Abstract

Near-infrared (NIR) spectroscopic diffuse tomography has been used to map the hemoglobin concentration and the hemoglobin oxygen saturation quantitatively in tissuelike phantoms and to determine average values in vivo. A series of phantom calibrations were performed to achieve quantitatively accurate images of the absorption and the reduced scattering coefficients at multiple optical wavelengths. A least-squares fit was applied to absorption-coefficient images at multiple NIR wavelengths to obtain hemoglobin images of the concentration and the hemoglobin oxygen saturation. Objects of varying hemoglobin concentration and oxygen saturation within highly scattering media were localized and imaged to within 15% of their actual values. The average hemoglobin concentration and oxygen saturation of breast tissue was measured in vivo for two women volunteers. The potential application for the diagnosis of breast tumors is discussed.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Tromberg, O. Coquez, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London 352, 661–668 (1997).
    [CrossRef]
  2. J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt. 36, 10–20 (1997).
    [CrossRef] [PubMed]
  3. S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1988 (1998).
    [CrossRef]
  4. D. T. Delpy, M. Cope, “Quantification in tissue near infrared spectroscopy,” Philos. Trans. R. Soc. London 352, 649–659 (1997).
    [CrossRef]
  5. B. Chance, Q. Luo, S. Nioka, D. C. Alsop, J. A. Detre, “Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast,” Philos. Trans. R. Soc. London 352, 707–716 (1997).
    [CrossRef]
  6. E. L. Hull, M. G. Nichols, T. H. Foster, “Quantitative broadband near-infrared spectroscopy tissue-simulating phantoms containing erthrocytes,” Phys. Med. Biol. 43, 3381–3404 (1998).
    [CrossRef] [PubMed]
  7. A. F. Profio, G. A. Navarro, “Scientific basis of breast diaphanography,” Med. Phys. 16, 60–65 (1989).
    [CrossRef] [PubMed]
  8. B. A. Teicher, “Physiologic mechanisms of therapeutic resistance: blood flow and hypoxia,” Hematol. Oncol. Clin. North Am. 9, 475–506 (1995).
    [PubMed]
  9. P. Vaupel, F. Kallinowski, P. Okunieff, “Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review,” Cancer Res. 49, 6449–6465 (1989).
    [PubMed]
  10. D. M. Brizel, S. P. Scully, J. M. Harrelson, L. J. Layfield, J. M. Bean, L. R. Prosnitz, M. W. Dewhirst, “Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma,” Cancer Res. 56, 941–943 (1996).
    [PubMed]
  11. P. Okunieff, M. Hoeckel, E. P. Dunphy, K. Schlenger, C. Knoop, P. Vaupel, “Oxygen tension distributions are sufficient to explain the local response of human breast tumors treated with radiation alone,” Int. J. Radiat. Oncol. Biol. Phys. 26, 631–636 (1993).
    [CrossRef] [PubMed]
  12. M. Hoeckel, C. Knoop, K. Schlenger, B. Vorndorn, E. Baubmann, M. Mitze, P. G. Knapstein, P. Vaupel, “Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix,” Radiotherapy Oncol. 26, 45–50 (1993).
    [CrossRef]
  13. H. Jiang, K. D. Paulsen, U. L. Österberg, M. S. Patterson, “Frequency-domain optical image reconstruction in turbid media: an experimental study of single-target detectability,” Appl. Opt. 36, 52–63 (1997).
    [CrossRef] [PubMed]
  14. D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36, 75–92 (1997).
    [CrossRef] [PubMed]
  15. J. A. Moon, R. Mahon, M. D. Duncan, J. Reintjes, “Resolution limits for imaging through turbid media with diffuse light,” Opt. Lett. 18, 1591–1593 (1993).
    [CrossRef] [PubMed]
  16. D. R. White, H. Q. Woodard, S. M. Hammond, “Average soft-tissue and bone models for use in radiation dosimetry,” Br. J. Radiol. 60, 907–913 (1987).
    [CrossRef] [PubMed]
  17. H. Q. Woodard, D. R. White, “The composition of body tissues,” Br. J. Radiol. 59, 1209–1219 (1986).
    [CrossRef] [PubMed]
  18. V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
    [CrossRef] [PubMed]
  19. H. Jiang, K. D. Paulsen, U. L. Österberg, “Frequency-domain near-infrared photo diffusion imaging: initial evaluation in multitarget tissuelike phantoms,” Med. Phys. 25, 183–193 (1998).
    [CrossRef] [PubMed]
  20. S. R. Arridge, M. Schweiger, “Image reconstruction in optical tomography,” Philos. Trans. R. Soc. London B 352, 717–726 (1997).
    [CrossRef]
  21. B. W. Pogue, M. Testorf, T. McBride, U. Österberg, K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Exp. 1, 391–403 (1997), http://www.osa.org/opticsexpress .
    [CrossRef]
  22. H. Jiang, K. D. Paulsen, U. L. Österberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
    [CrossRef]
  23. S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, E. O. R. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the noninvasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933, 184–192 (1988).
    [CrossRef] [PubMed]
  24. G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12, 555–563 (1973).
    [CrossRef] [PubMed]
  25. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
    [CrossRef] [PubMed]
  26. K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneki, M. Yoshida, B. Chance, “Quantitative measurement of optical properties in normal breast using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
    [CrossRef] [PubMed]
  27. B. L. Hart, R. T. Steinbock, F. A. Mettler, D. R. Pathak, S. A. Bartlow, “Age and race changes in mammographic parenchymal patterns,” Cancer 63, 2537–2539 (1989).
    [CrossRef] [PubMed]
  28. T. O. McBride, B. W. Pogue, U. L. Österberg, K. D. Paulsen, “Image reconstruction of continuously varying objects and simulated breast cancer lesions,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. Alfano, B. Tromberg, eds., Proc. SPIE3597 (in press).

1998

E. L. Hull, M. G. Nichols, T. H. Foster, “Quantitative broadband near-infrared spectroscopy tissue-simulating phantoms containing erthrocytes,” Phys. Med. Biol. 43, 3381–3404 (1998).
[CrossRef] [PubMed]

V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Österberg, “Frequency-domain near-infrared photo diffusion imaging: initial evaluation in multitarget tissuelike phantoms,” Med. Phys. 25, 183–193 (1998).
[CrossRef] [PubMed]

S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1988 (1998).
[CrossRef]

1997

J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt. 36, 10–20 (1997).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Österberg, M. S. Patterson, “Frequency-domain optical image reconstruction in turbid media: an experimental study of single-target detectability,” Appl. Opt. 36, 52–63 (1997).
[CrossRef] [PubMed]

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36, 75–92 (1997).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, “Image reconstruction in optical tomography,” Philos. Trans. R. Soc. London B 352, 717–726 (1997).
[CrossRef]

B. W. Pogue, M. Testorf, T. McBride, U. Österberg, K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Exp. 1, 391–403 (1997), http://www.osa.org/opticsexpress .
[CrossRef]

B. J. Tromberg, O. Coquez, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London 352, 661–668 (1997).
[CrossRef]

D. T. Delpy, M. Cope, “Quantification in tissue near infrared spectroscopy,” Philos. Trans. R. Soc. London 352, 649–659 (1997).
[CrossRef]

B. Chance, Q. Luo, S. Nioka, D. C. Alsop, J. A. Detre, “Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast,” Philos. Trans. R. Soc. London 352, 707–716 (1997).
[CrossRef]

1996

D. M. Brizel, S. P. Scully, J. M. Harrelson, L. J. Layfield, J. M. Bean, L. R. Prosnitz, M. W. Dewhirst, “Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma,” Cancer Res. 56, 941–943 (1996).
[PubMed]

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneki, M. Yoshida, B. Chance, “Quantitative measurement of optical properties in normal breast using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Österberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
[CrossRef]

1995

B. A. Teicher, “Physiologic mechanisms of therapeutic resistance: blood flow and hypoxia,” Hematol. Oncol. Clin. North Am. 9, 475–506 (1995).
[PubMed]

1993

P. Okunieff, M. Hoeckel, E. P. Dunphy, K. Schlenger, C. Knoop, P. Vaupel, “Oxygen tension distributions are sufficient to explain the local response of human breast tumors treated with radiation alone,” Int. J. Radiat. Oncol. Biol. Phys. 26, 631–636 (1993).
[CrossRef] [PubMed]

M. Hoeckel, C. Knoop, K. Schlenger, B. Vorndorn, E. Baubmann, M. Mitze, P. G. Knapstein, P. Vaupel, “Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix,” Radiotherapy Oncol. 26, 45–50 (1993).
[CrossRef]

J. A. Moon, R. Mahon, M. D. Duncan, J. Reintjes, “Resolution limits for imaging through turbid media with diffuse light,” Opt. Lett. 18, 1591–1593 (1993).
[CrossRef] [PubMed]

1991

1989

A. F. Profio, G. A. Navarro, “Scientific basis of breast diaphanography,” Med. Phys. 16, 60–65 (1989).
[CrossRef] [PubMed]

P. Vaupel, F. Kallinowski, P. Okunieff, “Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review,” Cancer Res. 49, 6449–6465 (1989).
[PubMed]

B. L. Hart, R. T. Steinbock, F. A. Mettler, D. R. Pathak, S. A. Bartlow, “Age and race changes in mammographic parenchymal patterns,” Cancer 63, 2537–2539 (1989).
[CrossRef] [PubMed]

1988

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, E. O. R. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the noninvasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933, 184–192 (1988).
[CrossRef] [PubMed]

1987

D. R. White, H. Q. Woodard, S. M. Hammond, “Average soft-tissue and bone models for use in radiation dosimetry,” Br. J. Radiol. 60, 907–913 (1987).
[CrossRef] [PubMed]

1986

H. Q. Woodard, D. R. White, “The composition of body tissues,” Br. J. Radiol. 59, 1209–1219 (1986).
[CrossRef] [PubMed]

1973

Alsop, D. C.

B. Chance, Q. Luo, S. Nioka, D. C. Alsop, J. A. Detre, “Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast,” Philos. Trans. R. Soc. London 352, 707–716 (1997).
[CrossRef]

Anderson, E. R.

B. J. Tromberg, O. Coquez, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London 352, 661–668 (1997).
[CrossRef]

J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt. 36, 10–20 (1997).
[CrossRef] [PubMed]

Arridge, S. R.

S. R. Arridge, M. Schweiger, “Image reconstruction in optical tomography,” Philos. Trans. R. Soc. London B 352, 717–726 (1997).
[CrossRef]

Bartlow, S. A.

B. L. Hart, R. T. Steinbock, F. A. Mettler, D. R. Pathak, S. A. Bartlow, “Age and race changes in mammographic parenchymal patterns,” Cancer 63, 2537–2539 (1989).
[CrossRef] [PubMed]

Baubmann, E.

M. Hoeckel, C. Knoop, K. Schlenger, B. Vorndorn, E. Baubmann, M. Mitze, P. G. Knapstein, P. Vaupel, “Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix,” Radiotherapy Oncol. 26, 45–50 (1993).
[CrossRef]

Bean, J. M.

D. M. Brizel, S. P. Scully, J. M. Harrelson, L. J. Layfield, J. M. Bean, L. R. Prosnitz, M. W. Dewhirst, “Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma,” Cancer Res. 56, 941–943 (1996).
[PubMed]

Boas, D. A.

Brenner, M.

Brizel, D. M.

D. M. Brizel, S. P. Scully, J. M. Harrelson, L. J. Layfield, J. M. Bean, L. R. Prosnitz, M. W. Dewhirst, “Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma,” Cancer Res. 56, 941–943 (1996).
[PubMed]

Butler, J.

B. J. Tromberg, O. Coquez, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London 352, 661–668 (1997).
[CrossRef]

Cahn, M.

B. J. Tromberg, O. Coquez, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London 352, 661–668 (1997).
[CrossRef]

Chance, B.

B. Chance, Q. Luo, S. Nioka, D. C. Alsop, J. A. Detre, “Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast,” Philos. Trans. R. Soc. London 352, 707–716 (1997).
[CrossRef]

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36, 75–92 (1997).
[CrossRef] [PubMed]

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneki, M. Yoshida, B. Chance, “Quantitative measurement of optical properties in normal breast using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

Cope, M.

D. T. Delpy, M. Cope, “Quantification in tissue near infrared spectroscopy,” Philos. Trans. R. Soc. London 352, 649–659 (1997).
[CrossRef]

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, E. O. R. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the noninvasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933, 184–192 (1988).
[CrossRef] [PubMed]

Coquez, O.

B. J. Tromberg, O. Coquez, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London 352, 661–668 (1997).
[CrossRef]

Coquoz, O.

Delpy, D. T.

D. T. Delpy, M. Cope, “Quantification in tissue near infrared spectroscopy,” Philos. Trans. R. Soc. London 352, 649–659 (1997).
[CrossRef]

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, E. O. R. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the noninvasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933, 184–192 (1988).
[CrossRef] [PubMed]

Detre, J. A.

B. Chance, Q. Luo, S. Nioka, D. C. Alsop, J. A. Detre, “Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast,” Philos. Trans. R. Soc. London 352, 707–716 (1997).
[CrossRef]

Dewhirst, M. W.

D. M. Brizel, S. P. Scully, J. M. Harrelson, L. J. Layfield, J. M. Bean, L. R. Prosnitz, M. W. Dewhirst, “Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma,” Cancer Res. 56, 941–943 (1996).
[PubMed]

Duncan, M. D.

Dunphy, E. P.

P. Okunieff, M. Hoeckel, E. P. Dunphy, K. Schlenger, C. Knoop, P. Vaupel, “Oxygen tension distributions are sufficient to explain the local response of human breast tumors treated with radiation alone,” Int. J. Radiat. Oncol. Biol. Phys. 26, 631–636 (1993).
[CrossRef] [PubMed]

Fantini, S.

Ferrari, M.

V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
[CrossRef] [PubMed]

Fishkin, J. B.

J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt. 36, 10–20 (1997).
[CrossRef] [PubMed]

B. J. Tromberg, O. Coquez, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London 352, 661–668 (1997).
[CrossRef]

Foster, T. H.

E. L. Hull, M. G. Nichols, T. H. Foster, “Quantitative broadband near-infrared spectroscopy tissue-simulating phantoms containing erthrocytes,” Phys. Med. Biol. 43, 3381–3404 (1998).
[CrossRef] [PubMed]

Franceschini, M. A.

Gross, J. D.

B. J. Tromberg, O. Coquez, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London 352, 661–668 (1997).
[CrossRef]

Hale, G. M.

Hammond, S. M.

D. R. White, H. Q. Woodard, S. M. Hammond, “Average soft-tissue and bone models for use in radiation dosimetry,” Br. J. Radiol. 60, 907–913 (1987).
[CrossRef] [PubMed]

Harrelson, J. M.

D. M. Brizel, S. P. Scully, J. M. Harrelson, L. J. Layfield, J. M. Bean, L. R. Prosnitz, M. W. Dewhirst, “Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma,” Cancer Res. 56, 941–943 (1996).
[PubMed]

Hart, B. L.

B. L. Hart, R. T. Steinbock, F. A. Mettler, D. R. Pathak, S. A. Bartlow, “Age and race changes in mammographic parenchymal patterns,” Cancer 63, 2537–2539 (1989).
[CrossRef] [PubMed]

Hoeckel, M.

M. Hoeckel, C. Knoop, K. Schlenger, B. Vorndorn, E. Baubmann, M. Mitze, P. G. Knapstein, P. Vaupel, “Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix,” Radiotherapy Oncol. 26, 45–50 (1993).
[CrossRef]

P. Okunieff, M. Hoeckel, E. P. Dunphy, K. Schlenger, C. Knoop, P. Vaupel, “Oxygen tension distributions are sufficient to explain the local response of human breast tumors treated with radiation alone,” Int. J. Radiat. Oncol. Biol. Phys. 26, 631–636 (1993).
[CrossRef] [PubMed]

Hull, E. L.

E. L. Hull, M. G. Nichols, T. H. Foster, “Quantitative broadband near-infrared spectroscopy tissue-simulating phantoms containing erthrocytes,” Phys. Med. Biol. 43, 3381–3404 (1998).
[CrossRef] [PubMed]

Jiang, H.

Kallinowski, F.

P. Vaupel, F. Kallinowski, P. Okunieff, “Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review,” Cancer Res. 49, 6449–6465 (1989).
[PubMed]

Kaneki, M.

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneki, M. Yoshida, B. Chance, “Quantitative measurement of optical properties in normal breast using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

Kaschke, M.

Knapstein, P. G.

M. Hoeckel, C. Knoop, K. Schlenger, B. Vorndorn, E. Baubmann, M. Mitze, P. G. Knapstein, P. Vaupel, “Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix,” Radiotherapy Oncol. 26, 45–50 (1993).
[CrossRef]

Knoop, C.

M. Hoeckel, C. Knoop, K. Schlenger, B. Vorndorn, E. Baubmann, M. Mitze, P. G. Knapstein, P. Vaupel, “Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix,” Radiotherapy Oncol. 26, 45–50 (1993).
[CrossRef]

P. Okunieff, M. Hoeckel, E. P. Dunphy, K. Schlenger, C. Knoop, P. Vaupel, “Oxygen tension distributions are sufficient to explain the local response of human breast tumors treated with radiation alone,” Int. J. Radiat. Oncol. Biol. Phys. 26, 631–636 (1993).
[CrossRef] [PubMed]

Layfield, L. J.

D. M. Brizel, S. P. Scully, J. M. Harrelson, L. J. Layfield, J. M. Bean, L. R. Prosnitz, M. W. Dewhirst, “Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma,” Cancer Res. 56, 941–943 (1996).
[PubMed]

Luo, Q.

B. Chance, Q. Luo, S. Nioka, D. C. Alsop, J. A. Detre, “Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast,” Philos. Trans. R. Soc. London 352, 707–716 (1997).
[CrossRef]

Mahon, R.

Matcher, S. J.

V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
[CrossRef] [PubMed]

McBride, T.

B. W. Pogue, M. Testorf, T. McBride, U. Österberg, K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Exp. 1, 391–403 (1997), http://www.osa.org/opticsexpress .
[CrossRef]

McBride, T. O.

T. O. McBride, B. W. Pogue, U. L. Österberg, K. D. Paulsen, “Image reconstruction of continuously varying objects and simulated breast cancer lesions,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. Alfano, B. Tromberg, eds., Proc. SPIE3597 (in press).

Mettler, F. A.

B. L. Hart, R. T. Steinbock, F. A. Mettler, D. R. Pathak, S. A. Bartlow, “Age and race changes in mammographic parenchymal patterns,” Cancer 63, 2537–2539 (1989).
[CrossRef] [PubMed]

Mitze, M.

M. Hoeckel, C. Knoop, K. Schlenger, B. Vorndorn, E. Baubmann, M. Mitze, P. G. Knapstein, P. Vaupel, “Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix,” Radiotherapy Oncol. 26, 45–50 (1993).
[CrossRef]

Moes, C. J. M.

Moesta, K. T.

Moon, J. A.

Navarro, G. A.

A. F. Profio, G. A. Navarro, “Scientific basis of breast diaphanography,” Med. Phys. 16, 60–65 (1989).
[CrossRef] [PubMed]

Nichols, M. G.

E. L. Hull, M. G. Nichols, T. H. Foster, “Quantitative broadband near-infrared spectroscopy tissue-simulating phantoms containing erthrocytes,” Phys. Med. Biol. 43, 3381–3404 (1998).
[CrossRef] [PubMed]

Nioka, S.

B. Chance, Q. Luo, S. Nioka, D. C. Alsop, J. A. Detre, “Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast,” Philos. Trans. R. Soc. London 352, 707–716 (1997).
[CrossRef]

O’Leary, M. A.

Ohta, K.

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneki, M. Yoshida, B. Chance, “Quantitative measurement of optical properties in normal breast using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

Okunieff, P.

P. Okunieff, M. Hoeckel, E. P. Dunphy, K. Schlenger, C. Knoop, P. Vaupel, “Oxygen tension distributions are sufficient to explain the local response of human breast tumors treated with radiation alone,” Int. J. Radiat. Oncol. Biol. Phys. 26, 631–636 (1993).
[CrossRef] [PubMed]

P. Vaupel, F. Kallinowski, P. Okunieff, “Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review,” Cancer Res. 49, 6449–6465 (1989).
[PubMed]

Österberg, U.

B. W. Pogue, M. Testorf, T. McBride, U. Österberg, K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Exp. 1, 391–403 (1997), http://www.osa.org/opticsexpress .
[CrossRef]

Österberg, U. L.

H. Jiang, K. D. Paulsen, U. L. Österberg, “Frequency-domain near-infrared photo diffusion imaging: initial evaluation in multitarget tissuelike phantoms,” Med. Phys. 25, 183–193 (1998).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Österberg, M. S. Patterson, “Frequency-domain optical image reconstruction in turbid media: an experimental study of single-target detectability,” Appl. Opt. 36, 52–63 (1997).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Österberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
[CrossRef]

T. O. McBride, B. W. Pogue, U. L. Österberg, K. D. Paulsen, “Image reconstruction of continuously varying objects and simulated breast cancer lesions,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. Alfano, B. Tromberg, eds., Proc. SPIE3597 (in press).

Pathak, D. R.

B. L. Hart, R. T. Steinbock, F. A. Mettler, D. R. Pathak, S. A. Bartlow, “Age and race changes in mammographic parenchymal patterns,” Cancer 63, 2537–2539 (1989).
[CrossRef] [PubMed]

Patterson, M. S.

Paulsen, K.

B. W. Pogue, M. Testorf, T. McBride, U. Österberg, K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Exp. 1, 391–403 (1997), http://www.osa.org/opticsexpress .
[CrossRef]

Paulsen, K. D.

H. Jiang, K. D. Paulsen, U. L. Österberg, “Frequency-domain near-infrared photo diffusion imaging: initial evaluation in multitarget tissuelike phantoms,” Med. Phys. 25, 183–193 (1998).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Österberg, M. S. Patterson, “Frequency-domain optical image reconstruction in turbid media: an experimental study of single-target detectability,” Appl. Opt. 36, 52–63 (1997).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Österberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
[CrossRef]

T. O. McBride, B. W. Pogue, U. L. Österberg, K. D. Paulsen, “Image reconstruction of continuously varying objects and simulated breast cancer lesions,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. Alfano, B. Tromberg, eds., Proc. SPIE3597 (in press).

Pham, D.

B. J. Tromberg, O. Coquez, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London 352, 661–668 (1997).
[CrossRef]

Pham, T.

B. J. Tromberg, O. Coquez, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London 352, 661–668 (1997).
[CrossRef]

Pogue, B. W.

B. W. Pogue, M. Testorf, T. McBride, U. Österberg, K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Exp. 1, 391–403 (1997), http://www.osa.org/opticsexpress .
[CrossRef]

H. Jiang, K. D. Paulsen, U. L. Österberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
[CrossRef]

T. O. McBride, B. W. Pogue, U. L. Österberg, K. D. Paulsen, “Image reconstruction of continuously varying objects and simulated breast cancer lesions,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. Alfano, B. Tromberg, eds., Proc. SPIE3597 (in press).

Prahl, S. A.

Profio, A. F.

A. F. Profio, G. A. Navarro, “Scientific basis of breast diaphanography,” Med. Phys. 16, 60–65 (1989).
[CrossRef] [PubMed]

Prosnitz, L. R.

D. M. Brizel, S. P. Scully, J. M. Harrelson, L. J. Layfield, J. M. Bean, L. R. Prosnitz, M. W. Dewhirst, “Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma,” Cancer Res. 56, 941–943 (1996).
[PubMed]

Quaresima, V.

V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
[CrossRef] [PubMed]

Querry, M. R.

Reintjes, J.

Reynolds, E. O. R.

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, E. O. R. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the noninvasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933, 184–192 (1988).
[CrossRef] [PubMed]

Schlag, P. M.

Schlenger, K.

M. Hoeckel, C. Knoop, K. Schlenger, B. Vorndorn, E. Baubmann, M. Mitze, P. G. Knapstein, P. Vaupel, “Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix,” Radiotherapy Oncol. 26, 45–50 (1993).
[CrossRef]

P. Okunieff, M. Hoeckel, E. P. Dunphy, K. Schlenger, C. Knoop, P. Vaupel, “Oxygen tension distributions are sufficient to explain the local response of human breast tumors treated with radiation alone,” Int. J. Radiat. Oncol. Biol. Phys. 26, 631–636 (1993).
[CrossRef] [PubMed]

Schweiger, M.

S. R. Arridge, M. Schweiger, “Image reconstruction in optical tomography,” Philos. Trans. R. Soc. London B 352, 717–726 (1997).
[CrossRef]

Scully, S. P.

D. M. Brizel, S. P. Scully, J. M. Harrelson, L. J. Layfield, J. M. Bean, L. R. Prosnitz, M. W. Dewhirst, “Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma,” Cancer Res. 56, 941–943 (1996).
[PubMed]

Steinbock, R. T.

B. L. Hart, R. T. Steinbock, F. A. Mettler, D. R. Pathak, S. A. Bartlow, “Age and race changes in mammographic parenchymal patterns,” Cancer 63, 2537–2539 (1989).
[CrossRef] [PubMed]

Suzuki, K.

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneki, M. Yoshida, B. Chance, “Quantitative measurement of optical properties in normal breast using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

Teicher, B. A.

B. A. Teicher, “Physiologic mechanisms of therapeutic resistance: blood flow and hypoxia,” Hematol. Oncol. Clin. North Am. 9, 475–506 (1995).
[PubMed]

Testorf, M.

B. W. Pogue, M. Testorf, T. McBride, U. Österberg, K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Exp. 1, 391–403 (1997), http://www.osa.org/opticsexpress .
[CrossRef]

Tromberg, B. J.

J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt. 36, 10–20 (1997).
[CrossRef] [PubMed]

B. J. Tromberg, O. Coquez, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London 352, 661–668 (1997).
[CrossRef]

van Gemert, M. J. C.

van Marle, J.

van Staveren, H. J.

Vaupel, P.

M. Hoeckel, C. Knoop, K. Schlenger, B. Vorndorn, E. Baubmann, M. Mitze, P. G. Knapstein, P. Vaupel, “Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix,” Radiotherapy Oncol. 26, 45–50 (1993).
[CrossRef]

P. Okunieff, M. Hoeckel, E. P. Dunphy, K. Schlenger, C. Knoop, P. Vaupel, “Oxygen tension distributions are sufficient to explain the local response of human breast tumors treated with radiation alone,” Int. J. Radiat. Oncol. Biol. Phys. 26, 631–636 (1993).
[CrossRef] [PubMed]

P. Vaupel, F. Kallinowski, P. Okunieff, “Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review,” Cancer Res. 49, 6449–6465 (1989).
[PubMed]

Venugopalan, V.

B. J. Tromberg, O. Coquez, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London 352, 661–668 (1997).
[CrossRef]

Vorndorn, B.

M. Hoeckel, C. Knoop, K. Schlenger, B. Vorndorn, E. Baubmann, M. Mitze, P. G. Knapstein, P. Vaupel, “Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix,” Radiotherapy Oncol. 26, 45–50 (1993).
[CrossRef]

Walker, S. A.

White, D. R.

D. R. White, H. Q. Woodard, S. M. Hammond, “Average soft-tissue and bone models for use in radiation dosimetry,” Br. J. Radiol. 60, 907–913 (1987).
[CrossRef] [PubMed]

H. Q. Woodard, D. R. White, “The composition of body tissues,” Br. J. Radiol. 59, 1209–1219 (1986).
[CrossRef] [PubMed]

Woodard, H. Q.

D. R. White, H. Q. Woodard, S. M. Hammond, “Average soft-tissue and bone models for use in radiation dosimetry,” Br. J. Radiol. 60, 907–913 (1987).
[CrossRef] [PubMed]

H. Q. Woodard, D. R. White, “The composition of body tissues,” Br. J. Radiol. 59, 1209–1219 (1986).
[CrossRef] [PubMed]

Wray, S.

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, E. O. R. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the noninvasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933, 184–192 (1988).
[CrossRef] [PubMed]

Wyatt, J. S.

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, E. O. R. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the noninvasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933, 184–192 (1988).
[CrossRef] [PubMed]

Yamashita, Y.

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneki, M. Yoshida, B. Chance, “Quantitative measurement of optical properties in normal breast using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

Yodh, A. G.

Yoshida, M.

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneki, M. Yoshida, B. Chance, “Quantitative measurement of optical properties in normal breast using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

Appl. Opt.

Biochim. Biophys. Acta

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, E. O. R. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the noninvasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933, 184–192 (1988).
[CrossRef] [PubMed]

Br. J. Radiol.

D. R. White, H. Q. Woodard, S. M. Hammond, “Average soft-tissue and bone models for use in radiation dosimetry,” Br. J. Radiol. 60, 907–913 (1987).
[CrossRef] [PubMed]

H. Q. Woodard, D. R. White, “The composition of body tissues,” Br. J. Radiol. 59, 1209–1219 (1986).
[CrossRef] [PubMed]

Cancer

B. L. Hart, R. T. Steinbock, F. A. Mettler, D. R. Pathak, S. A. Bartlow, “Age and race changes in mammographic parenchymal patterns,” Cancer 63, 2537–2539 (1989).
[CrossRef] [PubMed]

Cancer Res.

P. Vaupel, F. Kallinowski, P. Okunieff, “Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review,” Cancer Res. 49, 6449–6465 (1989).
[PubMed]

D. M. Brizel, S. P. Scully, J. M. Harrelson, L. J. Layfield, J. M. Bean, L. R. Prosnitz, M. W. Dewhirst, “Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma,” Cancer Res. 56, 941–943 (1996).
[PubMed]

Hematol. Oncol. Clin. North Am.

B. A. Teicher, “Physiologic mechanisms of therapeutic resistance: blood flow and hypoxia,” Hematol. Oncol. Clin. North Am. 9, 475–506 (1995).
[PubMed]

Int. J. Radiat. Oncol. Biol. Phys.

P. Okunieff, M. Hoeckel, E. P. Dunphy, K. Schlenger, C. Knoop, P. Vaupel, “Oxygen tension distributions are sufficient to explain the local response of human breast tumors treated with radiation alone,” Int. J. Radiat. Oncol. Biol. Phys. 26, 631–636 (1993).
[CrossRef] [PubMed]

J. Biomed. Opt.

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneki, M. Yoshida, B. Chance, “Quantitative measurement of optical properties in normal breast using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Med. Phys.

H. Jiang, K. D. Paulsen, U. L. Österberg, “Frequency-domain near-infrared photo diffusion imaging: initial evaluation in multitarget tissuelike phantoms,” Med. Phys. 25, 183–193 (1998).
[CrossRef] [PubMed]

A. F. Profio, G. A. Navarro, “Scientific basis of breast diaphanography,” Med. Phys. 16, 60–65 (1989).
[CrossRef] [PubMed]

Opt. Exp.

B. W. Pogue, M. Testorf, T. McBride, U. Österberg, K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Exp. 1, 391–403 (1997), http://www.osa.org/opticsexpress .
[CrossRef]

Opt. Lett.

Philos. Trans. R. Soc. London

B. J. Tromberg, O. Coquez, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London 352, 661–668 (1997).
[CrossRef]

D. T. Delpy, M. Cope, “Quantification in tissue near infrared spectroscopy,” Philos. Trans. R. Soc. London 352, 649–659 (1997).
[CrossRef]

B. Chance, Q. Luo, S. Nioka, D. C. Alsop, J. A. Detre, “Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast,” Philos. Trans. R. Soc. London 352, 707–716 (1997).
[CrossRef]

Philos. Trans. R. Soc. London B

S. R. Arridge, M. Schweiger, “Image reconstruction in optical tomography,” Philos. Trans. R. Soc. London B 352, 717–726 (1997).
[CrossRef]

Photochem. Photobiol.

V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
[CrossRef] [PubMed]

Phys. Med. Biol.

E. L. Hull, M. G. Nichols, T. H. Foster, “Quantitative broadband near-infrared spectroscopy tissue-simulating phantoms containing erthrocytes,” Phys. Med. Biol. 43, 3381–3404 (1998).
[CrossRef] [PubMed]

Radiotherapy Oncol.

M. Hoeckel, C. Knoop, K. Schlenger, B. Vorndorn, E. Baubmann, M. Mitze, P. G. Knapstein, P. Vaupel, “Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix,” Radiotherapy Oncol. 26, 45–50 (1993).
[CrossRef]

Other

T. O. McBride, B. W. Pogue, U. L. Österberg, K. D. Paulsen, “Image reconstruction of continuously varying objects and simulated breast cancer lesions,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. Alfano, B. Tromberg, eds., Proc. SPIE3597 (in press).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Schematic diagram of the imaging system. TiS, Ti:sapphire. (b) Photograph of the circular array of 16 source optical fibers (small, clear, 2-mm plastic fibers) and 16 detector optical fibers (larger, 6-mm, core glass fiber bundles with black exterior). This setup allows for a variable radial diameter and vertical translation of the array. A fiberglass sheet with a circular opening is placed over the system during patient studies.

Fig. 2
Fig. 2

Plot of the NIR absorption spectra for water, lipids, Hb-O2, and Hb-R. Values for the absorption coefficient are displayed for anatomically relevant concentrations for breast tissue (31% water, 57% lipid, 10µM hemoglobin concentration at 60% oxygen saturation).18,23,24 Relevant values are estimated for Hb-O2 and Hb-R from data by Tromberg et al.,1 and values for the water and the lipid content are estimates from the data summarized by Woodard and White.17

Fig. 3
Fig. 3

Comparison of measured values and those predicted by Staveren et al.25 for the reduced scattering coefficient μ s ′ of a phantom containing 0.5% Intralipid in water. Experimental estimates are reached by means of fitting the data from a homogeneous phantom to the finite-element model.

Fig. 4
Fig. 4

Plot of the experimentally measured absorption coefficient versus the concentration of blood for three wavelengths: (a) Hb-R and (b) Hb-O2. Measurements were recorded from a homogeneous scattering medium of 0.5% Intralipid in a 72-mm-diameter cylindrical phantom.

Fig. 5
Fig. 5

Comparison of the absorption coefficient calculated from expected values with measured values for blood23 and water24: (a) 10µM deoxygenated hemoglobin in a 0.5% Intralipid and water solution and (b) 10µM oxygenated hemoglobin in a 0.5% Intralipid and water solution.

Fig. 6
Fig. 6

Comparison of the absorption-coefficient values from Hale and Querry24 with the absorption coefficient of water measured in a plastic beaker versus a thin-walled balloon. Note that the offset is not apparent with the thin-walled balloon.

Fig. 7
Fig. 7

NIR spectra and graphical results of a least-squares fit to determine the hemoglobin concentration and the hemoglobin oxygen-saturation level for (a) a 33-year-old woman and (b) a 62-year-old woman.

Fig. 8
Fig. 8

Collection of absorption-coefficient images for a 25-mm circular object in a 72-mm circular phantom. The background is 0.5% blood in 0.5% Intralipid and water. The object in the first row has no blood. The object in the second row contains 1% blood, that in the third row 1.5% blood, and that in the fourth row 2% blood. Column (a) is measured at 750 nm, column (b) at 800 nm, and column (c) at 830 nm.

Fig. 9
Fig. 9

Comparison of the absorption coefficient taken from the center of the object shown in Fig. 8 with the absorption-coefficient values calculated from the expected values23,24 for blood and water.

Fig. 10
Fig. 10

Absorption-coefficient, hemoglobin-concentration, and hemoglobin oxygen-saturation images of an object with an increased hemoglobin concentration (off center to the left) and an object with deoxygenated blood (off center to the right) in an oxygenated-blood background: (a) Absorption coefficient in inverse millimeters at 750 nm, (b) absorption coefficient in inverse millimeters at 802 nm, (c) total hemoglobin concentration in micromolar, (d) Hb-O2 in micromolar, (e) hemoglobin oxygen saturation in percent. The plots are one-dimensional transects through (f) the image in (c), (g) the image in (d), (h) the image in (e). Ideal profiles are plotted for comparison.

Tables (4)

Tables Icon

Table 1 Comparison of the Experimental Determination of the Molar Absorption Coefficient (Slope of a Linear Regression to the Data) with the Values of Wray et al.23 and Hale and Querry24

Tables Icon

Table 2 Results of the Least-Squares Fits for Calculating the Hb-O2 and the Hb-R Contents of a Homogeneous Phantom of Known Composition: 10µM Hemoglobin Concentration, 0.5% Intralipid, and Water

Tables Icon

Table 3 Numerical Results of the Least-Squares Fits for Determining the Hemoglobin Concentration and the Hemoglobin Oxygen Saturation for Two Subjectsa

Tables Icon

Table 4 Linear-Regression Results from the Data Plotted in Fig. 9a

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

χ2=i=1MΦic-ΦioΦic-Φio*,
χ2=i=1M-1Ai+1c-Aic-Ai+1o-Aio2+θi+1c-θic-θi+1o-θio2,

Metrics