Abstract

A method for improving the spectral distribution and for reducing the reconstruction error in optical holographic data storage is proposed. By use of an optimized phase mask in the input plane, the uniformity of the spectral distribution is optimized and the reconstruction error minimized. The phase mask is designed by use of amplitude-phase retrieval algorithms. Simulation results show the merits of the proposed method.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Hong, I. McMichal, T. Chang, W. Christian, E. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
    [CrossRef]
  2. F. Mok, “Angle-multiplexed storage of 5000 holograms in lithiumniobate,” Opt. Lett. 18, 915–917 (1995).
    [CrossRef]
  3. G. Rakujic, V. Leyva, A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471–1473 (1992).
    [CrossRef]
  4. X. Yang, Z. Gu, “Three-dimensional optical data storage and retrieval based on phase-code and space multiplexing,” Opt. Eng. 35, 452–456 (1996).
    [CrossRef]
  5. J. Hong, P. Yeh, D. Psaltis, D. Brady, “Diffraction efficiency of strong volume holograms,” Opt. Lett. 15, 344–346 (1990).
    [CrossRef] [PubMed]
  6. C. Burkhardt, “Use of a random phase mask for recording of Fourier transform holograms of data masks,” Appl. Opt. 9, 695–700 (1969).
    [CrossRef]
  7. Y. Nakayama, M. Kato, “Diffuser with a pseudorandom phase sequence,” J. Opt. Soc. Am. 69, 1367–1372 (1979).
    [CrossRef]
  8. Q. Gao, R. Kostuk, “Improvement to holographic digital data-storage system with random and pseudo-random phase mask,” Appl. Opt. 36, 4853–4862 (1997).
    [CrossRef] [PubMed]
  9. J. Yang, S.-I. Jin, Y.-S. Bae, S.-Y. Lee, “Holographic storage using optimized phase mask for uniformizing a Fourier spectrum,” Opt. Commun. 155, 12–16 (1998).
    [CrossRef]
  10. R. Gerchberg, W. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  11. G. Yang, B. Dong, B. Gu, J. Zhuang, O. Ersoy, “Gerchberg–Saxton and Yang–Gu algorithms for phase retrieval in a nonunitary transform system: a comparison,” Appl. Opt. 33, 209–218 (1994).
    [CrossRef] [PubMed]
  12. J. Fienup, “Phase retrieval algorithm: a comparison,” Appl. Opt. 21, 2758–2769 (1982).
    [CrossRef] [PubMed]
  13. B. Dong, R. Liu, G. Yang, B. Gu, “Design of diffractive phase elements that generate color point and ring patterns,” J. Opt. Soc. Am. A 15, 480–486 (1998).
    [CrossRef]
  14. M. Bernal, G. Burr, H. Coufal, R. Grygier, J. Hoffnagle, C. Jefferson, E. Oseterschulze, R. Shelby, G. Sincerbox, M. Quintanilla, “Effects of multilevel phase masks on inter-pixel cross talk in digital holographic storage,” Appl. Opt. 36, 3107–3115 (1997).
    [CrossRef] [PubMed]

1998 (2)

J. Yang, S.-I. Jin, Y.-S. Bae, S.-Y. Lee, “Holographic storage using optimized phase mask for uniformizing a Fourier spectrum,” Opt. Commun. 155, 12–16 (1998).
[CrossRef]

B. Dong, R. Liu, G. Yang, B. Gu, “Design of diffractive phase elements that generate color point and ring patterns,” J. Opt. Soc. Am. A 15, 480–486 (1998).
[CrossRef]

1997 (2)

1996 (1)

X. Yang, Z. Gu, “Three-dimensional optical data storage and retrieval based on phase-code and space multiplexing,” Opt. Eng. 35, 452–456 (1996).
[CrossRef]

1995 (2)

J. Hong, I. McMichal, T. Chang, W. Christian, E. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
[CrossRef]

F. Mok, “Angle-multiplexed storage of 5000 holograms in lithiumniobate,” Opt. Lett. 18, 915–917 (1995).
[CrossRef]

1994 (1)

1992 (1)

1990 (1)

1982 (1)

1979 (1)

1972 (1)

R. Gerchberg, W. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

1969 (1)

Bae, Y.-S.

J. Yang, S.-I. Jin, Y.-S. Bae, S.-Y. Lee, “Holographic storage using optimized phase mask for uniformizing a Fourier spectrum,” Opt. Commun. 155, 12–16 (1998).
[CrossRef]

Bernal, M.

Brady, D.

Burkhardt, C.

Burr, G.

Chang, T.

J. Hong, I. McMichal, T. Chang, W. Christian, E. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
[CrossRef]

Christian, W.

J. Hong, I. McMichal, T. Chang, W. Christian, E. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
[CrossRef]

Coufal, H.

Dong, B.

Ersoy, O.

Fienup, J.

Gao, Q.

Gerchberg, R.

R. Gerchberg, W. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Grygier, R.

Gu, B.

Gu, Z.

X. Yang, Z. Gu, “Three-dimensional optical data storage and retrieval based on phase-code and space multiplexing,” Opt. Eng. 35, 452–456 (1996).
[CrossRef]

Hoffnagle, J.

Hong, J.

J. Hong, I. McMichal, T. Chang, W. Christian, E. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
[CrossRef]

J. Hong, P. Yeh, D. Psaltis, D. Brady, “Diffraction efficiency of strong volume holograms,” Opt. Lett. 15, 344–346 (1990).
[CrossRef] [PubMed]

Jefferson, C.

Jin, S.-I.

J. Yang, S.-I. Jin, Y.-S. Bae, S.-Y. Lee, “Holographic storage using optimized phase mask for uniformizing a Fourier spectrum,” Opt. Commun. 155, 12–16 (1998).
[CrossRef]

Kato, M.

Kostuk, R.

Lee, S.-Y.

J. Yang, S.-I. Jin, Y.-S. Bae, S.-Y. Lee, “Holographic storage using optimized phase mask for uniformizing a Fourier spectrum,” Opt. Commun. 155, 12–16 (1998).
[CrossRef]

Leyva, V.

Liu, R.

McMichal, I.

J. Hong, I. McMichal, T. Chang, W. Christian, E. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
[CrossRef]

Mok, F.

Nakayama, Y.

Oseterschulze, E.

Paek, E.

J. Hong, I. McMichal, T. Chang, W. Christian, E. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
[CrossRef]

Psaltis, D.

Quintanilla, M.

Rakujic, G.

Saxton, W.

R. Gerchberg, W. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Shelby, R.

Sincerbox, G.

Yang, G.

Yang, J.

J. Yang, S.-I. Jin, Y.-S. Bae, S.-Y. Lee, “Holographic storage using optimized phase mask for uniformizing a Fourier spectrum,” Opt. Commun. 155, 12–16 (1998).
[CrossRef]

Yang, X.

X. Yang, Z. Gu, “Three-dimensional optical data storage and retrieval based on phase-code and space multiplexing,” Opt. Eng. 35, 452–456 (1996).
[CrossRef]

Yariv, A.

Yeh, P.

Zhuang, J.

Appl. Opt. (5)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

J. Yang, S.-I. Jin, Y.-S. Bae, S.-Y. Lee, “Holographic storage using optimized phase mask for uniformizing a Fourier spectrum,” Opt. Commun. 155, 12–16 (1998).
[CrossRef]

Opt. Eng. (2)

X. Yang, Z. Gu, “Three-dimensional optical data storage and retrieval based on phase-code and space multiplexing,” Opt. Eng. 35, 452–456 (1996).
[CrossRef]

J. Hong, I. McMichal, T. Chang, W. Christian, E. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
[CrossRef]

Opt. Lett. (3)

Optik (1)

R. Gerchberg, W. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

4-f optical holographic storage system.

Fig. 2
Fig. 2

Ideal spectrum distribution.

Fig. 3
Fig. 3

Simulation results for one arbitrary input sample: (a) amplitude distribution of one arbitrary input; (b) optimized phase distribution of the input shown in (a); (c) spectrum amplitude distributions: optimized phase mask (circles), random phase mask (dashed curve), no phase mask (solid curve), and ideal distribution (dashed rectangle); (d) error and uniformity versus phase steps: reconstruction errors (solid curve), uniformity (dashed curve).

Tables (1)

Tables Icon

Table 1 Performance Comparison under Different Conditionsa

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

u1x1=m=1M ρ1m expiφ1mrectx1/δ - m,
u2x2=δ/iλf1/2 sin cδx2/λfm=1M ρ1m expiφ1m×exp-i2πx2mδ/λf,
u3x3=iδ/λf1/2m=1M ρ1m expiφ1m-D/2λfD/2λf sin cδx×exp-i2πx3-mδxdx,
G1x2, x1=δ/iλf1/2 sin cδx2/λfexp-i2πx2x1/λf,
G2x3, x1=iδ/λf1/2-D/2λfD/2λf sin cδx×exp-i2πx3-x1xdx,
u1m=ρ1m expiφ1m,  m=1, 2, , M,
u2l=ρ2l expiφ2l=m=1M G1,lmu1m,  l=1, 2, , L,
u3k=ρ3k expiφ3k=m=1M G2,kmu1m,  k=1, 2, , M.
D2=1L |u2-G1u1|2+1M |u3-G2u1|2=1Ll=1L ρ2l2+m,n=1M ρ1mρ1nA1mn exp-iφ1n-φ1m-l,m=1L,M ρ2lρ1mG1lm exp-iφ2l-φ1m+c.c.+1Mk=1M ρ3k2+m,n=1M ρ1mρ1nA2mn exp-iφ1n-φ1m-k,m=1M ρ3kρ1mG2km exp-iφ3k-φ1m+c.c.,
φ2=argG1u1=argG1ρ1 expiφ1,
φ3=argG2u1=argG2ρ1 expiφ1,
φ1=arg1LG1+u2-A1NDu1+1MG2+u3-A2NDu1=arg1LG1+ρ2 expiφ2-A1NDρ1 expiφ1+1MG2+ρ3 expiφ3-A2NDρ1 expiφ1,
φ1=arg1L G1+ ρ2 expiφ2+1M G2+ρ3 expiφ3.

Metrics