Gohshi, Y. Iwadate, “An HDTV broadcasting system utilizing a bandwidth compression technique-MUSE,” IEEE Trans. Broadcast. BC-33, 130–160 (1987).
[CrossRef]

Izumi, Y.

Y. Ninomiya, Y. Ohtsuka, Y. Izumi, S. Gohshi, Y. Iwadate, “An HDTV broadcasting system utilizing a bandwidth compression technique-MUSE,” IEEE Trans. Broadcast. BC-33, 130–160 (1987).
[CrossRef]

Kajiyama, T.

T. Kajiyama, A. Miyamoto, H. Kikuchi, Y. Morimura, “Aggregation states and electro-optical properties based on light scattering of polymer/(liquid crystal) composite films,” Chem. Lett. 1989, 813–816 (1989).
[CrossRef]

Kawakita, M.

K. Takizawa, T. Fujii, M. Kawakita, H. Kikuchi, H. Fujikake, M. Yokozawa, A. Murata, K. Kishi, “Spatial light modulators for projection displays,” Appl. Opt. 36, 5732–5747 (1997).
[CrossRef] [PubMed]

K. Takizawa, H. Kikuchi, H. Fujikake, T. Fujii, M. Kawakita, M. Yokozawa, A. Murata, “Spatial light modulators using polymer-dispersed liquid crystal and Bi12SiO20 photoconductive layers for projection display,” in Projection Displays, M. H. Wu, ed., Proc. SPIE2407, 136–148 (1995).
[CrossRef]

Kikuchi, H.

K. Takizawa, T. Fujii, M. Kawakita, H. Kikuchi, H. Fujikake, M. Yokozawa, A. Murata, K. Kishi, “Spatial light modulators for projection displays,” Appl. Opt. 36, 5732–5747 (1997).
[CrossRef] [PubMed]

K. Takizawa, H. Kikuchi, H. Fujikake, K. Kodama, K. Kishi, “Spatial light modulator using polymer-dispersed liquid crystal: dependence of resolution on reading light intensity,” J. Appl. Phys. 75, 3158–3168 (1994).
[CrossRef]

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Reflection mode polymer-dispersed liquid crystal light valve,” Jpn. J. Appl. Phys. 33, 1346–1351 (1994).
[CrossRef]

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Polymer-dispersed liquid crystal light valves for projection display,” Opt. Eng. 32, 1781–1791 (1993).
[CrossRef]

K. Takizawa, H. Kikuchi, H. Fujikake, M. Okada, “Transmission mode spatial light modulator using a Bi12SiO20 crystal and polymer-dispersed liquid crystal layers,” Appl. Phys. Lett. 56, 999–1001 (1989).
[CrossRef]

T. Kajiyama, A. Miyamoto, H. Kikuchi, Y. Morimura, “Aggregation states and electro-optical properties based on light scattering of polymer/(liquid crystal) composite films,” Chem. Lett. 1989, 813–816 (1989).
[CrossRef]

K. Takizawa, M. Okada, H. Kikuchi, T. Aida, “Bistable spatial light modulator using liquid crystal and Bi12SiO20 crystal layers,” Appl. Phys. Lett. 53, 2359–2361 (1988).
[CrossRef]

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Polymer-dispersed liquid crystal light valves for projection display application,” in Display Technologies, S. Chen, S. T. Wu, eds., Proc. SPIE1815, 223–232 (1992).
[CrossRef]

K. Takizawa, H. Kikuchi, H. Fujikake, T. Fujii, M. Kawakita, M. Yokozawa, A. Murata, “Spatial light modulators using polymer-dispersed liquid crystal and Bi12SiO20 photoconductive layers for projection display,” in Projection Displays, M. H. Wu, ed., Proc. SPIE2407, 136–148 (1995).
[CrossRef]

Kishi, K.

Kodama, K.

K. Takizawa, H. Kikuchi, H. Fujikake, K. Kodama, K. Kishi, “Spatial light modulator using polymer-dispersed liquid crystal: dependence of resolution on reading light intensity,” J. Appl. Phys. 75, 3158–3168 (1994).
[CrossRef]

Kolste, R. D. T.

R. D. Stering, R. D. T. Kolste, J. M. Haggerty, T. C. Borah, W. P. Bleha, “Video-rate liquid-crystal light-valve using an amorphous silicon photoconductor,” in Technical Digest of the Society for Information Display International Symposium 21 (Society for Information Display, Santa Ana, Calif., 1990), pp. 327–329.

Ledebuhr, A. G.

A. G. Ledebuhr, “Full-color single-projection-lens liquid-crystal light-valve projector,” in Technical Digest of the Society for Information Display International Symposium 17 (Society for Information Display, Santa Ana, Calif., 1986), pp. 379–382.

Maruyama, K.

T. Fujisawa, H. Ogawa, K. Maruyama, “Electro-optic properties and multiplexibility for polymer network liquid crystal display (PN-LCD),” in Digest of the Ninth International Display Research Conference (Institute of Television Engineers of Japan, Kyoto, Japan, 1989), pp. 690–693.

McClelland, S.

B. Singh, S. McClelland, F. Tams, B. Halon, O. Mesker, D. Furst, “Use of black diamond-like carbon films as a contrast enhancement layer for liquid-crystal displays,” Appl. Phys. Lett. 57, 2288–2290 (1990).
[CrossRef]

Mesker, O.

B. Singh, S. McClelland, F. Tams, B. Halon, O. Mesker, D. Furst, “Use of black diamond-like carbon films as a contrast enhancement layer for liquid-crystal displays,” Appl. Phys. Lett. 57, 2288–2290 (1990).
[CrossRef]

Miyamoto, A.

T. Kajiyama, A. Miyamoto, H. Kikuchi, Y. Morimura, “Aggregation states and electro-optical properties based on light scattering of polymer/(liquid crystal) composite films,” Chem. Lett. 1989, 813–816 (1989).
[CrossRef]

Moddel, G.

L. Wang, G. Moddel, “Resolution limits from charge transport in optically addressed spatial light modulators,” J. Appl. Phys. 78, 6923–6935 (1995).
[CrossRef]

Montgomery, G. P.

G. P. Montgomery, “Polymer-dispersed and encapsulated liquid crystal films,” in Large-Area Chromogenics: Materials and Devices for Transmittance Control, C. G. Granqvist, C. M. Lampert, eds., SPIE Institute Series (Society for Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1990), pp. 577–606.

Morimura, Y.

T. Kajiyama, A. Miyamoto, H. Kikuchi, Y. Morimura, “Aggregation states and electro-optical properties based on light scattering of polymer/(liquid crystal) composite films,” Chem. Lett. 1989, 813–816 (1989).
[CrossRef]

Murata, A.

K. Takizawa, T. Fujii, M. Kawakita, H. Kikuchi, H. Fujikake, M. Yokozawa, A. Murata, K. Kishi, “Spatial light modulators for projection displays,” Appl. Opt. 36, 5732–5747 (1997).
[CrossRef] [PubMed]

K. Takizawa, H. Kikuchi, H. Fujikake, T. Fujii, M. Kawakita, M. Yokozawa, A. Murata, “Spatial light modulators using polymer-dispersed liquid crystal and Bi12SiO20 photoconductive layers for projection display,” in Projection Displays, M. H. Wu, ed., Proc. SPIE2407, 136–148 (1995).
[CrossRef]

Namikawa, Y.

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Reflection mode polymer-dispersed liquid crystal light valve,” Jpn. J. Appl. Phys. 33, 1346–1351 (1994).
[CrossRef]

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Polymer-dispersed liquid crystal light valves for projection display,” Opt. Eng. 32, 1781–1791 (1993).
[CrossRef]

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Polymer-dispersed liquid crystal light valves for projection display application,” in Display Technologies, S. Chen, S. T. Wu, eds., Proc. SPIE1815, 223–232 (1992).
[CrossRef]

Neubert, M. E.

A. Golemme, S. Zumer, J. W. Doane, M. E. Neubert, “Deuterium NMR of polymer dispersed liquid crystals,” Phys. Rev. 37, 559–569 (1998).
[CrossRef]

Ninomiya, Y.

Y. Ninomiya, Y. Ohtsuka, Y. Izumi, S. Gohshi, Y. Iwadate, “An HDTV broadcasting system utilizing a bandwidth compression technique-MUSE,” IEEE Trans. Broadcast. BC-33, 130–160 (1987).
[CrossRef]

Nishizawa, T.

T. Nishizawa, “Present status of HDTV in Japan,” IEICE Trans. Electron. E74, 1557–1581 (1991).

Ogawa, H.

T. Fujisawa, H. Ogawa, K. Maruyama, “Electro-optic properties and multiplexibility for polymer network liquid crystal display (PN-LCD),” in Digest of the Ninth International Display Research Conference (Institute of Television Engineers of Japan, Kyoto, Japan, 1989), pp. 690–693.

Ohtsuka, Y.

Y. Ninomiya, Y. Ohtsuka, Y. Izumi, S. Gohshi, Y. Iwadate, “An HDTV broadcasting system utilizing a bandwidth compression technique-MUSE,” IEEE Trans. Broadcast. BC-33, 130–160 (1987).
[CrossRef]

Okada, M.

K. Takizawa, H. Kikuchi, H. Fujikake, M. Okada, “Transmission mode spatial light modulator using a Bi12SiO20 crystal and polymer-dispersed liquid crystal layers,” Appl. Phys. Lett. 56, 999–1001 (1989).
[CrossRef]

K. Takizawa, M. Okada, H. Kikuchi, T. Aida, “Bistable spatial light modulator using liquid crystal and Bi12SiO20 crystal layers,” Appl. Phys. Lett. 53, 2359–2361 (1988).
[CrossRef]

M. Okada, K. Takizawa, “Instability and transient responses of an electrooptic bistable device,” IEEE J. Quantum Electron. QE-17, 517–524 (1981).
[CrossRef]

Sayyah, K.

R. A. Forber, A. Au. Efron, K. Sayyah, S. T. Wu, “Dynamic IR scene projection using the Hughes liquid crystal light valve,” in Liquid Crystal Materials, Devices, and Applications, P. S. Drzaic, U. Efron, eds., Proc. SPIE1665, 259–273 (1992).
[CrossRef]

Singh, B.

B. Singh, S. McClelland, F. Tams, B. Halon, O. Mesker, D. Furst, “Use of black diamond-like carbon films as a contrast enhancement layer for liquid-crystal displays,” Appl. Phys. Lett. 57, 2288–2290 (1990).
[CrossRef]

Stering, R. D.

R. D. Stering, R. D. T. Kolste, J. M. Haggerty, T. C. Borah, W. P. Bleha, “Video-rate liquid-crystal light-valve using an amorphous silicon photoconductor,” in Technical Digest of the Society for Information Display International Symposium 21 (Society for Information Display, Santa Ana, Calif., 1990), pp. 327–329.

Sunaga, T.

Tada, K.

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Reflection mode polymer-dispersed liquid crystal light valve,” Jpn. J. Appl. Phys. 33, 1346–1351 (1994).
[CrossRef]

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Polymer-dispersed liquid crystal light valves for projection display,” Opt. Eng. 32, 1781–1791 (1993).
[CrossRef]

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Polymer-dispersed liquid crystal light valves for projection display application,” in Display Technologies, S. Chen, S. T. Wu, eds., Proc. SPIE1815, 223–232 (1992).
[CrossRef]

Takizawa, K.

K. Takizawa, T. Fujii, T. Sunaga, K. Kishi, “Three-dimensional large-screen display using reflection-mode spatial light modulators and a single-projection optical system: analysis of retardation-modulation method,” Appl. Opt. 37, 6182–6195 (1998).
[CrossRef]

K. Takizawa, T. Fujii, M. Kawakita, H. Kikuchi, H. Fujikake, M. Yokozawa, A. Murata, K. Kishi, “Spatial light modulators for projection displays,” Appl. Opt. 36, 5732–5747 (1997).
[CrossRef] [PubMed]

K. Takizawa, H. Kikuchi, H. Fujikake, K. Kodama, K. Kishi, “Spatial light modulator using polymer-dispersed liquid crystal: dependence of resolution on reading light intensity,” J. Appl. Phys. 75, 3158–3168 (1994).
[CrossRef]

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Reflection mode polymer-dispersed liquid crystal light valve,” Jpn. J. Appl. Phys. 33, 1346–1351 (1994).
[CrossRef]

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Polymer-dispersed liquid crystal light valves for projection display,” Opt. Eng. 32, 1781–1791 (1993).
[CrossRef]

K. Takizawa, H. Kikuchi, H. Fujikake, M. Okada, “Transmission mode spatial light modulator using a Bi12SiO20 crystal and polymer-dispersed liquid crystal layers,” Appl. Phys. Lett. 56, 999–1001 (1989).
[CrossRef]

K. Takizawa, M. Okada, H. Kikuchi, T. Aida, “Bistable spatial light modulator using liquid crystal and Bi12SiO20 crystal layers,” Appl. Phys. Lett. 53, 2359–2361 (1988).
[CrossRef]

M. Okada, K. Takizawa, “Instability and transient responses of an electrooptic bistable device,” IEEE J. Quantum Electron. QE-17, 517–524 (1981).
[CrossRef]

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Polymer-dispersed liquid crystal light valves for projection display application,” in Display Technologies, S. Chen, S. T. Wu, eds., Proc. SPIE1815, 223–232 (1992).
[CrossRef]

K. Takizawa, H. Kikuchi, H. Fujikake, T. Fujii, M. Kawakita, M. Yokozawa, A. Murata, “Spatial light modulators using polymer-dispersed liquid crystal and Bi12SiO20 photoconductive layers for projection display,” in Projection Displays, M. H. Wu, ed., Proc. SPIE2407, 136–148 (1995).
[CrossRef]

Tams, F.

B. Singh, S. McClelland, F. Tams, B. Halon, O. Mesker, D. Furst, “Use of black diamond-like carbon films as a contrast enhancement layer for liquid-crystal displays,” Appl. Phys. Lett. 57, 2288–2290 (1990).
[CrossRef]

Thackara, J. I.

True, T. T.

T. T. True, “High-performance video projector using two oil-film light valves,” in Technical Digest of the Society for Information Display International Symposium 18 (Society for Information Display, Santa Ana, Calif., 1987), pp. 68–71.

Vaz, N. A.

J. W. Doane, N. A. Vaz, B.-G. Wu, S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48, 269–271 (1986).
[CrossRef]

Wang, L.

L. Wang, G. Moddel, “Resolution limits from charge transport in optically addressed spatial light modulators,” J. Appl. Phys. 78, 6923–6935 (1995).
[CrossRef]

West, J. L.

B.-G. Wu, J. L. West, J. W. Doane, “Angular discrimination of light transmission through polymer-dispersed liquid-crystal films,” J. Appl. Phys. 62, 3295–3931 (1987).
[CrossRef]

Williams, S. A.

S. A. Williams, “History of Eidophor projection in North America,” in Projection Display III, M. H. Wu, ed., Proc. SPIE3013, 7–13 (1997).
[CrossRef]

Wu, B.-G.

B.-G. Wu, J. L. West, J. W. Doane, “Angular discrimination of light transmission through polymer-dispersed liquid-crystal films,” J. Appl. Phys. 62, 3295–3931 (1987).
[CrossRef]

J. W. Doane, N. A. Vaz, B.-G. Wu, S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48, 269–271 (1986).
[CrossRef]

Wu, S. T.

R. A. Forber, A. Au. Efron, K. Sayyah, S. T. Wu, “Dynamic IR scene projection using the Hughes liquid crystal light valve,” in Liquid Crystal Materials, Devices, and Applications, P. S. Drzaic, U. Efron, eds., Proc. SPIE1665, 259–273 (1992).
[CrossRef]

Yokozawa, M.

K. Takizawa, T. Fujii, M. Kawakita, H. Kikuchi, H. Fujikake, M. Yokozawa, A. Murata, K. Kishi, “Spatial light modulators for projection displays,” Appl. Opt. 36, 5732–5747 (1997).
[CrossRef] [PubMed]

K. Takizawa, H. Kikuchi, H. Fujikake, T. Fujii, M. Kawakita, M. Yokozawa, A. Murata, “Spatial light modulators using polymer-dispersed liquid crystal and Bi12SiO20 photoconductive layers for projection display,” in Projection Displays, M. H. Wu, ed., Proc. SPIE2407, 136–148 (1995).
[CrossRef]

Zumer, S.

A. Golemme, S. Zumer, J. W. Doane, M. E. Neubert, “Deuterium NMR of polymer dispersed liquid crystals,” Phys. Rev. 37, 559–569 (1998).
[CrossRef]

J. W. Doane, N. A. Vaz, B.-G. Wu, S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48, 269–271 (1986).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (4)

J. W. Doane, N. A. Vaz, B.-G. Wu, S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48, 269–271 (1986).
[CrossRef]

K. Takizawa, H. Kikuchi, H. Fujikake, M. Okada, “Transmission mode spatial light modulator using a Bi12SiO20 crystal and polymer-dispersed liquid crystal layers,” Appl. Phys. Lett. 56, 999–1001 (1989).
[CrossRef]

K. Takizawa, M. Okada, H. Kikuchi, T. Aida, “Bistable spatial light modulator using liquid crystal and Bi12SiO20 crystal layers,” Appl. Phys. Lett. 53, 2359–2361 (1988).
[CrossRef]

B. Singh, S. McClelland, F. Tams, B. Halon, O. Mesker, D. Furst, “Use of black diamond-like carbon films as a contrast enhancement layer for liquid-crystal displays,” Appl. Phys. Lett. 57, 2288–2290 (1990).
[CrossRef]

Chem. Lett. (1)

T. Kajiyama, A. Miyamoto, H. Kikuchi, Y. Morimura, “Aggregation states and electro-optical properties based on light scattering of polymer/(liquid crystal) composite films,” Chem. Lett. 1989, 813–816 (1989).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Okada, K. Takizawa, “Instability and transient responses of an electrooptic bistable device,” IEEE J. Quantum Electron. QE-17, 517–524 (1981).
[CrossRef]

IEEE Trans. Broadcast. (1)

Y. Ninomiya, Y. Ohtsuka, Y. Izumi, S. Gohshi, Y. Iwadate, “An HDTV broadcasting system utilizing a bandwidth compression technique-MUSE,” IEEE Trans. Broadcast. BC-33, 130–160 (1987).
[CrossRef]

IEEE Trans. Commun. (1)

T. Fujio, “High definition television systems: desirable standards, signal forms, and transmission systems,” IEEE Trans. Commun. COM-29, 1882–1891 (1981).
[CrossRef]

IEICE Trans. Electron. (1)

T. Nishizawa, “Present status of HDTV in Japan,” IEICE Trans. Electron. E74, 1557–1581 (1991).

J. Appl. Phys. (4)

L. Wang, G. Moddel, “Resolution limits from charge transport in optically addressed spatial light modulators,” J. Appl. Phys. 78, 6923–6935 (1995).
[CrossRef]

A. Fuh, O. Caporaletti, “Polymer dispersed nematic liquid crystal films: the density ratio and polymer’s curing rate effects,” J. Appl. Phys. 66, 5278–5284 (1989).
[CrossRef]

B.-G. Wu, J. L. West, J. W. Doane, “Angular discrimination of light transmission through polymer-dispersed liquid-crystal films,” J. Appl. Phys. 62, 3295–3931 (1987).
[CrossRef]

K. Takizawa, H. Kikuchi, H. Fujikake, K. Kodama, K. Kishi, “Spatial light modulator using polymer-dispersed liquid crystal: dependence of resolution on reading light intensity,” J. Appl. Phys. 75, 3158–3168 (1994).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Reflection mode polymer-dispersed liquid crystal light valve,” Jpn. J. Appl. Phys. 33, 1346–1351 (1994).
[CrossRef]

Liq. Cryst. (1)

P. S. Drazaic, “Reorientation dynamics of polymer dispersed nematic liquid crystal films,” Liq. Cryst. 3, 1543–1559 (1988).
[CrossRef]

Opt. Eng. (2)

D. Casasent, “Photo DKDP light valve: a review,” Opt. Eng. 17, 365–370 (1978).

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Polymer-dispersed liquid crystal light valves for projection display,” Opt. Eng. 32, 1781–1791 (1993).
[CrossRef]

Phys. Rev. (1)

A. Golemme, S. Zumer, J. W. Doane, M. E. Neubert, “Deuterium NMR of polymer dispersed liquid crystals,” Phys. Rev. 37, 559–569 (1998).
[CrossRef]

Other (11)

J. L. Fergason, “Polymer encapsulated nematic liquid crystals for display and light control applications,” in Technical Digest of the Society for Information Display International Symposium 16 (Society for Information Display, Santa Ana, Calif., 1985), pp. 68–70.

A. G. Ledebuhr, “Full-color single-projection-lens liquid-crystal light-valve projector,” in Technical Digest of the Society for Information Display International Symposium 17 (Society for Information Display, Santa Ana, Calif., 1986), pp. 379–382.

K. Takizawa, H. Kikuchi, H. Fujikake, T. Fujii, M. Kawakita, M. Yokozawa, A. Murata, “Spatial light modulators using polymer-dispersed liquid crystal and Bi12SiO20 photoconductive layers for projection display,” in Projection Displays, M. H. Wu, ed., Proc. SPIE2407, 136–148 (1995).
[CrossRef]

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Polymer-dispersed liquid crystal light valves for projection display application,” in Display Technologies, S. Chen, S. T. Wu, eds., Proc. SPIE1815, 223–232 (1992).
[CrossRef]

S. A. Williams, “History of Eidophor projection in North America,” in Projection Display III, M. H. Wu, ed., Proc. SPIE3013, 7–13 (1997).
[CrossRef]

T. T. True, “High-performance video projector using two oil-film light valves,” in Technical Digest of the Society for Information Display International Symposium 18 (Society for Information Display, Santa Ana, Calif., 1987), pp. 68–71.

R. D. Stering, R. D. T. Kolste, J. M. Haggerty, T. C. Borah, W. P. Bleha, “Video-rate liquid-crystal light-valve using an amorphous silicon photoconductor,” in Technical Digest of the Society for Information Display International Symposium 21 (Society for Information Display, Santa Ana, Calif., 1990), pp. 327–329.

V. J. Fritz, “Full-color, liquid crystal light valve projector for shipboard use,” in Large Screen and Projection Displays II, W. P. Bleha, ed., Proc. SPIE1255, 59–68 (1990).
[CrossRef]

R. A. Forber, A. Au. Efron, K. Sayyah, S. T. Wu, “Dynamic IR scene projection using the Hughes liquid crystal light valve,” in Liquid Crystal Materials, Devices, and Applications, P. S. Drzaic, U. Efron, eds., Proc. SPIE1665, 259–273 (1992).
[CrossRef]

G. P. Montgomery, “Polymer-dispersed and encapsulated liquid crystal films,” in Large-Area Chromogenics: Materials and Devices for Transmittance Control, C. G. Granqvist, C. M. Lampert, eds., SPIE Institute Series (Society for Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1990), pp. 577–606.

T. Fujisawa, H. Ogawa, K. Maruyama, “Electro-optic properties and multiplexibility for polymer network liquid crystal display (PN-LCD),” in Digest of the Ninth International Display Research Conference (Institute of Television Engineers of Japan, Kyoto, Japan, 1989), pp. 690–693.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Schematic diagram of the PDLCLV (a) with no writing light irradiation, (b) with sufficient writing light irradiation.

Fig. 2
Fig. 2

Configuration of a reflection-type PDLC cell and a schlieren optical system for measuring electro-optic characteristics of the cell. Light of θ < 6 deg can be considered to be a signal. L, focal length of the lens; HM, half mirror; DM, dielectric mirror.

Fig. 3
Fig. 3

Dependence of the reflectivity of the 10-µm-thick PDLC cell on the applied voltage. V 1 and V h are the applied voltages corresponding to 0.5% and 90%, respectively, of the maximum reflectivity.

Fig. 4
Fig. 4

Diagram of the equivalent circuit of the PDLCLV without a light-absorbing layer. R P and R C are resistances of the photoconductive layer and the compound layer that consists of the dielectric mirror and the PDLC film, and C P and C C are capacitances of the photoconductive layer and the compound layer, respectively.

Fig. 5
Fig. 5

Relationship between the photoconductivity and the wavelength of the a-Si:H photoconductor with a thickness of 30 µm. A Xe arc lamp light with 100 µW/cm2 was incident on the a-Si:H film driven by an ac voltage of 1 V and 1 kHz.

Fig. 6
Fig. 6

Relationship between the photoconductivity and the incident light power of an a-Si:H film with a thickness of 30 µm.

Fig. 7
Fig. 7

Relationship between the transmittance and the wavelength of each light-absorbing layer.

Fig. 8
Fig. 8

Relationship between the reflectivity and the wavelength of three primary-color dielectric mirrors.

Fig. 9
Fig. 9

Photograph of the a-Si:H film side of a green PDLCLV.

Fig. 10
Fig. 10

Schlieren optical system for measurement of electro-optic characteristics of the PDLCLV. LP1 and LP2, Xe arc lamps; L C , condenser lens; F1, infrared light cut filter; F2, ultraviolet light cut filter; F3, F4, bandpass filters; P1, polarizer; P2, analyzer; L1, L2, projection lenses; M, mirror; A, aperture; PD, photo detector; V 0, applied voltage; P R , intensity of reading light incident on the PDLCLV; PR, intensity of reading light passing through the aperture A.

Fig. 11
Fig. 11

Relationship between the reflectivity and the writing light intensity of the green PDLCLV driven by ac voltage V 0 with 1 kHz.

Fig. 12
Fig. 12

Photograph of a resolution chart image projected onto a screen by the green PDLCLV.

Fig. 13
Fig. 13

Schematic diagram of a full-color projection system consisting of PDLCLV’s and active-matrix LCP’s as the input-image source. LP1, LP2, Xe arc lamps; LC, condenser lens; MC, cold mirror; F1, infrared light cut filter; F2, ultraviolet light cut filter; F3, bandpass filter; FL, fly-eye lens; BS, beam splitter; M, mirror; LCP, TFT LC panel; L R , relay lens; PDLCLV, SLM; DM, dichroic mirror; L1, L2, projection lenses; A1, A2, apertures; S, screen; DU, drive unit; ΓU, γ correction unit.

Fig. 14
Fig. 14

Photograph of three PDLCLV’s irradiated by three primary-color reading lights.

Fig. 15
Fig. 15

Photograph of a full-color image (lobsters on a silver dish) projected onto a screen with a diagonal length of 100 in., 3 m from the projector.

Tables (1)

Tables Icon

Table 1 Typical Properties of the Nematic LC BL-008 and the Ultraviolet-Cured Resin NOA-65

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

S=Vh/V1,
V0Vh,
VCV1.
V0/VCS.
VC/V0=CP/CP+CC=1/1+CdP/PdC,
dPP/CdCS-1.
C=dC/dM/M+dLC/LC.
dP34.0 μm.

Metrics