Abstract

Precise laser surgery is possible with laser pulses at wavelengths that are strongly absorbed at the surface of tissue. However, pulses at these wavelengths (far UV, far infrared) are not compatible with fiber-optic transmission, making endoscopic surgical procedures inside the body difficult. We use evanescent optical waves to demonstrate an alternative for confining energy near the tissue surface. Precise, superficial tissue ablation is achieved with evanescent waves generated at a sapphire–tissue interface by a free-electron laser, where the ablation depth may be varied. A new class of precise, controlled laser surgical tools may be achieved in this novel approach for use in endoscopic procedures. Electromagnetic theory governing evanescent-wave tissue ablation is presented.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. A. Puliafito, R. F. Steinert, T. F. Deutsch, F. Hillenkamp, E. J. Dehm, C. M. Alder, “Excimer laser ablation of cornea and lens: experimental studies,” Ophthalmology 92, 741–748 (1985).
    [CrossRef] [PubMed]
  2. J. P. Cummings, J. T. Walsh, “Erbium laser ablation—the effect of dynamic optical properties,” Appl. Phys. Lett. 62, 1988–1990 (1993).
    [CrossRef]
  3. B. A. Hooper, C. Lin, Y. Domankevitz, R. R. Anderson, “Laser surgery with evanescent optical waves,” in Digest of Topical Meeting on Therapeutic Laser Applications (Optical Society of America, Washington, D.C.1998), pp. 41–43.
  4. A. J. Welch, M. Motamedi, S. Rastegar, G. L. LeCarpentier, E. D. Jansen, “Laser thermal ablation,” Photochem. Photobiol. 53, 815–823 (1991).
    [PubMed]
  5. E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Partial vaporization model for pulsed mid-infrared laser ablation of water,” J. Appl. Phys. 78, 564–571 (1995).
    [CrossRef]
  6. R. Linsker, R. Srinivasan, J. J. Wynne, D. R. Alonso, “Far-ultraviolet laser ablation of atherosclerotic lesions,” Laser Surg. Med. 4, 201–206 (1984).
    [CrossRef]
  7. M. R. Prince, T. F. Deutsch, A. H. Shapiro, R. J. Margolis, A. R. Oseroff, J. T. Fallon, J. A. Parrish, R. R. Anderson, “Selective ablation of atheromas using a flashlamp-excited dye laser at 465 nm,” Proc. Natl. Acad. Sci. USA 83, 7064–7068 (1986).
    [CrossRef] [PubMed]
  8. P. Teng, N. S. Nishioka, R. R. Anderson, T. F. Deutsch, “Acoustic studies of the role of immersion in plasma-mediated laser ablation,” IEEE J. Quantum Electron. QE-23, 1845–1852 (1987).
    [CrossRef]
  9. R. Hibst, “Mechanical effects of erbium:YAG laser bone ablation,” Lasers Surg. Med. 12, 125–130 (1992).
    [CrossRef] [PubMed]
  10. M. R. Prince, G. M. LaMuraglia, P. Teng, T. F. Deutsch, R. R. Anderson, “Selective ablation of calcified arterial plaque with laser-induced plasmas,” IEEE J. Quantum Electron. QE-23, 1783–1786 (1987).
    [CrossRef]
  11. P. Teng, N. S. Nishioka, R. R. Anderson, T. F. Deutsch, “Optical studies of pulse laser fragmentation of biliary calculi,” Appl. Phys. B 42, 73–78 (1987).
    [CrossRef]
  12. J. T. Walsh, T. H. Flotte, R. R. Anderson, T. F. Deutsch, “Pulse CO2 laser tissue ablation: effect of tissue type and pulse duration on thermal damage,” Lasers Surg. Med. 8, 108–118 (1988).
    [CrossRef]
  13. E. Hecht, A. Zajac, Optics (Addison-Wesley, Reading, Mass., 1974), p. 81.
  14. F. Mirabella, Internal Reflection Spectroscopy, Vol. 15 of Practical Spectroscopy Series (Marcel Dekker, New York, 1992).
  15. R. Simhi, Y. Gotshal, D. Bunimovich, A. Sela, A. Katzir, “Fiber-optic evanescent-wave spectroscopy for fast multicomponent analysis of human blood,” Appl. Opt. 39, 3421–3425 (1996).
    [CrossRef]
  16. O. Kermani, H. Lubatschowski, T. Asshauer, W. Ertmer, A. Lukin, B. Ermakov, G. K. Krieglstein, “Q-switched CTE:YAG (2.69 microns) laser ablation: basic investigations on soft (corneal) and hard (dental) tissues,” Lasers Surg. Med. 13, 537–542 (1993).
    [CrossRef] [PubMed]
  17. G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12, 555–563 (1973).
    [CrossRef] [PubMed]

1996 (1)

R. Simhi, Y. Gotshal, D. Bunimovich, A. Sela, A. Katzir, “Fiber-optic evanescent-wave spectroscopy for fast multicomponent analysis of human blood,” Appl. Opt. 39, 3421–3425 (1996).
[CrossRef]

1995 (1)

E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Partial vaporization model for pulsed mid-infrared laser ablation of water,” J. Appl. Phys. 78, 564–571 (1995).
[CrossRef]

1993 (2)

J. P. Cummings, J. T. Walsh, “Erbium laser ablation—the effect of dynamic optical properties,” Appl. Phys. Lett. 62, 1988–1990 (1993).
[CrossRef]

O. Kermani, H. Lubatschowski, T. Asshauer, W. Ertmer, A. Lukin, B. Ermakov, G. K. Krieglstein, “Q-switched CTE:YAG (2.69 microns) laser ablation: basic investigations on soft (corneal) and hard (dental) tissues,” Lasers Surg. Med. 13, 537–542 (1993).
[CrossRef] [PubMed]

1992 (1)

R. Hibst, “Mechanical effects of erbium:YAG laser bone ablation,” Lasers Surg. Med. 12, 125–130 (1992).
[CrossRef] [PubMed]

1991 (1)

A. J. Welch, M. Motamedi, S. Rastegar, G. L. LeCarpentier, E. D. Jansen, “Laser thermal ablation,” Photochem. Photobiol. 53, 815–823 (1991).
[PubMed]

1988 (1)

J. T. Walsh, T. H. Flotte, R. R. Anderson, T. F. Deutsch, “Pulse CO2 laser tissue ablation: effect of tissue type and pulse duration on thermal damage,” Lasers Surg. Med. 8, 108–118 (1988).
[CrossRef]

1987 (3)

P. Teng, N. S. Nishioka, R. R. Anderson, T. F. Deutsch, “Acoustic studies of the role of immersion in plasma-mediated laser ablation,” IEEE J. Quantum Electron. QE-23, 1845–1852 (1987).
[CrossRef]

M. R. Prince, G. M. LaMuraglia, P. Teng, T. F. Deutsch, R. R. Anderson, “Selective ablation of calcified arterial plaque with laser-induced plasmas,” IEEE J. Quantum Electron. QE-23, 1783–1786 (1987).
[CrossRef]

P. Teng, N. S. Nishioka, R. R. Anderson, T. F. Deutsch, “Optical studies of pulse laser fragmentation of biliary calculi,” Appl. Phys. B 42, 73–78 (1987).
[CrossRef]

1986 (1)

M. R. Prince, T. F. Deutsch, A. H. Shapiro, R. J. Margolis, A. R. Oseroff, J. T. Fallon, J. A. Parrish, R. R. Anderson, “Selective ablation of atheromas using a flashlamp-excited dye laser at 465 nm,” Proc. Natl. Acad. Sci. USA 83, 7064–7068 (1986).
[CrossRef] [PubMed]

1985 (1)

C. A. Puliafito, R. F. Steinert, T. F. Deutsch, F. Hillenkamp, E. J. Dehm, C. M. Alder, “Excimer laser ablation of cornea and lens: experimental studies,” Ophthalmology 92, 741–748 (1985).
[CrossRef] [PubMed]

1984 (1)

R. Linsker, R. Srinivasan, J. J. Wynne, D. R. Alonso, “Far-ultraviolet laser ablation of atherosclerotic lesions,” Laser Surg. Med. 4, 201–206 (1984).
[CrossRef]

1973 (1)

Alder, C. M.

C. A. Puliafito, R. F. Steinert, T. F. Deutsch, F. Hillenkamp, E. J. Dehm, C. M. Alder, “Excimer laser ablation of cornea and lens: experimental studies,” Ophthalmology 92, 741–748 (1985).
[CrossRef] [PubMed]

Alonso, D. R.

R. Linsker, R. Srinivasan, J. J. Wynne, D. R. Alonso, “Far-ultraviolet laser ablation of atherosclerotic lesions,” Laser Surg. Med. 4, 201–206 (1984).
[CrossRef]

Anderson, R. R.

J. T. Walsh, T. H. Flotte, R. R. Anderson, T. F. Deutsch, “Pulse CO2 laser tissue ablation: effect of tissue type and pulse duration on thermal damage,” Lasers Surg. Med. 8, 108–118 (1988).
[CrossRef]

M. R. Prince, G. M. LaMuraglia, P. Teng, T. F. Deutsch, R. R. Anderson, “Selective ablation of calcified arterial plaque with laser-induced plasmas,” IEEE J. Quantum Electron. QE-23, 1783–1786 (1987).
[CrossRef]

P. Teng, N. S. Nishioka, R. R. Anderson, T. F. Deutsch, “Acoustic studies of the role of immersion in plasma-mediated laser ablation,” IEEE J. Quantum Electron. QE-23, 1845–1852 (1987).
[CrossRef]

P. Teng, N. S. Nishioka, R. R. Anderson, T. F. Deutsch, “Optical studies of pulse laser fragmentation of biliary calculi,” Appl. Phys. B 42, 73–78 (1987).
[CrossRef]

M. R. Prince, T. F. Deutsch, A. H. Shapiro, R. J. Margolis, A. R. Oseroff, J. T. Fallon, J. A. Parrish, R. R. Anderson, “Selective ablation of atheromas using a flashlamp-excited dye laser at 465 nm,” Proc. Natl. Acad. Sci. USA 83, 7064–7068 (1986).
[CrossRef] [PubMed]

B. A. Hooper, C. Lin, Y. Domankevitz, R. R. Anderson, “Laser surgery with evanescent optical waves,” in Digest of Topical Meeting on Therapeutic Laser Applications (Optical Society of America, Washington, D.C.1998), pp. 41–43.

Asshauer, T.

O. Kermani, H. Lubatschowski, T. Asshauer, W. Ertmer, A. Lukin, B. Ermakov, G. K. Krieglstein, “Q-switched CTE:YAG (2.69 microns) laser ablation: basic investigations on soft (corneal) and hard (dental) tissues,” Lasers Surg. Med. 13, 537–542 (1993).
[CrossRef] [PubMed]

Borst, C.

E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Partial vaporization model for pulsed mid-infrared laser ablation of water,” J. Appl. Phys. 78, 564–571 (1995).
[CrossRef]

Bunimovich, D.

R. Simhi, Y. Gotshal, D. Bunimovich, A. Sela, A. Katzir, “Fiber-optic evanescent-wave spectroscopy for fast multicomponent analysis of human blood,” Appl. Opt. 39, 3421–3425 (1996).
[CrossRef]

Cummings, J. P.

J. P. Cummings, J. T. Walsh, “Erbium laser ablation—the effect of dynamic optical properties,” Appl. Phys. Lett. 62, 1988–1990 (1993).
[CrossRef]

Dehm, E. J.

C. A. Puliafito, R. F. Steinert, T. F. Deutsch, F. Hillenkamp, E. J. Dehm, C. M. Alder, “Excimer laser ablation of cornea and lens: experimental studies,” Ophthalmology 92, 741–748 (1985).
[CrossRef] [PubMed]

Deutsch, T. F.

J. T. Walsh, T. H. Flotte, R. R. Anderson, T. F. Deutsch, “Pulse CO2 laser tissue ablation: effect of tissue type and pulse duration on thermal damage,” Lasers Surg. Med. 8, 108–118 (1988).
[CrossRef]

M. R. Prince, G. M. LaMuraglia, P. Teng, T. F. Deutsch, R. R. Anderson, “Selective ablation of calcified arterial plaque with laser-induced plasmas,” IEEE J. Quantum Electron. QE-23, 1783–1786 (1987).
[CrossRef]

P. Teng, N. S. Nishioka, R. R. Anderson, T. F. Deutsch, “Acoustic studies of the role of immersion in plasma-mediated laser ablation,” IEEE J. Quantum Electron. QE-23, 1845–1852 (1987).
[CrossRef]

P. Teng, N. S. Nishioka, R. R. Anderson, T. F. Deutsch, “Optical studies of pulse laser fragmentation of biliary calculi,” Appl. Phys. B 42, 73–78 (1987).
[CrossRef]

M. R. Prince, T. F. Deutsch, A. H. Shapiro, R. J. Margolis, A. R. Oseroff, J. T. Fallon, J. A. Parrish, R. R. Anderson, “Selective ablation of atheromas using a flashlamp-excited dye laser at 465 nm,” Proc. Natl. Acad. Sci. USA 83, 7064–7068 (1986).
[CrossRef] [PubMed]

C. A. Puliafito, R. F. Steinert, T. F. Deutsch, F. Hillenkamp, E. J. Dehm, C. M. Alder, “Excimer laser ablation of cornea and lens: experimental studies,” Ophthalmology 92, 741–748 (1985).
[CrossRef] [PubMed]

Domankevitz, Y.

B. A. Hooper, C. Lin, Y. Domankevitz, R. R. Anderson, “Laser surgery with evanescent optical waves,” in Digest of Topical Meeting on Therapeutic Laser Applications (Optical Society of America, Washington, D.C.1998), pp. 41–43.

Ermakov, B.

O. Kermani, H. Lubatschowski, T. Asshauer, W. Ertmer, A. Lukin, B. Ermakov, G. K. Krieglstein, “Q-switched CTE:YAG (2.69 microns) laser ablation: basic investigations on soft (corneal) and hard (dental) tissues,” Lasers Surg. Med. 13, 537–542 (1993).
[CrossRef] [PubMed]

Ertmer, W.

O. Kermani, H. Lubatschowski, T. Asshauer, W. Ertmer, A. Lukin, B. Ermakov, G. K. Krieglstein, “Q-switched CTE:YAG (2.69 microns) laser ablation: basic investigations on soft (corneal) and hard (dental) tissues,” Lasers Surg. Med. 13, 537–542 (1993).
[CrossRef] [PubMed]

Fallon, J. T.

M. R. Prince, T. F. Deutsch, A. H. Shapiro, R. J. Margolis, A. R. Oseroff, J. T. Fallon, J. A. Parrish, R. R. Anderson, “Selective ablation of atheromas using a flashlamp-excited dye laser at 465 nm,” Proc. Natl. Acad. Sci. USA 83, 7064–7068 (1986).
[CrossRef] [PubMed]

Flotte, T. H.

J. T. Walsh, T. H. Flotte, R. R. Anderson, T. F. Deutsch, “Pulse CO2 laser tissue ablation: effect of tissue type and pulse duration on thermal damage,” Lasers Surg. Med. 8, 108–118 (1988).
[CrossRef]

Gotshal, Y.

R. Simhi, Y. Gotshal, D. Bunimovich, A. Sela, A. Katzir, “Fiber-optic evanescent-wave spectroscopy for fast multicomponent analysis of human blood,” Appl. Opt. 39, 3421–3425 (1996).
[CrossRef]

Hale, G. M.

Hecht, E.

E. Hecht, A. Zajac, Optics (Addison-Wesley, Reading, Mass., 1974), p. 81.

Hibst, R.

R. Hibst, “Mechanical effects of erbium:YAG laser bone ablation,” Lasers Surg. Med. 12, 125–130 (1992).
[CrossRef] [PubMed]

Hillenkamp, F.

C. A. Puliafito, R. F. Steinert, T. F. Deutsch, F. Hillenkamp, E. J. Dehm, C. M. Alder, “Excimer laser ablation of cornea and lens: experimental studies,” Ophthalmology 92, 741–748 (1985).
[CrossRef] [PubMed]

Hooper, B. A.

B. A. Hooper, C. Lin, Y. Domankevitz, R. R. Anderson, “Laser surgery with evanescent optical waves,” in Digest of Topical Meeting on Therapeutic Laser Applications (Optical Society of America, Washington, D.C.1998), pp. 41–43.

Jansen, E. D.

E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Partial vaporization model for pulsed mid-infrared laser ablation of water,” J. Appl. Phys. 78, 564–571 (1995).
[CrossRef]

A. J. Welch, M. Motamedi, S. Rastegar, G. L. LeCarpentier, E. D. Jansen, “Laser thermal ablation,” Photochem. Photobiol. 53, 815–823 (1991).
[PubMed]

Katzir, A.

R. Simhi, Y. Gotshal, D. Bunimovich, A. Sela, A. Katzir, “Fiber-optic evanescent-wave spectroscopy for fast multicomponent analysis of human blood,” Appl. Opt. 39, 3421–3425 (1996).
[CrossRef]

Kermani, O.

O. Kermani, H. Lubatschowski, T. Asshauer, W. Ertmer, A. Lukin, B. Ermakov, G. K. Krieglstein, “Q-switched CTE:YAG (2.69 microns) laser ablation: basic investigations on soft (corneal) and hard (dental) tissues,” Lasers Surg. Med. 13, 537–542 (1993).
[CrossRef] [PubMed]

Krieglstein, G. K.

O. Kermani, H. Lubatschowski, T. Asshauer, W. Ertmer, A. Lukin, B. Ermakov, G. K. Krieglstein, “Q-switched CTE:YAG (2.69 microns) laser ablation: basic investigations on soft (corneal) and hard (dental) tissues,” Lasers Surg. Med. 13, 537–542 (1993).
[CrossRef] [PubMed]

LaMuraglia, G. M.

M. R. Prince, G. M. LaMuraglia, P. Teng, T. F. Deutsch, R. R. Anderson, “Selective ablation of calcified arterial plaque with laser-induced plasmas,” IEEE J. Quantum Electron. QE-23, 1783–1786 (1987).
[CrossRef]

LeCarpentier, G. L.

A. J. Welch, M. Motamedi, S. Rastegar, G. L. LeCarpentier, E. D. Jansen, “Laser thermal ablation,” Photochem. Photobiol. 53, 815–823 (1991).
[PubMed]

Lin, C.

B. A. Hooper, C. Lin, Y. Domankevitz, R. R. Anderson, “Laser surgery with evanescent optical waves,” in Digest of Topical Meeting on Therapeutic Laser Applications (Optical Society of America, Washington, D.C.1998), pp. 41–43.

Linsker, R.

R. Linsker, R. Srinivasan, J. J. Wynne, D. R. Alonso, “Far-ultraviolet laser ablation of atherosclerotic lesions,” Laser Surg. Med. 4, 201–206 (1984).
[CrossRef]

Lubatschowski, H.

O. Kermani, H. Lubatschowski, T. Asshauer, W. Ertmer, A. Lukin, B. Ermakov, G. K. Krieglstein, “Q-switched CTE:YAG (2.69 microns) laser ablation: basic investigations on soft (corneal) and hard (dental) tissues,” Lasers Surg. Med. 13, 537–542 (1993).
[CrossRef] [PubMed]

Lukin, A.

O. Kermani, H. Lubatschowski, T. Asshauer, W. Ertmer, A. Lukin, B. Ermakov, G. K. Krieglstein, “Q-switched CTE:YAG (2.69 microns) laser ablation: basic investigations on soft (corneal) and hard (dental) tissues,” Lasers Surg. Med. 13, 537–542 (1993).
[CrossRef] [PubMed]

Margolis, R. J.

M. R. Prince, T. F. Deutsch, A. H. Shapiro, R. J. Margolis, A. R. Oseroff, J. T. Fallon, J. A. Parrish, R. R. Anderson, “Selective ablation of atheromas using a flashlamp-excited dye laser at 465 nm,” Proc. Natl. Acad. Sci. USA 83, 7064–7068 (1986).
[CrossRef] [PubMed]

Mirabella, F.

F. Mirabella, Internal Reflection Spectroscopy, Vol. 15 of Practical Spectroscopy Series (Marcel Dekker, New York, 1992).

Motamedi, M.

E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Partial vaporization model for pulsed mid-infrared laser ablation of water,” J. Appl. Phys. 78, 564–571 (1995).
[CrossRef]

A. J. Welch, M. Motamedi, S. Rastegar, G. L. LeCarpentier, E. D. Jansen, “Laser thermal ablation,” Photochem. Photobiol. 53, 815–823 (1991).
[PubMed]

Nishioka, N. S.

P. Teng, N. S. Nishioka, R. R. Anderson, T. F. Deutsch, “Acoustic studies of the role of immersion in plasma-mediated laser ablation,” IEEE J. Quantum Electron. QE-23, 1845–1852 (1987).
[CrossRef]

P. Teng, N. S. Nishioka, R. R. Anderson, T. F. Deutsch, “Optical studies of pulse laser fragmentation of biliary calculi,” Appl. Phys. B 42, 73–78 (1987).
[CrossRef]

Oseroff, A. R.

M. R. Prince, T. F. Deutsch, A. H. Shapiro, R. J. Margolis, A. R. Oseroff, J. T. Fallon, J. A. Parrish, R. R. Anderson, “Selective ablation of atheromas using a flashlamp-excited dye laser at 465 nm,” Proc. Natl. Acad. Sci. USA 83, 7064–7068 (1986).
[CrossRef] [PubMed]

Parrish, J. A.

M. R. Prince, T. F. Deutsch, A. H. Shapiro, R. J. Margolis, A. R. Oseroff, J. T. Fallon, J. A. Parrish, R. R. Anderson, “Selective ablation of atheromas using a flashlamp-excited dye laser at 465 nm,” Proc. Natl. Acad. Sci. USA 83, 7064–7068 (1986).
[CrossRef] [PubMed]

Prince, M. R.

M. R. Prince, G. M. LaMuraglia, P. Teng, T. F. Deutsch, R. R. Anderson, “Selective ablation of calcified arterial plaque with laser-induced plasmas,” IEEE J. Quantum Electron. QE-23, 1783–1786 (1987).
[CrossRef]

M. R. Prince, T. F. Deutsch, A. H. Shapiro, R. J. Margolis, A. R. Oseroff, J. T. Fallon, J. A. Parrish, R. R. Anderson, “Selective ablation of atheromas using a flashlamp-excited dye laser at 465 nm,” Proc. Natl. Acad. Sci. USA 83, 7064–7068 (1986).
[CrossRef] [PubMed]

Puliafito, C. A.

C. A. Puliafito, R. F. Steinert, T. F. Deutsch, F. Hillenkamp, E. J. Dehm, C. M. Alder, “Excimer laser ablation of cornea and lens: experimental studies,” Ophthalmology 92, 741–748 (1985).
[CrossRef] [PubMed]

Querry, M. R.

Rastegar, S.

A. J. Welch, M. Motamedi, S. Rastegar, G. L. LeCarpentier, E. D. Jansen, “Laser thermal ablation,” Photochem. Photobiol. 53, 815–823 (1991).
[PubMed]

Sela, A.

R. Simhi, Y. Gotshal, D. Bunimovich, A. Sela, A. Katzir, “Fiber-optic evanescent-wave spectroscopy for fast multicomponent analysis of human blood,” Appl. Opt. 39, 3421–3425 (1996).
[CrossRef]

Shapiro, A. H.

M. R. Prince, T. F. Deutsch, A. H. Shapiro, R. J. Margolis, A. R. Oseroff, J. T. Fallon, J. A. Parrish, R. R. Anderson, “Selective ablation of atheromas using a flashlamp-excited dye laser at 465 nm,” Proc. Natl. Acad. Sci. USA 83, 7064–7068 (1986).
[CrossRef] [PubMed]

Simhi, R.

R. Simhi, Y. Gotshal, D. Bunimovich, A. Sela, A. Katzir, “Fiber-optic evanescent-wave spectroscopy for fast multicomponent analysis of human blood,” Appl. Opt. 39, 3421–3425 (1996).
[CrossRef]

Srinivasan, R.

R. Linsker, R. Srinivasan, J. J. Wynne, D. R. Alonso, “Far-ultraviolet laser ablation of atherosclerotic lesions,” Laser Surg. Med. 4, 201–206 (1984).
[CrossRef]

Steinert, R. F.

C. A. Puliafito, R. F. Steinert, T. F. Deutsch, F. Hillenkamp, E. J. Dehm, C. M. Alder, “Excimer laser ablation of cornea and lens: experimental studies,” Ophthalmology 92, 741–748 (1985).
[CrossRef] [PubMed]

Teng, P.

P. Teng, N. S. Nishioka, R. R. Anderson, T. F. Deutsch, “Acoustic studies of the role of immersion in plasma-mediated laser ablation,” IEEE J. Quantum Electron. QE-23, 1845–1852 (1987).
[CrossRef]

M. R. Prince, G. M. LaMuraglia, P. Teng, T. F. Deutsch, R. R. Anderson, “Selective ablation of calcified arterial plaque with laser-induced plasmas,” IEEE J. Quantum Electron. QE-23, 1783–1786 (1987).
[CrossRef]

P. Teng, N. S. Nishioka, R. R. Anderson, T. F. Deutsch, “Optical studies of pulse laser fragmentation of biliary calculi,” Appl. Phys. B 42, 73–78 (1987).
[CrossRef]

van Leeuwen, T. G.

E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Partial vaporization model for pulsed mid-infrared laser ablation of water,” J. Appl. Phys. 78, 564–571 (1995).
[CrossRef]

Walsh, J. T.

J. P. Cummings, J. T. Walsh, “Erbium laser ablation—the effect of dynamic optical properties,” Appl. Phys. Lett. 62, 1988–1990 (1993).
[CrossRef]

J. T. Walsh, T. H. Flotte, R. R. Anderson, T. F. Deutsch, “Pulse CO2 laser tissue ablation: effect of tissue type and pulse duration on thermal damage,” Lasers Surg. Med. 8, 108–118 (1988).
[CrossRef]

Welch, A. J.

E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Partial vaporization model for pulsed mid-infrared laser ablation of water,” J. Appl. Phys. 78, 564–571 (1995).
[CrossRef]

A. J. Welch, M. Motamedi, S. Rastegar, G. L. LeCarpentier, E. D. Jansen, “Laser thermal ablation,” Photochem. Photobiol. 53, 815–823 (1991).
[PubMed]

Wynne, J. J.

R. Linsker, R. Srinivasan, J. J. Wynne, D. R. Alonso, “Far-ultraviolet laser ablation of atherosclerotic lesions,” Laser Surg. Med. 4, 201–206 (1984).
[CrossRef]

Zajac, A.

E. Hecht, A. Zajac, Optics (Addison-Wesley, Reading, Mass., 1974), p. 81.

Appl. Opt. (2)

R. Simhi, Y. Gotshal, D. Bunimovich, A. Sela, A. Katzir, “Fiber-optic evanescent-wave spectroscopy for fast multicomponent analysis of human blood,” Appl. Opt. 39, 3421–3425 (1996).
[CrossRef]

G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12, 555–563 (1973).
[CrossRef] [PubMed]

Appl. Phys. B (1)

P. Teng, N. S. Nishioka, R. R. Anderson, T. F. Deutsch, “Optical studies of pulse laser fragmentation of biliary calculi,” Appl. Phys. B 42, 73–78 (1987).
[CrossRef]

Appl. Phys. Lett. (1)

J. P. Cummings, J. T. Walsh, “Erbium laser ablation—the effect of dynamic optical properties,” Appl. Phys. Lett. 62, 1988–1990 (1993).
[CrossRef]

IEEE J. Quantum Electron. (2)

P. Teng, N. S. Nishioka, R. R. Anderson, T. F. Deutsch, “Acoustic studies of the role of immersion in plasma-mediated laser ablation,” IEEE J. Quantum Electron. QE-23, 1845–1852 (1987).
[CrossRef]

M. R. Prince, G. M. LaMuraglia, P. Teng, T. F. Deutsch, R. R. Anderson, “Selective ablation of calcified arterial plaque with laser-induced plasmas,” IEEE J. Quantum Electron. QE-23, 1783–1786 (1987).
[CrossRef]

J. Appl. Phys. (1)

E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Partial vaporization model for pulsed mid-infrared laser ablation of water,” J. Appl. Phys. 78, 564–571 (1995).
[CrossRef]

Laser Surg. Med. (1)

R. Linsker, R. Srinivasan, J. J. Wynne, D. R. Alonso, “Far-ultraviolet laser ablation of atherosclerotic lesions,” Laser Surg. Med. 4, 201–206 (1984).
[CrossRef]

Lasers Surg. Med. (3)

R. Hibst, “Mechanical effects of erbium:YAG laser bone ablation,” Lasers Surg. Med. 12, 125–130 (1992).
[CrossRef] [PubMed]

O. Kermani, H. Lubatschowski, T. Asshauer, W. Ertmer, A. Lukin, B. Ermakov, G. K. Krieglstein, “Q-switched CTE:YAG (2.69 microns) laser ablation: basic investigations on soft (corneal) and hard (dental) tissues,” Lasers Surg. Med. 13, 537–542 (1993).
[CrossRef] [PubMed]

J. T. Walsh, T. H. Flotte, R. R. Anderson, T. F. Deutsch, “Pulse CO2 laser tissue ablation: effect of tissue type and pulse duration on thermal damage,” Lasers Surg. Med. 8, 108–118 (1988).
[CrossRef]

Ophthalmology (1)

C. A. Puliafito, R. F. Steinert, T. F. Deutsch, F. Hillenkamp, E. J. Dehm, C. M. Alder, “Excimer laser ablation of cornea and lens: experimental studies,” Ophthalmology 92, 741–748 (1985).
[CrossRef] [PubMed]

Photochem. Photobiol. (1)

A. J. Welch, M. Motamedi, S. Rastegar, G. L. LeCarpentier, E. D. Jansen, “Laser thermal ablation,” Photochem. Photobiol. 53, 815–823 (1991).
[PubMed]

Proc. Natl. Acad. Sci. USA (1)

M. R. Prince, T. F. Deutsch, A. H. Shapiro, R. J. Margolis, A. R. Oseroff, J. T. Fallon, J. A. Parrish, R. R. Anderson, “Selective ablation of atheromas using a flashlamp-excited dye laser at 465 nm,” Proc. Natl. Acad. Sci. USA 83, 7064–7068 (1986).
[CrossRef] [PubMed]

Other (3)

B. A. Hooper, C. Lin, Y. Domankevitz, R. R. Anderson, “Laser surgery with evanescent optical waves,” in Digest of Topical Meeting on Therapeutic Laser Applications (Optical Society of America, Washington, D.C.1998), pp. 41–43.

E. Hecht, A. Zajac, Optics (Addison-Wesley, Reading, Mass., 1974), p. 81.

F. Mirabella, Internal Reflection Spectroscopy, Vol. 15 of Practical Spectroscopy Series (Marcel Dekker, New York, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic representation of the beam line used to launch evanescent optical waves at a prism–tissue interface. The interface is defined by a high-refractive-index medium (prism) in contact with a low-refractive-index medium (tissue); n 1 > n 2. The angle of incidence θ i has to be greater than or equal to the critical angle θ c so that an evanescent wave can be generated. The Duke University Mark III Infrared FEL is the pump laser launched into a sapphire prism to generate evanescent waves for tissue ablation. The probe laser is a 3-mW He–Ne laser used in concert with a Thorlabs fast (nanosecond rise time) Si photodiode to assess the fast dynamics of the ablation process. The reflected infrared signal is captured with a Molectron P3 pyroelectric detector.

Fig. 2
Fig. 2

Evanescent optical waves at an interface between sapphire and water. (A) Penetration depth of the evanescent wave, (B) fraction of absorbed incident energy, (C) the required incident energy for ablation of water (vaporization) by laser energy for ⊥ polarization as a function of incident angle for wavelengths from 2 to 4 µm. The required incident energy is obtained by multiplication of the latent heat of vaporization of water by the penetration depth δ e and the laser beam area, and by division of the absorbed fraction 1 - R (2500 J/cm3 × δ e × (πωo 2)/2 ÷ 1 - R ); incident energy may be a factor of 8 less if the partial vaporization model holds for E v ≈ 330 J/cm3. Beam area calculation assumes a 500-µm Gaussian beam waist, ω0.

Fig. 3
Fig. 3

(A) Penetration depth of evanescent optical waves at interfaces between high-refractive-index transparent solids and water, as a function of incident angle for a wavelength of 2.1 µm. The normal-incidence depth of penetration is 400 µm and can be reduced by more than 3 orders of magnitude by launching of evanescent waves. Note that even at a 60° angle of incidence in sapphire, the depth of penetration is reduced by 1000×. (B) Comparison of the absorbed fraction of incident energy available for ablation. Refractive-index values for these materials at 2.1 µm are 1.436 (silica), 1.735 (sapphire), 2.262 (zinc sulfide), 3.45 (silicon), 4.095 (germanium), and 1.298 (water).

Fig. 4
Fig. 4

Tissue ablation using (A) and (B) normally incident (0°) and (C) and (D) evanescent (65°) optical waves at a sapphire–porcine aorta interface with FEL light at a wavelength of 3.24 µm (⊥ polarization). (A) is a toluidine blue-stained histology section (bar = 100 µm), (B) is a SEM image (bar = 100 µm), (C) is a toluidine blue-stained histology section (bar = 20 µm, arrow is at edge of ablation), (D) is a SEM image (bar = 50 µm) of ablated aorta. (A) and (B) show an ablation depth of approximately 500 µm, and (C) and (D) show an ablation depth of approximately 4 µm. Also visible in (A) and (C) are the black elastic layers and the gray smooth muscle-cell layers that underlie the endothelial cells at the surface.

Tables (1)

Tables Icon

Table 1 Evanescent-Wave Ablation Parameters at the Critical Angle

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

IzIo exp-μaz,
τrδ2/4α=4μa2α-1,
Eex, y, t=Ee expikxx-ωtexp-γkyy,
γ=n12 sin2 θi-n221/2,
δe=1/2γky=λ/4πn12 sin2 θi-n221/2.
R=n1 cos θ1-n2 cos θ2/n1 cos θ1+n2 cos θ2,
R=n2 cos θ1-n1 cos θ2/n2 cos θ1+n1 cos θ2,
1-R,=4βi/1+2βi+βi2+βr2,
1 - R2500J/cm3×δe×πω02/2 ÷ 1 - R,
0.31 J/cm22500 J/cm3×δe/1 - R,

Metrics