Abstract

Our primary goal in this study is to demonstrate that near-infrared Raman spectroscopy is feasible as a rapid and reagentless analytic method for clinical diagnostics. Raman spectra were collected on human sera by use of a 785-nm excitation laser and a single-stage holographic spectrometer. A partial-least-squares method was used to predict the analyte concentrations of interest. The prediction errors of total protein, albumin, triglyceride, and glucose in human sera ranged from 1.0% to 10%, which are highly acceptable for clinical diagnosis, of their mean physiological levels. For investigating the potential application of near-infrared Raman spectroscopy in screening of therapeutical drugs and substances of abuse the concentrations of acetaminophen, ethanol, and codeine in water solution were measured in the same fashion. The errors of the Raman tests for acetaminophen and ethanol are lower than their toxic levels in human serum, and the sensitivity for detection of codeine fails to reach its toxic level.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Holme, H. Peck, Analytical Biochemistry (Longman, London, 1983).
  2. E. H. Taylor, Clinical Chemistry (Wiley, New York, 1989).
  3. D. G. Deutsch, Analytical Aspects of Drug Testing (Wiley, New York, 1989).
  4. S. H. Y. Wong, Therapeutic Drug Monitoring and Toxicology by Liquid Chromatography (Dakken, New York, 1985).
  5. C. M. Hodges, J. Akhavan, “The use of Fourier transform Raman spectroscopy in the forensic identification of illicit drugs and explosives,” Spectrochim. Acta 46A, 303–307 (1990).
    [CrossRef]
  6. C. G. Kontoyannis, M. Orkoula, “Quantitative non-destructive determination of salycylic acid acetate in aspirin tablets by Raman spectroscopy,” Talanta 41, 1981–1984 (1994).
    [CrossRef] [PubMed]
  7. T. M. Hancewicz, C. Petty, “Quantitative analysis of vitamin A using Fourier transform Raman spectroscopy,” Spectrochim. Acta 51A, 2193–2198 (1995).
    [CrossRef]
  8. M. J. Goetz, G. L. Cote, R. Erckens, W. March, M. Motamedi, “Application of a multivariate technique to Raman spectra for quantification of body chemicals,” IEEE Trans. Biomed. Eng. 42, 728–731 (1995).
    [CrossRef] [PubMed]
  9. J. P. Wicksted, R. J. Erckens, M. Motamedi, W. F. March, “Raman spectroscopy studies of metabolites concentrations in aqueous solutions and aqueous humor specimens,” Appl. Spectrosc. 49, 987–993 (1995).
    [CrossRef]
  10. J. Berger, Y. Wang, M. S. Feld, “Rapid, noninvasive concentration measurements of aqueous biological analytes by near-infrared Raman spectroscopy,” Appl. Opt. 35, 209–212 (1996).
    [CrossRef] [PubMed]
  11. X. Dou, Y. Yamaguchi, H. Yamamoto, S. Doi, Y. Ozaki, “Quantitative analysis of metabolites in urine using a highly precise, compact near-infrared Raman spectrometer,” Vib. Spectrosc. 13, 83–89 (1996).
    [CrossRef]
  12. J. Berger, I. Itzkan, M. S. Feld, “Feasibility of measuring blood glucose concentration by near-infrared Raman spectroscopy,” Spectrochim. Acta 53A, 287–292 (1997).
  13. W. B. Bosma, L. E. Fried, S. Mukamel, “Simulation of the intermolecular vibrational spectra of liquid water and water clusters,” J. Chem. Phys. 98, 4413–4421 (1993).
    [CrossRef]
  14. M. H. Brooker, G. Hancock, B. C. Rice, J. Shapter, “Raman frequency and intensity studies of liquid H2O, H218O and D2O,” J. Raman Spectrosc. 20, 683–694 (1989).
    [CrossRef]
  15. D. Eisenberg, W. Kauzmann, The Structures and Properties of Water (Oxford U. Press, London, 1969).
  16. F. O. Libnau, O. M. Kvalheim, A. A. Christy, J. Toft, “Spectra of water in the near- and mid-infrared region,” Vib. Spectrosc. 7, 243–254 (1994).
    [CrossRef]
  17. D. M. Haaland, E. V. Thomas, “Partial least-squares methods for spectral analysis. 1. Relation to other quantitative calibration methods and the extraction of qualitative information,” Anal. Chem. 60, 1193–1202 (1988).
    [CrossRef]
  18. H. Martens, T. Naes, Multivariate Calibration (Wiley, New York, 1989).
  19. C. Lentner, ed., “Physical chemistry composition of blood hemotology somatometric data,” in Geigy Scientific Tables (Ciba-Geigy, West Caldwell, N.J., 1981), Vol. 3, pp. 111–161.
  20. U.S. Department of Health and Human Services; “Clinical laboratory improvement amendments of 1988; final rules and notice,” 42 CFR Part 493, Fed. Reg. 57, 7188–7288 (1992).
  21. J. Teraoka, A. F. Bell, L. Hecht, L. D. Barron, “Loop structure in human serum albumin from Raman optical activity,” J. Raman Spectrosc. 29, 67–71 (1998).
    [CrossRef]
  22. N. W. Tietz, ed., Clinical Guide to Laboratory Tests, 3rd ed. (Saunders, Philadelphia, Pa., 1995), pp. 787–897.
  23. A. J. Berger, T. W. Koo, I. Itzkan, M. S. Feld, “An enhanced algorithm for linear multivariate calibration,” Anal. Chem. 70, 623–627 (1998).
    [CrossRef] [PubMed]
  24. J. Qu, O. Yau, S. Yau, “Improved accuracy of quantification of analytes in human body fluids by near-IR laser Raman spectroscopy with new algorithms,” in Biomedical, Diagnostic, Guidance, and Surgical-Assist Systems, T. Vo-Dinh, W. S. Grundfest, D. A. Benaron, S. T. Bucholz, M. W. Vannier, eds., Proc. SPIE3595 (in press).
  25. A. J. Berger, T. W. Koo, I. Itzkan, G. Horowitz, M. S. Feld, “Multicomponent blood analysis by near-infrared Raman spectroscopy,” Appl. Opt. 38, 2916–2926 (1999).
    [CrossRef]

1999

1998

J. Teraoka, A. F. Bell, L. Hecht, L. D. Barron, “Loop structure in human serum albumin from Raman optical activity,” J. Raman Spectrosc. 29, 67–71 (1998).
[CrossRef]

A. J. Berger, T. W. Koo, I. Itzkan, M. S. Feld, “An enhanced algorithm for linear multivariate calibration,” Anal. Chem. 70, 623–627 (1998).
[CrossRef] [PubMed]

1997

J. Berger, I. Itzkan, M. S. Feld, “Feasibility of measuring blood glucose concentration by near-infrared Raman spectroscopy,” Spectrochim. Acta 53A, 287–292 (1997).

1996

X. Dou, Y. Yamaguchi, H. Yamamoto, S. Doi, Y. Ozaki, “Quantitative analysis of metabolites in urine using a highly precise, compact near-infrared Raman spectrometer,” Vib. Spectrosc. 13, 83–89 (1996).
[CrossRef]

J. Berger, Y. Wang, M. S. Feld, “Rapid, noninvasive concentration measurements of aqueous biological analytes by near-infrared Raman spectroscopy,” Appl. Opt. 35, 209–212 (1996).
[CrossRef] [PubMed]

1995

T. M. Hancewicz, C. Petty, “Quantitative analysis of vitamin A using Fourier transform Raman spectroscopy,” Spectrochim. Acta 51A, 2193–2198 (1995).
[CrossRef]

M. J. Goetz, G. L. Cote, R. Erckens, W. March, M. Motamedi, “Application of a multivariate technique to Raman spectra for quantification of body chemicals,” IEEE Trans. Biomed. Eng. 42, 728–731 (1995).
[CrossRef] [PubMed]

J. P. Wicksted, R. J. Erckens, M. Motamedi, W. F. March, “Raman spectroscopy studies of metabolites concentrations in aqueous solutions and aqueous humor specimens,” Appl. Spectrosc. 49, 987–993 (1995).
[CrossRef]

1994

C. G. Kontoyannis, M. Orkoula, “Quantitative non-destructive determination of salycylic acid acetate in aspirin tablets by Raman spectroscopy,” Talanta 41, 1981–1984 (1994).
[CrossRef] [PubMed]

F. O. Libnau, O. M. Kvalheim, A. A. Christy, J. Toft, “Spectra of water in the near- and mid-infrared region,” Vib. Spectrosc. 7, 243–254 (1994).
[CrossRef]

1993

W. B. Bosma, L. E. Fried, S. Mukamel, “Simulation of the intermolecular vibrational spectra of liquid water and water clusters,” J. Chem. Phys. 98, 4413–4421 (1993).
[CrossRef]

1992

U.S. Department of Health and Human Services; “Clinical laboratory improvement amendments of 1988; final rules and notice,” 42 CFR Part 493, Fed. Reg. 57, 7188–7288 (1992).

1990

C. M. Hodges, J. Akhavan, “The use of Fourier transform Raman spectroscopy in the forensic identification of illicit drugs and explosives,” Spectrochim. Acta 46A, 303–307 (1990).
[CrossRef]

1989

M. H. Brooker, G. Hancock, B. C. Rice, J. Shapter, “Raman frequency and intensity studies of liquid H2O, H218O and D2O,” J. Raman Spectrosc. 20, 683–694 (1989).
[CrossRef]

1988

D. M. Haaland, E. V. Thomas, “Partial least-squares methods for spectral analysis. 1. Relation to other quantitative calibration methods and the extraction of qualitative information,” Anal. Chem. 60, 1193–1202 (1988).
[CrossRef]

Akhavan, J.

C. M. Hodges, J. Akhavan, “The use of Fourier transform Raman spectroscopy in the forensic identification of illicit drugs and explosives,” Spectrochim. Acta 46A, 303–307 (1990).
[CrossRef]

Barron, L. D.

J. Teraoka, A. F. Bell, L. Hecht, L. D. Barron, “Loop structure in human serum albumin from Raman optical activity,” J. Raman Spectrosc. 29, 67–71 (1998).
[CrossRef]

Bell, A. F.

J. Teraoka, A. F. Bell, L. Hecht, L. D. Barron, “Loop structure in human serum albumin from Raman optical activity,” J. Raman Spectrosc. 29, 67–71 (1998).
[CrossRef]

Berger, A. J.

A. J. Berger, T. W. Koo, I. Itzkan, G. Horowitz, M. S. Feld, “Multicomponent blood analysis by near-infrared Raman spectroscopy,” Appl. Opt. 38, 2916–2926 (1999).
[CrossRef]

A. J. Berger, T. W. Koo, I. Itzkan, M. S. Feld, “An enhanced algorithm for linear multivariate calibration,” Anal. Chem. 70, 623–627 (1998).
[CrossRef] [PubMed]

Berger, J.

J. Berger, I. Itzkan, M. S. Feld, “Feasibility of measuring blood glucose concentration by near-infrared Raman spectroscopy,” Spectrochim. Acta 53A, 287–292 (1997).

J. Berger, Y. Wang, M. S. Feld, “Rapid, noninvasive concentration measurements of aqueous biological analytes by near-infrared Raman spectroscopy,” Appl. Opt. 35, 209–212 (1996).
[CrossRef] [PubMed]

Bosma, W. B.

W. B. Bosma, L. E. Fried, S. Mukamel, “Simulation of the intermolecular vibrational spectra of liquid water and water clusters,” J. Chem. Phys. 98, 4413–4421 (1993).
[CrossRef]

Brooker, M. H.

M. H. Brooker, G. Hancock, B. C. Rice, J. Shapter, “Raman frequency and intensity studies of liquid H2O, H218O and D2O,” J. Raman Spectrosc. 20, 683–694 (1989).
[CrossRef]

Christy, A. A.

F. O. Libnau, O. M. Kvalheim, A. A. Christy, J. Toft, “Spectra of water in the near- and mid-infrared region,” Vib. Spectrosc. 7, 243–254 (1994).
[CrossRef]

Cote, G. L.

M. J. Goetz, G. L. Cote, R. Erckens, W. March, M. Motamedi, “Application of a multivariate technique to Raman spectra for quantification of body chemicals,” IEEE Trans. Biomed. Eng. 42, 728–731 (1995).
[CrossRef] [PubMed]

Deutsch, D. G.

D. G. Deutsch, Analytical Aspects of Drug Testing (Wiley, New York, 1989).

Doi, S.

X. Dou, Y. Yamaguchi, H. Yamamoto, S. Doi, Y. Ozaki, “Quantitative analysis of metabolites in urine using a highly precise, compact near-infrared Raman spectrometer,” Vib. Spectrosc. 13, 83–89 (1996).
[CrossRef]

Dou, X.

X. Dou, Y. Yamaguchi, H. Yamamoto, S. Doi, Y. Ozaki, “Quantitative analysis of metabolites in urine using a highly precise, compact near-infrared Raman spectrometer,” Vib. Spectrosc. 13, 83–89 (1996).
[CrossRef]

Eisenberg, D.

D. Eisenberg, W. Kauzmann, The Structures and Properties of Water (Oxford U. Press, London, 1969).

Erckens, R.

M. J. Goetz, G. L. Cote, R. Erckens, W. March, M. Motamedi, “Application of a multivariate technique to Raman spectra for quantification of body chemicals,” IEEE Trans. Biomed. Eng. 42, 728–731 (1995).
[CrossRef] [PubMed]

Erckens, R. J.

Feld, M. S.

A. J. Berger, T. W. Koo, I. Itzkan, G. Horowitz, M. S. Feld, “Multicomponent blood analysis by near-infrared Raman spectroscopy,” Appl. Opt. 38, 2916–2926 (1999).
[CrossRef]

A. J. Berger, T. W. Koo, I. Itzkan, M. S. Feld, “An enhanced algorithm for linear multivariate calibration,” Anal. Chem. 70, 623–627 (1998).
[CrossRef] [PubMed]

J. Berger, I. Itzkan, M. S. Feld, “Feasibility of measuring blood glucose concentration by near-infrared Raman spectroscopy,” Spectrochim. Acta 53A, 287–292 (1997).

J. Berger, Y. Wang, M. S. Feld, “Rapid, noninvasive concentration measurements of aqueous biological analytes by near-infrared Raman spectroscopy,” Appl. Opt. 35, 209–212 (1996).
[CrossRef] [PubMed]

Fried, L. E.

W. B. Bosma, L. E. Fried, S. Mukamel, “Simulation of the intermolecular vibrational spectra of liquid water and water clusters,” J. Chem. Phys. 98, 4413–4421 (1993).
[CrossRef]

Goetz, M. J.

M. J. Goetz, G. L. Cote, R. Erckens, W. March, M. Motamedi, “Application of a multivariate technique to Raman spectra for quantification of body chemicals,” IEEE Trans. Biomed. Eng. 42, 728–731 (1995).
[CrossRef] [PubMed]

Haaland, D. M.

D. M. Haaland, E. V. Thomas, “Partial least-squares methods for spectral analysis. 1. Relation to other quantitative calibration methods and the extraction of qualitative information,” Anal. Chem. 60, 1193–1202 (1988).
[CrossRef]

Hancewicz, T. M.

T. M. Hancewicz, C. Petty, “Quantitative analysis of vitamin A using Fourier transform Raman spectroscopy,” Spectrochim. Acta 51A, 2193–2198 (1995).
[CrossRef]

Hancock, G.

M. H. Brooker, G. Hancock, B. C. Rice, J. Shapter, “Raman frequency and intensity studies of liquid H2O, H218O and D2O,” J. Raman Spectrosc. 20, 683–694 (1989).
[CrossRef]

Hecht, L.

J. Teraoka, A. F. Bell, L. Hecht, L. D. Barron, “Loop structure in human serum albumin from Raman optical activity,” J. Raman Spectrosc. 29, 67–71 (1998).
[CrossRef]

Hodges, C. M.

C. M. Hodges, J. Akhavan, “The use of Fourier transform Raman spectroscopy in the forensic identification of illicit drugs and explosives,” Spectrochim. Acta 46A, 303–307 (1990).
[CrossRef]

Holme, D. J.

D. J. Holme, H. Peck, Analytical Biochemistry (Longman, London, 1983).

Horowitz, G.

Itzkan, I.

A. J. Berger, T. W. Koo, I. Itzkan, G. Horowitz, M. S. Feld, “Multicomponent blood analysis by near-infrared Raman spectroscopy,” Appl. Opt. 38, 2916–2926 (1999).
[CrossRef]

A. J. Berger, T. W. Koo, I. Itzkan, M. S. Feld, “An enhanced algorithm for linear multivariate calibration,” Anal. Chem. 70, 623–627 (1998).
[CrossRef] [PubMed]

J. Berger, I. Itzkan, M. S. Feld, “Feasibility of measuring blood glucose concentration by near-infrared Raman spectroscopy,” Spectrochim. Acta 53A, 287–292 (1997).

Kauzmann, W.

D. Eisenberg, W. Kauzmann, The Structures and Properties of Water (Oxford U. Press, London, 1969).

Kontoyannis, C. G.

C. G. Kontoyannis, M. Orkoula, “Quantitative non-destructive determination of salycylic acid acetate in aspirin tablets by Raman spectroscopy,” Talanta 41, 1981–1984 (1994).
[CrossRef] [PubMed]

Koo, T. W.

A. J. Berger, T. W. Koo, I. Itzkan, G. Horowitz, M. S. Feld, “Multicomponent blood analysis by near-infrared Raman spectroscopy,” Appl. Opt. 38, 2916–2926 (1999).
[CrossRef]

A. J. Berger, T. W. Koo, I. Itzkan, M. S. Feld, “An enhanced algorithm for linear multivariate calibration,” Anal. Chem. 70, 623–627 (1998).
[CrossRef] [PubMed]

Kvalheim, O. M.

F. O. Libnau, O. M. Kvalheim, A. A. Christy, J. Toft, “Spectra of water in the near- and mid-infrared region,” Vib. Spectrosc. 7, 243–254 (1994).
[CrossRef]

Libnau, F. O.

F. O. Libnau, O. M. Kvalheim, A. A. Christy, J. Toft, “Spectra of water in the near- and mid-infrared region,” Vib. Spectrosc. 7, 243–254 (1994).
[CrossRef]

March, W.

M. J. Goetz, G. L. Cote, R. Erckens, W. March, M. Motamedi, “Application of a multivariate technique to Raman spectra for quantification of body chemicals,” IEEE Trans. Biomed. Eng. 42, 728–731 (1995).
[CrossRef] [PubMed]

March, W. F.

Martens, H.

H. Martens, T. Naes, Multivariate Calibration (Wiley, New York, 1989).

Motamedi, M.

J. P. Wicksted, R. J. Erckens, M. Motamedi, W. F. March, “Raman spectroscopy studies of metabolites concentrations in aqueous solutions and aqueous humor specimens,” Appl. Spectrosc. 49, 987–993 (1995).
[CrossRef]

M. J. Goetz, G. L. Cote, R. Erckens, W. March, M. Motamedi, “Application of a multivariate technique to Raman spectra for quantification of body chemicals,” IEEE Trans. Biomed. Eng. 42, 728–731 (1995).
[CrossRef] [PubMed]

Mukamel, S.

W. B. Bosma, L. E. Fried, S. Mukamel, “Simulation of the intermolecular vibrational spectra of liquid water and water clusters,” J. Chem. Phys. 98, 4413–4421 (1993).
[CrossRef]

Naes, T.

H. Martens, T. Naes, Multivariate Calibration (Wiley, New York, 1989).

Orkoula, M.

C. G. Kontoyannis, M. Orkoula, “Quantitative non-destructive determination of salycylic acid acetate in aspirin tablets by Raman spectroscopy,” Talanta 41, 1981–1984 (1994).
[CrossRef] [PubMed]

Ozaki, Y.

X. Dou, Y. Yamaguchi, H. Yamamoto, S. Doi, Y. Ozaki, “Quantitative analysis of metabolites in urine using a highly precise, compact near-infrared Raman spectrometer,” Vib. Spectrosc. 13, 83–89 (1996).
[CrossRef]

Peck, H.

D. J. Holme, H. Peck, Analytical Biochemistry (Longman, London, 1983).

Petty, C.

T. M. Hancewicz, C. Petty, “Quantitative analysis of vitamin A using Fourier transform Raman spectroscopy,” Spectrochim. Acta 51A, 2193–2198 (1995).
[CrossRef]

Qu, J.

J. Qu, O. Yau, S. Yau, “Improved accuracy of quantification of analytes in human body fluids by near-IR laser Raman spectroscopy with new algorithms,” in Biomedical, Diagnostic, Guidance, and Surgical-Assist Systems, T. Vo-Dinh, W. S. Grundfest, D. A. Benaron, S. T. Bucholz, M. W. Vannier, eds., Proc. SPIE3595 (in press).

Rice, B. C.

M. H. Brooker, G. Hancock, B. C. Rice, J. Shapter, “Raman frequency and intensity studies of liquid H2O, H218O and D2O,” J. Raman Spectrosc. 20, 683–694 (1989).
[CrossRef]

Shapter, J.

M. H. Brooker, G. Hancock, B. C. Rice, J. Shapter, “Raman frequency and intensity studies of liquid H2O, H218O and D2O,” J. Raman Spectrosc. 20, 683–694 (1989).
[CrossRef]

Taylor, E. H.

E. H. Taylor, Clinical Chemistry (Wiley, New York, 1989).

Teraoka, J.

J. Teraoka, A. F. Bell, L. Hecht, L. D. Barron, “Loop structure in human serum albumin from Raman optical activity,” J. Raman Spectrosc. 29, 67–71 (1998).
[CrossRef]

Thomas, E. V.

D. M. Haaland, E. V. Thomas, “Partial least-squares methods for spectral analysis. 1. Relation to other quantitative calibration methods and the extraction of qualitative information,” Anal. Chem. 60, 1193–1202 (1988).
[CrossRef]

Toft, J.

F. O. Libnau, O. M. Kvalheim, A. A. Christy, J. Toft, “Spectra of water in the near- and mid-infrared region,” Vib. Spectrosc. 7, 243–254 (1994).
[CrossRef]

Wang, Y.

Wicksted, J. P.

Wong, S. H. Y.

S. H. Y. Wong, Therapeutic Drug Monitoring and Toxicology by Liquid Chromatography (Dakken, New York, 1985).

Yamaguchi, Y.

X. Dou, Y. Yamaguchi, H. Yamamoto, S. Doi, Y. Ozaki, “Quantitative analysis of metabolites in urine using a highly precise, compact near-infrared Raman spectrometer,” Vib. Spectrosc. 13, 83–89 (1996).
[CrossRef]

Yamamoto, H.

X. Dou, Y. Yamaguchi, H. Yamamoto, S. Doi, Y. Ozaki, “Quantitative analysis of metabolites in urine using a highly precise, compact near-infrared Raman spectrometer,” Vib. Spectrosc. 13, 83–89 (1996).
[CrossRef]

Yau, O.

J. Qu, O. Yau, S. Yau, “Improved accuracy of quantification of analytes in human body fluids by near-IR laser Raman spectroscopy with new algorithms,” in Biomedical, Diagnostic, Guidance, and Surgical-Assist Systems, T. Vo-Dinh, W. S. Grundfest, D. A. Benaron, S. T. Bucholz, M. W. Vannier, eds., Proc. SPIE3595 (in press).

Yau, S.

J. Qu, O. Yau, S. Yau, “Improved accuracy of quantification of analytes in human body fluids by near-IR laser Raman spectroscopy with new algorithms,” in Biomedical, Diagnostic, Guidance, and Surgical-Assist Systems, T. Vo-Dinh, W. S. Grundfest, D. A. Benaron, S. T. Bucholz, M. W. Vannier, eds., Proc. SPIE3595 (in press).

Anal. Chem.

D. M. Haaland, E. V. Thomas, “Partial least-squares methods for spectral analysis. 1. Relation to other quantitative calibration methods and the extraction of qualitative information,” Anal. Chem. 60, 1193–1202 (1988).
[CrossRef]

A. J. Berger, T. W. Koo, I. Itzkan, M. S. Feld, “An enhanced algorithm for linear multivariate calibration,” Anal. Chem. 70, 623–627 (1998).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Spectrosc.

Fed. Reg.

U.S. Department of Health and Human Services; “Clinical laboratory improvement amendments of 1988; final rules and notice,” 42 CFR Part 493, Fed. Reg. 57, 7188–7288 (1992).

IEEE Trans. Biomed. Eng.

M. J. Goetz, G. L. Cote, R. Erckens, W. March, M. Motamedi, “Application of a multivariate technique to Raman spectra for quantification of body chemicals,” IEEE Trans. Biomed. Eng. 42, 728–731 (1995).
[CrossRef] [PubMed]

J. Chem. Phys.

W. B. Bosma, L. E. Fried, S. Mukamel, “Simulation of the intermolecular vibrational spectra of liquid water and water clusters,” J. Chem. Phys. 98, 4413–4421 (1993).
[CrossRef]

J. Raman Spectrosc.

M. H. Brooker, G. Hancock, B. C. Rice, J. Shapter, “Raman frequency and intensity studies of liquid H2O, H218O and D2O,” J. Raman Spectrosc. 20, 683–694 (1989).
[CrossRef]

J. Teraoka, A. F. Bell, L. Hecht, L. D. Barron, “Loop structure in human serum albumin from Raman optical activity,” J. Raman Spectrosc. 29, 67–71 (1998).
[CrossRef]

Spectrochim. Acta

T. M. Hancewicz, C. Petty, “Quantitative analysis of vitamin A using Fourier transform Raman spectroscopy,” Spectrochim. Acta 51A, 2193–2198 (1995).
[CrossRef]

J. Berger, I. Itzkan, M. S. Feld, “Feasibility of measuring blood glucose concentration by near-infrared Raman spectroscopy,” Spectrochim. Acta 53A, 287–292 (1997).

C. M. Hodges, J. Akhavan, “The use of Fourier transform Raman spectroscopy in the forensic identification of illicit drugs and explosives,” Spectrochim. Acta 46A, 303–307 (1990).
[CrossRef]

Talanta

C. G. Kontoyannis, M. Orkoula, “Quantitative non-destructive determination of salycylic acid acetate in aspirin tablets by Raman spectroscopy,” Talanta 41, 1981–1984 (1994).
[CrossRef] [PubMed]

Vib. Spectrosc.

X. Dou, Y. Yamaguchi, H. Yamamoto, S. Doi, Y. Ozaki, “Quantitative analysis of metabolites in urine using a highly precise, compact near-infrared Raman spectrometer,” Vib. Spectrosc. 13, 83–89 (1996).
[CrossRef]

F. O. Libnau, O. M. Kvalheim, A. A. Christy, J. Toft, “Spectra of water in the near- and mid-infrared region,” Vib. Spectrosc. 7, 243–254 (1994).
[CrossRef]

Other

J. Qu, O. Yau, S. Yau, “Improved accuracy of quantification of analytes in human body fluids by near-IR laser Raman spectroscopy with new algorithms,” in Biomedical, Diagnostic, Guidance, and Surgical-Assist Systems, T. Vo-Dinh, W. S. Grundfest, D. A. Benaron, S. T. Bucholz, M. W. Vannier, eds., Proc. SPIE3595 (in press).

D. J. Holme, H. Peck, Analytical Biochemistry (Longman, London, 1983).

E. H. Taylor, Clinical Chemistry (Wiley, New York, 1989).

D. G. Deutsch, Analytical Aspects of Drug Testing (Wiley, New York, 1989).

S. H. Y. Wong, Therapeutic Drug Monitoring and Toxicology by Liquid Chromatography (Dakken, New York, 1985).

D. Eisenberg, W. Kauzmann, The Structures and Properties of Water (Oxford U. Press, London, 1969).

N. W. Tietz, ed., Clinical Guide to Laboratory Tests, 3rd ed. (Saunders, Philadelphia, Pa., 1995), pp. 787–897.

H. Martens, T. Naes, Multivariate Calibration (Wiley, New York, 1989).

C. Lentner, ed., “Physical chemistry composition of blood hemotology somatometric data,” in Geigy Scientific Tables (Ciba-Geigy, West Caldwell, N.J., 1981), Vol. 3, pp. 111–161.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Setup used to collect NIR Raman spectra from human sera and other stock solutions.

Fig. 2
Fig. 2

PLS-predicted concentrations of (a) total protein, (b) albumin, (c) triglyceride, (d) glucose versus actual concentrations. RMSEP, root-mean-square error of prediction.

Fig. 3
Fig. 3

Spectra of aqueous glucose (dashed curve) and albumin (solid curve).

Fig. 4
Fig. 4

Comparison of Raman spectra between water and serum samples: (a) water and whole serum, (b) water and serum with macromolecules removed.

Fig. 5
Fig. 5

Raman spectra with water background removed: (a) ethanol, (b) acetaminophen, (c) codeine.

Fig. 6
Fig. 6

Predicted versus actual concentrations: (a) ethanol, (b) acetaminophen, (c) codeine.

Metrics