Abstract

We studied the influence of the beam ratio and intensity on the optical quality of the transmission hologram images of diffuse objects stored in a photopolymer and reconstructed in real time. The signal-to-noise ratio and the diffraction efficiency were used as measures of the optical quality. We obtained a signal-to-noise ratio of 0.94 with a diffraction efficiency of 13% for a beam ratio of 20 and an intensity of 1.2 mW/cm2.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Lessard, R. Changkakoti, G. Manivannan, “Holographic recording materials,” Opt. Mem. Neural Netw. 1, 307–369 (1992).
  2. K. Curtis, D. Psaltis, “Recording of multiple holograms in photopolymer films,” Appl. Opt. 31, 7425–7428 (1992).
    [CrossRef] [PubMed]
  3. S. Martin, C. A. Feeley, V. Toal, “Holographic recording characteristics of an acrylamide-based photopolymer,” Appl. Opt. 36, 5757–5768 (1997).
    [CrossRef] [PubMed]
  4. R. T. Ingwall, H. L. Fielding, “Hologram recording a new Polaroid photopolymer system,” in Applications of Holography, L. Huff, ed., Proc. SPIE523, 306–312 (1985).
    [CrossRef]
  5. C. García, I. Pascual, A. Fimia, “Contrast of diffuse object holograms in PVA-acrylamide photopolymers: real time measurements,” in Holographic Materials V, T. Trout, ed., Proc. SPIE3638, 113–118 (1999).
    [CrossRef]
  6. S. Blaya, L. Carretero, R. Mallavia, A. Fimia, R. F. Madrigal, M. Ulibarrena, D. Levy, “Optimization of an acrylamide-based dry film used for holographic recording,” Appl. Opt. 37, 7604–7610 (1998).
    [CrossRef]
  7. Gerald C. Host, CCD Arrays, Cameras and Displays, 2nd ed. (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1998).
  8. A. Fimia, R. Fuentes, A. Beléndez, “Diffuse-object holograms in silver halide emulsions: influence of the beam ratio on the efficiency and the signal-to-noise ratio,” Appl. Opt. 35, 782–786 (1996).
    [CrossRef] [PubMed]

1998 (1)

1997 (1)

1996 (1)

1992 (2)

R. A. Lessard, R. Changkakoti, G. Manivannan, “Holographic recording materials,” Opt. Mem. Neural Netw. 1, 307–369 (1992).

K. Curtis, D. Psaltis, “Recording of multiple holograms in photopolymer films,” Appl. Opt. 31, 7425–7428 (1992).
[CrossRef] [PubMed]

Beléndez, A.

Blaya, S.

Carretero, L.

Changkakoti, R.

R. A. Lessard, R. Changkakoti, G. Manivannan, “Holographic recording materials,” Opt. Mem. Neural Netw. 1, 307–369 (1992).

Curtis, K.

Feeley, C. A.

Fielding, H. L.

R. T. Ingwall, H. L. Fielding, “Hologram recording a new Polaroid photopolymer system,” in Applications of Holography, L. Huff, ed., Proc. SPIE523, 306–312 (1985).
[CrossRef]

Fimia, A.

Fuentes, R.

García, C.

C. García, I. Pascual, A. Fimia, “Contrast of diffuse object holograms in PVA-acrylamide photopolymers: real time measurements,” in Holographic Materials V, T. Trout, ed., Proc. SPIE3638, 113–118 (1999).
[CrossRef]

Host, Gerald C.

Gerald C. Host, CCD Arrays, Cameras and Displays, 2nd ed. (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1998).

Ingwall, R. T.

R. T. Ingwall, H. L. Fielding, “Hologram recording a new Polaroid photopolymer system,” in Applications of Holography, L. Huff, ed., Proc. SPIE523, 306–312 (1985).
[CrossRef]

Lessard, R. A.

R. A. Lessard, R. Changkakoti, G. Manivannan, “Holographic recording materials,” Opt. Mem. Neural Netw. 1, 307–369 (1992).

Levy, D.

Madrigal, R. F.

Mallavia, R.

Manivannan, G.

R. A. Lessard, R. Changkakoti, G. Manivannan, “Holographic recording materials,” Opt. Mem. Neural Netw. 1, 307–369 (1992).

Martin, S.

Pascual, I.

C. García, I. Pascual, A. Fimia, “Contrast of diffuse object holograms in PVA-acrylamide photopolymers: real time measurements,” in Holographic Materials V, T. Trout, ed., Proc. SPIE3638, 113–118 (1999).
[CrossRef]

Psaltis, D.

Toal, V.

Ulibarrena, M.

Appl. Opt. (4)

Opt. Mem. Neural Netw. (1)

R. A. Lessard, R. Changkakoti, G. Manivannan, “Holographic recording materials,” Opt. Mem. Neural Netw. 1, 307–369 (1992).

Other (3)

Gerald C. Host, CCD Arrays, Cameras and Displays, 2nd ed. (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1998).

R. T. Ingwall, H. L. Fielding, “Hologram recording a new Polaroid photopolymer system,” in Applications of Holography, L. Huff, ed., Proc. SPIE523, 306–312 (1985).
[CrossRef]

C. García, I. Pascual, A. Fimia, “Contrast of diffuse object holograms in PVA-acrylamide photopolymers: real time measurements,” in Holographic Materials V, T. Trout, ed., Proc. SPIE3638, 113–118 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Diffraction efficiency (DE) as a function of exposure for I = 1.2 mW/cm2.

Fig. 2
Fig. 2

Experimental setup: BS, beam splitter; M, mirrors; SF, spatial filter; L, Lens; D, diaphragm; ES, electronic shutter; H, holographic plate.

Fig. 3
Fig. 3

(a) Normalized signal-to-noise ratio (SNR) as a function of time for K = 5 and I = (0.6, 1.2, 2.4, 4.8) mW/cm2. (b) Normalized signal-to-noise ratio as a function of diffraction efficiency for K = 5 and I = (0.6, 1.2, 2.4, 4.8) mW/cm2.

Fig. 4
Fig. 4

(a) Normalized signal-to-noise ratio (SNR) as a function of time for I = 1.2 mW/cm2 and K = (3, 5, 10, 20). (b) Normalized signal-to-noise ratio as a function of diffraction efficiency for I = 1.2 mW/cm2 and K = (3, 5, 10, 20).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

SNR=Imax/Imin,
Imax=I1¯ with I1=j=1128p=15i=N2pN2P+1 Iij,
Imin=I2¯ with I2=j=1128p=05i=N2p+1N2P+2 Iij,
p=05N2p+1+N2p+2=128,
DE=Id/Ii100
Id=i=1128j=1128 Iij,  Ii=KIo=K i=1128j=1128 Ioij,

Metrics