Abstract

We present a novel, to our knowledge, architecture for parallel database processing called the multiwavelength optical content-addressable parallel processor (MW-OCAPP). The MW-OCAPP is designed to provide efficient parallel data retrieval and processing by means of moving the bulk of database operations from electronics to optics. It combines a parallel model of computation with the many-degrees-of-processing freedom that light provides. The MW-OCAPP uses a polarization and wavelength-encoding scheme to achieve a high level of parallelism. Distinctive features of the proposed architecture include (1) the use of a multiwavelength encoding scheme to enhance processing parallelism, (2) multicomparand word-parallel bit-parallel equality and magnitude comparison with an execution time independent of the data size or the word size, (3) the implementation of a suite of 11 database primitives, and (4) multicomparand two-dimensional data processing. The MW-OCAPP architecture realizes 11 relational database primitives: difference, intersection, union, conditional selection, maximum, minimum, join, product, projection, division, and update. Most of these operations execute in constant time, independent of the data size. We outline the architectural concepts and motivation behind the MW-OCAPP’s design and describe the architecture required for implementing the equality and intersection–difference processing cores. Additionally, a physical demonstration of the multiwavelength equality operation is presented, and a performance analysis of the proposed system is provided.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Y. Su, Database Computers, Principles, Architectures, and Techniques (McGraw-Hill, New York, 1988), Chap. 1.
  2. L. Chisvin, R. J. Duckworth, “Content-addressable and associative memory: alternatives to the ubiquitous RAM,” IEEE Comput. 22(7) , 51–64 (1989).
    [CrossRef]
  3. P. B. Berra, A. Ghaffor, P. A. Mitkas, S. J. Marchinkowski, M. Guizani, “The impact of optics on data and knowledge base systems,” IEEE Trans. Knowledge Data Eng. 1, 111–132 (1989).
    [CrossRef]
  4. A. Louri, “Optical content-addressable parallel processor: architecture, algorithms, and design concepts,” Appl. Opt. 31, 3241–3258 (1992).
    [CrossRef] [PubMed]
  5. R. Elmasri, S. B. Navathe, Fundamentals of Database Systems, 2nd ed. (Addison-Wesley, New York, 1994).
  6. K. Giboney, L. Aronson, B. Lemoff, “The ideal light source for datanets,” IEEE Spectrum 35(2) , 43–53 (1998).
    [CrossRef]
  7. P. B. Berra, K. Brenner, W. T. Cathey, H. J. Caufield, S. H. Lee, H. Szu, “Optical database/knowledgebase machines,” Appl. Opt. 29, 195–205 (1990).
    [CrossRef] [PubMed]
  8. D. Psaltis, G. W. Burr, “Holographic data storage,” IEEE Comput. 21(2) , 52–59 (1998).
    [CrossRef]
  9. A. V. Krishnamoorthy, P. J. Marchand, G. Yayla, S. C. Esener, “Photonic content-addressable memory system that uses a parallel-readout optical disk,” Appl. Opt. 34, 7621–7638 (1995).
    [CrossRef] [PubMed]
  10. P. A. Mitkas, L. J. Irakliotis, F. R. Beyette, S. A. Feld, C. W. Wilmsen, “Optoelectronic data filter for selection and projection,” Appl. Opt. 33, 1345–1353 (1994).
    [CrossRef] [PubMed]
  11. L. J. Irakliotis, S. A. Feld, F. R. Beyette, P. A. Mitkas, C. W. Wilmsen, “Optoelectronic parallel processing with surface-emitting lasers and free-space interconnects,” J. Light. Tech. 13, 1074–1084 (1995).
    [CrossRef]
  12. P. A. Mitkas, S. A. Feld, F. R. Beyette, C. W. Wilmsen, “Optical digital comparison unit for equal-to, less-than and greater-than determination,” Appl. Opt. 33, 806–814 (1994).
    [CrossRef] [PubMed]
  13. A. D. McAulay, Optical Computer Architectures (Wiley-Interscience, New York, 1991).
  14. R. D. Snyder, S. A. Feld, P. J. Stanko, E. M. Hayes, G. Y. Robinson, C. W. Wilmsen, K. M. Geib, K. D. Choquette, “Database filter: optoelectronic design and implementation,” Appl. Opt. 36, 4881–4889 (1997).
    [CrossRef] [PubMed]
  15. A. Louri, J. A. Hatch, “Optical content-addressable parallel processor for high-speed database processing,” Appl. Opt. 33, 8153–8164 (1994).
    [CrossRef] [PubMed]
  16. A. Louri, J. A. Hatch, “Optical content-addressable parallel processor for high-speed database processing: theoretical concepts and experimental results,” IEEE Comput. Special Issue on Associative Processors 27(11) , 65–72 (1994).
  17. A. Louri, J. A. Hatch, “Optical implementation of a single-iteration thresholding algorithm with applications to parallel database/knowledge-base processing,” Opt. Lett. 18, 992–994 (1993).
    [CrossRef] [PubMed]
  18. K. W. Wong, L. M. Cheng, M. C. Poon, “Design of digital-optical processor by using both intensity and polarization-encoding schemes,” Appl. Opt. 31, 3225–3232 (1992).
    [CrossRef] [PubMed]
  19. A. W. Lohmann, “Polarization and optical logic,” Appl. Opt. 25, 1594–1597 (1990).
    [CrossRef]
  20. P. Y. Choo, A. Detofsky, A. Louri, “A multiwavelength optical content-addressable parallel processor (MW-OCAPP) for high-speed parallel relational database processing: architectural concepts and preliminary experimental system,” in Parallel and Distributed Processing, J. Relim, ed., Lecture Notes in Computer Science, Vol. 1586 (Springer-Verlag, Heidelberg, 1999), pp. 873–886.
    [CrossRef]
  21. P. Y. Choo, A. Detofsky, A. Louri, “A multiwavelength optical content-addressable parallel processor (MW-OCAPP) for high-speed parallel relational database processing: architectural concepts,” in Digest of Topical Meeting on Optics in Computing (Optical Society of America, Washington, D.C., 1999), pp. 66–69.
  22. P. Y. Choo, A. Detofsky, A. Louri, “An optical architecture based on multiwavelength and polarization for parallel and high-speed relational database processing,” in Optics in Computing ’98, P. Chavel, D. A. B. Miller, H. Thienpont, eds., Proc. SPIE3490, 139–143 (1998).
    [CrossRef]
  23. A. Detofsky, P. Y. Choo, A. Louri, “Optical implementation of a constant-time multicomparand bit-parallel magnitude-comparison algorithm using wavelength- and polarization-division multiplexing with application to parallel database processing,” Opt. Lett. 23, 1372–1374 (1998).
    [CrossRef]
  24. R. Watanabe, K. Nosu, Y. Fujii, “Optical grating multiplexer in the 1.1–1.5-m wavelength region,” Elec. Lett. 16, 108–109 (1980).
    [CrossRef]
  25. A. S. Miller, A. A. Sawchuk, “Capabilities of simple lenses in a free-space perfect shuffle,” in Optical Enhancements to Computing Technology, J. A. Neff, ed., Proc. SPIE1563, 81–92 (1991).
    [CrossRef]

1998 (3)

K. Giboney, L. Aronson, B. Lemoff, “The ideal light source for datanets,” IEEE Spectrum 35(2) , 43–53 (1998).
[CrossRef]

D. Psaltis, G. W. Burr, “Holographic data storage,” IEEE Comput. 21(2) , 52–59 (1998).
[CrossRef]

A. Detofsky, P. Y. Choo, A. Louri, “Optical implementation of a constant-time multicomparand bit-parallel magnitude-comparison algorithm using wavelength- and polarization-division multiplexing with application to parallel database processing,” Opt. Lett. 23, 1372–1374 (1998).
[CrossRef]

1997 (1)

1995 (2)

L. J. Irakliotis, S. A. Feld, F. R. Beyette, P. A. Mitkas, C. W. Wilmsen, “Optoelectronic parallel processing with surface-emitting lasers and free-space interconnects,” J. Light. Tech. 13, 1074–1084 (1995).
[CrossRef]

A. V. Krishnamoorthy, P. J. Marchand, G. Yayla, S. C. Esener, “Photonic content-addressable memory system that uses a parallel-readout optical disk,” Appl. Opt. 34, 7621–7638 (1995).
[CrossRef] [PubMed]

1994 (4)

1993 (1)

1992 (2)

1990 (2)

1989 (2)

L. Chisvin, R. J. Duckworth, “Content-addressable and associative memory: alternatives to the ubiquitous RAM,” IEEE Comput. 22(7) , 51–64 (1989).
[CrossRef]

P. B. Berra, A. Ghaffor, P. A. Mitkas, S. J. Marchinkowski, M. Guizani, “The impact of optics on data and knowledge base systems,” IEEE Trans. Knowledge Data Eng. 1, 111–132 (1989).
[CrossRef]

1980 (1)

R. Watanabe, K. Nosu, Y. Fujii, “Optical grating multiplexer in the 1.1–1.5-m wavelength region,” Elec. Lett. 16, 108–109 (1980).
[CrossRef]

Aronson, L.

K. Giboney, L. Aronson, B. Lemoff, “The ideal light source for datanets,” IEEE Spectrum 35(2) , 43–53 (1998).
[CrossRef]

Berra, P. B.

P. B. Berra, K. Brenner, W. T. Cathey, H. J. Caufield, S. H. Lee, H. Szu, “Optical database/knowledgebase machines,” Appl. Opt. 29, 195–205 (1990).
[CrossRef] [PubMed]

P. B. Berra, A. Ghaffor, P. A. Mitkas, S. J. Marchinkowski, M. Guizani, “The impact of optics on data and knowledge base systems,” IEEE Trans. Knowledge Data Eng. 1, 111–132 (1989).
[CrossRef]

Beyette, F. R.

Brenner, K.

Burr, G. W.

D. Psaltis, G. W. Burr, “Holographic data storage,” IEEE Comput. 21(2) , 52–59 (1998).
[CrossRef]

Cathey, W. T.

Caufield, H. J.

Cheng, L. M.

Chisvin, L.

L. Chisvin, R. J. Duckworth, “Content-addressable and associative memory: alternatives to the ubiquitous RAM,” IEEE Comput. 22(7) , 51–64 (1989).
[CrossRef]

Choo, P. Y.

A. Detofsky, P. Y. Choo, A. Louri, “Optical implementation of a constant-time multicomparand bit-parallel magnitude-comparison algorithm using wavelength- and polarization-division multiplexing with application to parallel database processing,” Opt. Lett. 23, 1372–1374 (1998).
[CrossRef]

P. Y. Choo, A. Detofsky, A. Louri, “A multiwavelength optical content-addressable parallel processor (MW-OCAPP) for high-speed parallel relational database processing: architectural concepts and preliminary experimental system,” in Parallel and Distributed Processing, J. Relim, ed., Lecture Notes in Computer Science, Vol. 1586 (Springer-Verlag, Heidelberg, 1999), pp. 873–886.
[CrossRef]

P. Y. Choo, A. Detofsky, A. Louri, “An optical architecture based on multiwavelength and polarization for parallel and high-speed relational database processing,” in Optics in Computing ’98, P. Chavel, D. A. B. Miller, H. Thienpont, eds., Proc. SPIE3490, 139–143 (1998).
[CrossRef]

P. Y. Choo, A. Detofsky, A. Louri, “A multiwavelength optical content-addressable parallel processor (MW-OCAPP) for high-speed parallel relational database processing: architectural concepts,” in Digest of Topical Meeting on Optics in Computing (Optical Society of America, Washington, D.C., 1999), pp. 66–69.

Choquette, K. D.

Detofsky, A.

A. Detofsky, P. Y. Choo, A. Louri, “Optical implementation of a constant-time multicomparand bit-parallel magnitude-comparison algorithm using wavelength- and polarization-division multiplexing with application to parallel database processing,” Opt. Lett. 23, 1372–1374 (1998).
[CrossRef]

P. Y. Choo, A. Detofsky, A. Louri, “A multiwavelength optical content-addressable parallel processor (MW-OCAPP) for high-speed parallel relational database processing: architectural concepts and preliminary experimental system,” in Parallel and Distributed Processing, J. Relim, ed., Lecture Notes in Computer Science, Vol. 1586 (Springer-Verlag, Heidelberg, 1999), pp. 873–886.
[CrossRef]

P. Y. Choo, A. Detofsky, A. Louri, “An optical architecture based on multiwavelength and polarization for parallel and high-speed relational database processing,” in Optics in Computing ’98, P. Chavel, D. A. B. Miller, H. Thienpont, eds., Proc. SPIE3490, 139–143 (1998).
[CrossRef]

P. Y. Choo, A. Detofsky, A. Louri, “A multiwavelength optical content-addressable parallel processor (MW-OCAPP) for high-speed parallel relational database processing: architectural concepts,” in Digest of Topical Meeting on Optics in Computing (Optical Society of America, Washington, D.C., 1999), pp. 66–69.

Duckworth, R. J.

L. Chisvin, R. J. Duckworth, “Content-addressable and associative memory: alternatives to the ubiquitous RAM,” IEEE Comput. 22(7) , 51–64 (1989).
[CrossRef]

Elmasri, R.

R. Elmasri, S. B. Navathe, Fundamentals of Database Systems, 2nd ed. (Addison-Wesley, New York, 1994).

Esener, S. C.

Feld, S. A.

Fujii, Y.

R. Watanabe, K. Nosu, Y. Fujii, “Optical grating multiplexer in the 1.1–1.5-m wavelength region,” Elec. Lett. 16, 108–109 (1980).
[CrossRef]

Geib, K. M.

Ghaffor, A.

P. B. Berra, A. Ghaffor, P. A. Mitkas, S. J. Marchinkowski, M. Guizani, “The impact of optics on data and knowledge base systems,” IEEE Trans. Knowledge Data Eng. 1, 111–132 (1989).
[CrossRef]

Giboney, K.

K. Giboney, L. Aronson, B. Lemoff, “The ideal light source for datanets,” IEEE Spectrum 35(2) , 43–53 (1998).
[CrossRef]

Guizani, M.

P. B. Berra, A. Ghaffor, P. A. Mitkas, S. J. Marchinkowski, M. Guizani, “The impact of optics on data and knowledge base systems,” IEEE Trans. Knowledge Data Eng. 1, 111–132 (1989).
[CrossRef]

Hatch, J. A.

Hayes, E. M.

Irakliotis, L. J.

L. J. Irakliotis, S. A. Feld, F. R. Beyette, P. A. Mitkas, C. W. Wilmsen, “Optoelectronic parallel processing with surface-emitting lasers and free-space interconnects,” J. Light. Tech. 13, 1074–1084 (1995).
[CrossRef]

P. A. Mitkas, L. J. Irakliotis, F. R. Beyette, S. A. Feld, C. W. Wilmsen, “Optoelectronic data filter for selection and projection,” Appl. Opt. 33, 1345–1353 (1994).
[CrossRef] [PubMed]

Krishnamoorthy, A. V.

Lee, S. H.

Lemoff, B.

K. Giboney, L. Aronson, B. Lemoff, “The ideal light source for datanets,” IEEE Spectrum 35(2) , 43–53 (1998).
[CrossRef]

Lohmann, A. W.

Louri, A.

A. Detofsky, P. Y. Choo, A. Louri, “Optical implementation of a constant-time multicomparand bit-parallel magnitude-comparison algorithm using wavelength- and polarization-division multiplexing with application to parallel database processing,” Opt. Lett. 23, 1372–1374 (1998).
[CrossRef]

A. Louri, J. A. Hatch, “Optical content-addressable parallel processor for high-speed database processing: theoretical concepts and experimental results,” IEEE Comput. Special Issue on Associative Processors 27(11) , 65–72 (1994).

A. Louri, J. A. Hatch, “Optical content-addressable parallel processor for high-speed database processing,” Appl. Opt. 33, 8153–8164 (1994).
[CrossRef] [PubMed]

A. Louri, J. A. Hatch, “Optical implementation of a single-iteration thresholding algorithm with applications to parallel database/knowledge-base processing,” Opt. Lett. 18, 992–994 (1993).
[CrossRef] [PubMed]

A. Louri, “Optical content-addressable parallel processor: architecture, algorithms, and design concepts,” Appl. Opt. 31, 3241–3258 (1992).
[CrossRef] [PubMed]

P. Y. Choo, A. Detofsky, A. Louri, “A multiwavelength optical content-addressable parallel processor (MW-OCAPP) for high-speed parallel relational database processing: architectural concepts,” in Digest of Topical Meeting on Optics in Computing (Optical Society of America, Washington, D.C., 1999), pp. 66–69.

P. Y. Choo, A. Detofsky, A. Louri, “An optical architecture based on multiwavelength and polarization for parallel and high-speed relational database processing,” in Optics in Computing ’98, P. Chavel, D. A. B. Miller, H. Thienpont, eds., Proc. SPIE3490, 139–143 (1998).
[CrossRef]

P. Y. Choo, A. Detofsky, A. Louri, “A multiwavelength optical content-addressable parallel processor (MW-OCAPP) for high-speed parallel relational database processing: architectural concepts and preliminary experimental system,” in Parallel and Distributed Processing, J. Relim, ed., Lecture Notes in Computer Science, Vol. 1586 (Springer-Verlag, Heidelberg, 1999), pp. 873–886.
[CrossRef]

Marchand, P. J.

Marchinkowski, S. J.

P. B. Berra, A. Ghaffor, P. A. Mitkas, S. J. Marchinkowski, M. Guizani, “The impact of optics on data and knowledge base systems,” IEEE Trans. Knowledge Data Eng. 1, 111–132 (1989).
[CrossRef]

McAulay, A. D.

A. D. McAulay, Optical Computer Architectures (Wiley-Interscience, New York, 1991).

Miller, A. S.

A. S. Miller, A. A. Sawchuk, “Capabilities of simple lenses in a free-space perfect shuffle,” in Optical Enhancements to Computing Technology, J. A. Neff, ed., Proc. SPIE1563, 81–92 (1991).
[CrossRef]

Mitkas, P. A.

L. J. Irakliotis, S. A. Feld, F. R. Beyette, P. A. Mitkas, C. W. Wilmsen, “Optoelectronic parallel processing with surface-emitting lasers and free-space interconnects,” J. Light. Tech. 13, 1074–1084 (1995).
[CrossRef]

P. A. Mitkas, L. J. Irakliotis, F. R. Beyette, S. A. Feld, C. W. Wilmsen, “Optoelectronic data filter for selection and projection,” Appl. Opt. 33, 1345–1353 (1994).
[CrossRef] [PubMed]

P. A. Mitkas, S. A. Feld, F. R. Beyette, C. W. Wilmsen, “Optical digital comparison unit for equal-to, less-than and greater-than determination,” Appl. Opt. 33, 806–814 (1994).
[CrossRef] [PubMed]

P. B. Berra, A. Ghaffor, P. A. Mitkas, S. J. Marchinkowski, M. Guizani, “The impact of optics on data and knowledge base systems,” IEEE Trans. Knowledge Data Eng. 1, 111–132 (1989).
[CrossRef]

Navathe, S. B.

R. Elmasri, S. B. Navathe, Fundamentals of Database Systems, 2nd ed. (Addison-Wesley, New York, 1994).

Nosu, K.

R. Watanabe, K. Nosu, Y. Fujii, “Optical grating multiplexer in the 1.1–1.5-m wavelength region,” Elec. Lett. 16, 108–109 (1980).
[CrossRef]

Poon, M. C.

Psaltis, D.

D. Psaltis, G. W. Burr, “Holographic data storage,” IEEE Comput. 21(2) , 52–59 (1998).
[CrossRef]

Robinson, G. Y.

Sawchuk, A. A.

A. S. Miller, A. A. Sawchuk, “Capabilities of simple lenses in a free-space perfect shuffle,” in Optical Enhancements to Computing Technology, J. A. Neff, ed., Proc. SPIE1563, 81–92 (1991).
[CrossRef]

Snyder, R. D.

Stanko, P. J.

Su, S. Y.

S. Y. Su, Database Computers, Principles, Architectures, and Techniques (McGraw-Hill, New York, 1988), Chap. 1.

Szu, H.

Watanabe, R.

R. Watanabe, K. Nosu, Y. Fujii, “Optical grating multiplexer in the 1.1–1.5-m wavelength region,” Elec. Lett. 16, 108–109 (1980).
[CrossRef]

Wilmsen, C. W.

Wong, K. W.

Yayla, G.

Appl. Opt. (9)

P. B. Berra, K. Brenner, W. T. Cathey, H. J. Caufield, S. H. Lee, H. Szu, “Optical database/knowledgebase machines,” Appl. Opt. 29, 195–205 (1990).
[CrossRef] [PubMed]

K. W. Wong, L. M. Cheng, M. C. Poon, “Design of digital-optical processor by using both intensity and polarization-encoding schemes,” Appl. Opt. 31, 3225–3232 (1992).
[CrossRef] [PubMed]

A. Louri, “Optical content-addressable parallel processor: architecture, algorithms, and design concepts,” Appl. Opt. 31, 3241–3258 (1992).
[CrossRef] [PubMed]

P. A. Mitkas, S. A. Feld, F. R. Beyette, C. W. Wilmsen, “Optical digital comparison unit for equal-to, less-than and greater-than determination,” Appl. Opt. 33, 806–814 (1994).
[CrossRef] [PubMed]

A. Louri, J. A. Hatch, “Optical content-addressable parallel processor for high-speed database processing,” Appl. Opt. 33, 8153–8164 (1994).
[CrossRef] [PubMed]

A. V. Krishnamoorthy, P. J. Marchand, G. Yayla, S. C. Esener, “Photonic content-addressable memory system that uses a parallel-readout optical disk,” Appl. Opt. 34, 7621–7638 (1995).
[CrossRef] [PubMed]

R. D. Snyder, S. A. Feld, P. J. Stanko, E. M. Hayes, G. Y. Robinson, C. W. Wilmsen, K. M. Geib, K. D. Choquette, “Database filter: optoelectronic design and implementation,” Appl. Opt. 36, 4881–4889 (1997).
[CrossRef] [PubMed]

P. A. Mitkas, L. J. Irakliotis, F. R. Beyette, S. A. Feld, C. W. Wilmsen, “Optoelectronic data filter for selection and projection,” Appl. Opt. 33, 1345–1353 (1994).
[CrossRef] [PubMed]

A. W. Lohmann, “Polarization and optical logic,” Appl. Opt. 25, 1594–1597 (1990).
[CrossRef]

Elec. Lett. (1)

R. Watanabe, K. Nosu, Y. Fujii, “Optical grating multiplexer in the 1.1–1.5-m wavelength region,” Elec. Lett. 16, 108–109 (1980).
[CrossRef]

IEEE Comput. (2)

D. Psaltis, G. W. Burr, “Holographic data storage,” IEEE Comput. 21(2) , 52–59 (1998).
[CrossRef]

L. Chisvin, R. J. Duckworth, “Content-addressable and associative memory: alternatives to the ubiquitous RAM,” IEEE Comput. 22(7) , 51–64 (1989).
[CrossRef]

IEEE Comput. Special Issue on Associative Processors (1)

A. Louri, J. A. Hatch, “Optical content-addressable parallel processor for high-speed database processing: theoretical concepts and experimental results,” IEEE Comput. Special Issue on Associative Processors 27(11) , 65–72 (1994).

IEEE Spectrum (1)

K. Giboney, L. Aronson, B. Lemoff, “The ideal light source for datanets,” IEEE Spectrum 35(2) , 43–53 (1998).
[CrossRef]

IEEE Trans. Knowledge Data Eng. (1)

P. B. Berra, A. Ghaffor, P. A. Mitkas, S. J. Marchinkowski, M. Guizani, “The impact of optics on data and knowledge base systems,” IEEE Trans. Knowledge Data Eng. 1, 111–132 (1989).
[CrossRef]

J. Light. Tech. (1)

L. J. Irakliotis, S. A. Feld, F. R. Beyette, P. A. Mitkas, C. W. Wilmsen, “Optoelectronic parallel processing with surface-emitting lasers and free-space interconnects,” J. Light. Tech. 13, 1074–1084 (1995).
[CrossRef]

Opt. Lett. (2)

Other (7)

A. D. McAulay, Optical Computer Architectures (Wiley-Interscience, New York, 1991).

A. S. Miller, A. A. Sawchuk, “Capabilities of simple lenses in a free-space perfect shuffle,” in Optical Enhancements to Computing Technology, J. A. Neff, ed., Proc. SPIE1563, 81–92 (1991).
[CrossRef]

R. Elmasri, S. B. Navathe, Fundamentals of Database Systems, 2nd ed. (Addison-Wesley, New York, 1994).

S. Y. Su, Database Computers, Principles, Architectures, and Techniques (McGraw-Hill, New York, 1988), Chap. 1.

P. Y. Choo, A. Detofsky, A. Louri, “A multiwavelength optical content-addressable parallel processor (MW-OCAPP) for high-speed parallel relational database processing: architectural concepts and preliminary experimental system,” in Parallel and Distributed Processing, J. Relim, ed., Lecture Notes in Computer Science, Vol. 1586 (Springer-Verlag, Heidelberg, 1999), pp. 873–886.
[CrossRef]

P. Y. Choo, A. Detofsky, A. Louri, “A multiwavelength optical content-addressable parallel processor (MW-OCAPP) for high-speed parallel relational database processing: architectural concepts,” in Digest of Topical Meeting on Optics in Computing (Optical Society of America, Washington, D.C., 1999), pp. 66–69.

P. Y. Choo, A. Detofsky, A. Louri, “An optical architecture based on multiwavelength and polarization for parallel and high-speed relational database processing,” in Optics in Computing ’98, P. Chavel, D. A. B. Miller, H. Thienpont, eds., Proc. SPIE3490, 139–143 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) MW-OCAPP and (b) magnitude comparison schematic organizations.

Fig. 2
Fig. 2

Equality operation example matches two tuples in (a) the CA with the four tuples found in (b) the RA. The ER result (c) indicates that there is a match between CA1 and RA2 as well as between CA2 and RA4. Nonilluminated (black) pixels indicate an exact match.

Fig. 3
Fig. 3

Selection (first row), match-compare (second row), and equality (third row) units that implement the equality operation. Note that the system correctly predicts a match between CA1 and RA2 as well as between CA2 and RA4 [Fig. 2(c)]. (SA, source array; CL, cylindrical lens; P, polarizer; HOE, holographic optical element; LP, light plane).

Fig. 4
Fig. 4

HOE1 grating multiplexer from Fig. 3 takes each row from SLM1 that is encoded on different wavelengths and spatially multiplexes it. HOE1 is placed at the focal plane of CL1. CL2 and CL3 are an afocal doublet that takes this multiplexed channel and expands it such that it fills an aperture equal to the diameter of SLM2.

Fig. 5
Fig. 5

As a precursor to the intersection–difference example, the ER (c) is generated from three tuples in (a) the CA and (b) the RA. The intersection–difference optical hardware requires that the ER be in a positive logic format (d), which can be accomplished with trivial hardware.

Fig. 6
Fig. 6

Intersection–difference operation subunit. This optical unit operates on the positive logic version of the ER (LP1) and extracts the appropriate tuples that result from the intersection (LP7) and the difference (LP8) relational operations. OASLM, optically addressable SLM.

Fig. 7
Fig. 7

Relational operation execution time per word comparison as a function of the number of tuples in the RA. Sample projected execution times for the projection, intersection, difference, product, and union operations (m = 1024, s = 1024, t su = 100 µs, t load = 10 µs, t out = 10 µs).

Fig. 8
Fig. 8

Demonstration system diagram for (a) the equality operation and (b) the ER result. Component labels correspond to those in Fig. 3. Note that the nonilluminated pixels correctly correspond to the pattern predicted in Fig. 2(c).

Fig. 9
Fig. 9

Estimated optical diffraction cross-talk power as a function of pixel gap (L - d) (a) at SLM2 and (b) at the detector. The cross-talk power is normalized to the total transmitted power from a neighboring aperture (P/P o ).

Tables (3)

Tables Icon

Table 1 Symbols Used in MW-OCAPP Performance Analysis

Tables Icon

Table 2 Time Complexity Comparison between MW-OCAPP and Other Systemsa

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

d sin θ =mλ,
sf=λd1-λd21/2.
Δs=s1-s2=fdλ11-λ1d21/2-λ21-λ2d21/2.
θdivergence=2 tan-1qf2s2+f2.
tintersection=tdifference=tsu+rm×sm×tload+tout.
tunion=2tsu+rm×sm+1×tload+tout.
tprojection=tsu+rm×sm×tload+tout.
tproduct=tsu+rm×sm×tload+tout.
d=2.44λfD,
Pcross talk=2 tan-1d2LPenc2L+3d4-Penc2L+3d4-d,
Pencr=1-J02π rmλf-J12π rmλf,

Metrics