Abstract

The features of visible dielectric thin-film luminescence under UV irradiation are discussed for single layers with a particular high-index/low-index couple, HfO2/SiO2. We exploit those results in an attempt to understand the proper luminescence of three different mirror stacks in terms of both luminescence efficiency and angular emission.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Galaup, C. Picard, L. Cazaux, P. Tisnès, D. Aspe, H. Autiero, “Synthesis and luminescence of Eu3+ complexes derived from novel receptors containing a tetralactam unit,” New J. Chem. 20, 997–999 (1996).
  2. P. Gray, I. Shokair, S. Rosenthal, G. Tisone, J. Wagner, L. D. Rigdon, G. Siragusa, R. Heinen, “Distinguishability of biological material by use of ultraviolet multispectral fluorescence,” Appl. Opt. 37, 6037–6041 (1998).
    [CrossRef]
  3. R. Tohmon, H. Mizuno, Y. Ohki, K. Sasagane, K. Nagasawa, Y. Hama, “Correlation of the 5.0- and 7.6-ev absorption bands in SiO2 with oxygen vacancy,” Phys. Rev. B 39, 1337–1345 (1989).
    [CrossRef]
  4. T. Kanashima, R. Nagayoshi, M. Okuyama, Y. Hamakawa, “Optical characterizations of photo-induced chemical vapor deposition produced SiO2 films in vacuum ultraviolet, ultraviolet and visible region,” J. Appl. Phys. 74, 5742–5747 (1993).
    [CrossRef]
  5. H. Rigneault, S. Monneret, “Modal analysis of spontaneous emission in a planar microcavity,” Phys. Rev. A 54, 2356–2368 (1996).
    [CrossRef] [PubMed]
  6. H. Rigneault, S. Robert, C. Begon, B. Jacquier, P. Moretti, “Radiative and guided wave emission of Er3+ atoms located in planar multidielectric structures,” Phys. Rev. A 55, 1497–1502 (1997).
    [CrossRef]
  7. H. Rigneault, C. Amra, C. Begon, M. Cathelinaud, C. Picard, “Light emission from sources located within metallodielectric planar microcavities,” Appl. Opt. 38, 3602–3609 (1999).
    [CrossRef]
  8. G. Mathis, “Rare earth cryptates and homogeneous fluorimmunoassays with human sera,” Clin. Chem. (Washington, D.C.) 39, 1953–1959 (1993).
  9. E. F. Gudgin Dickson, A. Pollak, E. Diamandis, “Time-resolved detection of lanthanide luminescence for ultrasensitive bioanalytical assays,” J. Photochem. Photobiol. B 27, 3–19 (1995).
    [CrossRef]
  10. A. Gatto, L. Escoubas, P. Roche, M. Commandré, “Simulation of the degradation of optical glass substrates caused by UV irradiation while coating,” Opt. Commun. 148, 347–354 (1998).
    [CrossRef]
  11. H. A. Macleod, Thin Film Optical Filters (Hilger, Bristol, U. K., 1986), pp. 158–187.

1999 (1)

1998 (2)

P. Gray, I. Shokair, S. Rosenthal, G. Tisone, J. Wagner, L. D. Rigdon, G. Siragusa, R. Heinen, “Distinguishability of biological material by use of ultraviolet multispectral fluorescence,” Appl. Opt. 37, 6037–6041 (1998).
[CrossRef]

A. Gatto, L. Escoubas, P. Roche, M. Commandré, “Simulation of the degradation of optical glass substrates caused by UV irradiation while coating,” Opt. Commun. 148, 347–354 (1998).
[CrossRef]

1997 (1)

H. Rigneault, S. Robert, C. Begon, B. Jacquier, P. Moretti, “Radiative and guided wave emission of Er3+ atoms located in planar multidielectric structures,” Phys. Rev. A 55, 1497–1502 (1997).
[CrossRef]

1996 (2)

H. Rigneault, S. Monneret, “Modal analysis of spontaneous emission in a planar microcavity,” Phys. Rev. A 54, 2356–2368 (1996).
[CrossRef] [PubMed]

C. Galaup, C. Picard, L. Cazaux, P. Tisnès, D. Aspe, H. Autiero, “Synthesis and luminescence of Eu3+ complexes derived from novel receptors containing a tetralactam unit,” New J. Chem. 20, 997–999 (1996).

1995 (1)

E. F. Gudgin Dickson, A. Pollak, E. Diamandis, “Time-resolved detection of lanthanide luminescence for ultrasensitive bioanalytical assays,” J. Photochem. Photobiol. B 27, 3–19 (1995).
[CrossRef]

1993 (1)

T. Kanashima, R. Nagayoshi, M. Okuyama, Y. Hamakawa, “Optical characterizations of photo-induced chemical vapor deposition produced SiO2 films in vacuum ultraviolet, ultraviolet and visible region,” J. Appl. Phys. 74, 5742–5747 (1993).
[CrossRef]

1989 (1)

R. Tohmon, H. Mizuno, Y. Ohki, K. Sasagane, K. Nagasawa, Y. Hama, “Correlation of the 5.0- and 7.6-ev absorption bands in SiO2 with oxygen vacancy,” Phys. Rev. B 39, 1337–1345 (1989).
[CrossRef]

Amra, C.

Aspe, D.

C. Galaup, C. Picard, L. Cazaux, P. Tisnès, D. Aspe, H. Autiero, “Synthesis and luminescence of Eu3+ complexes derived from novel receptors containing a tetralactam unit,” New J. Chem. 20, 997–999 (1996).

Autiero, H.

C. Galaup, C. Picard, L. Cazaux, P. Tisnès, D. Aspe, H. Autiero, “Synthesis and luminescence of Eu3+ complexes derived from novel receptors containing a tetralactam unit,” New J. Chem. 20, 997–999 (1996).

Begon, C.

H. Rigneault, C. Amra, C. Begon, M. Cathelinaud, C. Picard, “Light emission from sources located within metallodielectric planar microcavities,” Appl. Opt. 38, 3602–3609 (1999).
[CrossRef]

H. Rigneault, S. Robert, C. Begon, B. Jacquier, P. Moretti, “Radiative and guided wave emission of Er3+ atoms located in planar multidielectric structures,” Phys. Rev. A 55, 1497–1502 (1997).
[CrossRef]

Cathelinaud, M.

Cazaux, L.

C. Galaup, C. Picard, L. Cazaux, P. Tisnès, D. Aspe, H. Autiero, “Synthesis and luminescence of Eu3+ complexes derived from novel receptors containing a tetralactam unit,” New J. Chem. 20, 997–999 (1996).

Commandré, M.

A. Gatto, L. Escoubas, P. Roche, M. Commandré, “Simulation of the degradation of optical glass substrates caused by UV irradiation while coating,” Opt. Commun. 148, 347–354 (1998).
[CrossRef]

Diamandis, E.

E. F. Gudgin Dickson, A. Pollak, E. Diamandis, “Time-resolved detection of lanthanide luminescence for ultrasensitive bioanalytical assays,” J. Photochem. Photobiol. B 27, 3–19 (1995).
[CrossRef]

Escoubas, L.

A. Gatto, L. Escoubas, P. Roche, M. Commandré, “Simulation of the degradation of optical glass substrates caused by UV irradiation while coating,” Opt. Commun. 148, 347–354 (1998).
[CrossRef]

Galaup, C.

C. Galaup, C. Picard, L. Cazaux, P. Tisnès, D. Aspe, H. Autiero, “Synthesis and luminescence of Eu3+ complexes derived from novel receptors containing a tetralactam unit,” New J. Chem. 20, 997–999 (1996).

Gatto, A.

A. Gatto, L. Escoubas, P. Roche, M. Commandré, “Simulation of the degradation of optical glass substrates caused by UV irradiation while coating,” Opt. Commun. 148, 347–354 (1998).
[CrossRef]

Gray, P.

Gudgin Dickson, E. F.

E. F. Gudgin Dickson, A. Pollak, E. Diamandis, “Time-resolved detection of lanthanide luminescence for ultrasensitive bioanalytical assays,” J. Photochem. Photobiol. B 27, 3–19 (1995).
[CrossRef]

Hama, Y.

R. Tohmon, H. Mizuno, Y. Ohki, K. Sasagane, K. Nagasawa, Y. Hama, “Correlation of the 5.0- and 7.6-ev absorption bands in SiO2 with oxygen vacancy,” Phys. Rev. B 39, 1337–1345 (1989).
[CrossRef]

Hamakawa, Y.

T. Kanashima, R. Nagayoshi, M. Okuyama, Y. Hamakawa, “Optical characterizations of photo-induced chemical vapor deposition produced SiO2 films in vacuum ultraviolet, ultraviolet and visible region,” J. Appl. Phys. 74, 5742–5747 (1993).
[CrossRef]

Heinen, R.

Jacquier, B.

H. Rigneault, S. Robert, C. Begon, B. Jacquier, P. Moretti, “Radiative and guided wave emission of Er3+ atoms located in planar multidielectric structures,” Phys. Rev. A 55, 1497–1502 (1997).
[CrossRef]

Kanashima, T.

T. Kanashima, R. Nagayoshi, M. Okuyama, Y. Hamakawa, “Optical characterizations of photo-induced chemical vapor deposition produced SiO2 films in vacuum ultraviolet, ultraviolet and visible region,” J. Appl. Phys. 74, 5742–5747 (1993).
[CrossRef]

Macleod, H. A.

H. A. Macleod, Thin Film Optical Filters (Hilger, Bristol, U. K., 1986), pp. 158–187.

Mathis, G.

G. Mathis, “Rare earth cryptates and homogeneous fluorimmunoassays with human sera,” Clin. Chem. (Washington, D.C.) 39, 1953–1959 (1993).

Mizuno, H.

R. Tohmon, H. Mizuno, Y. Ohki, K. Sasagane, K. Nagasawa, Y. Hama, “Correlation of the 5.0- and 7.6-ev absorption bands in SiO2 with oxygen vacancy,” Phys. Rev. B 39, 1337–1345 (1989).
[CrossRef]

Monneret, S.

H. Rigneault, S. Monneret, “Modal analysis of spontaneous emission in a planar microcavity,” Phys. Rev. A 54, 2356–2368 (1996).
[CrossRef] [PubMed]

Moretti, P.

H. Rigneault, S. Robert, C. Begon, B. Jacquier, P. Moretti, “Radiative and guided wave emission of Er3+ atoms located in planar multidielectric structures,” Phys. Rev. A 55, 1497–1502 (1997).
[CrossRef]

Nagasawa, K.

R. Tohmon, H. Mizuno, Y. Ohki, K. Sasagane, K. Nagasawa, Y. Hama, “Correlation of the 5.0- and 7.6-ev absorption bands in SiO2 with oxygen vacancy,” Phys. Rev. B 39, 1337–1345 (1989).
[CrossRef]

Nagayoshi, R.

T. Kanashima, R. Nagayoshi, M. Okuyama, Y. Hamakawa, “Optical characterizations of photo-induced chemical vapor deposition produced SiO2 films in vacuum ultraviolet, ultraviolet and visible region,” J. Appl. Phys. 74, 5742–5747 (1993).
[CrossRef]

Ohki, Y.

R. Tohmon, H. Mizuno, Y. Ohki, K. Sasagane, K. Nagasawa, Y. Hama, “Correlation of the 5.0- and 7.6-ev absorption bands in SiO2 with oxygen vacancy,” Phys. Rev. B 39, 1337–1345 (1989).
[CrossRef]

Okuyama, M.

T. Kanashima, R. Nagayoshi, M. Okuyama, Y. Hamakawa, “Optical characterizations of photo-induced chemical vapor deposition produced SiO2 films in vacuum ultraviolet, ultraviolet and visible region,” J. Appl. Phys. 74, 5742–5747 (1993).
[CrossRef]

Picard, C.

H. Rigneault, C. Amra, C. Begon, M. Cathelinaud, C. Picard, “Light emission from sources located within metallodielectric planar microcavities,” Appl. Opt. 38, 3602–3609 (1999).
[CrossRef]

C. Galaup, C. Picard, L. Cazaux, P. Tisnès, D. Aspe, H. Autiero, “Synthesis and luminescence of Eu3+ complexes derived from novel receptors containing a tetralactam unit,” New J. Chem. 20, 997–999 (1996).

Pollak, A.

E. F. Gudgin Dickson, A. Pollak, E. Diamandis, “Time-resolved detection of lanthanide luminescence for ultrasensitive bioanalytical assays,” J. Photochem. Photobiol. B 27, 3–19 (1995).
[CrossRef]

Rigdon, L. D.

Rigneault, H.

H. Rigneault, C. Amra, C. Begon, M. Cathelinaud, C. Picard, “Light emission from sources located within metallodielectric planar microcavities,” Appl. Opt. 38, 3602–3609 (1999).
[CrossRef]

H. Rigneault, S. Robert, C. Begon, B. Jacquier, P. Moretti, “Radiative and guided wave emission of Er3+ atoms located in planar multidielectric structures,” Phys. Rev. A 55, 1497–1502 (1997).
[CrossRef]

H. Rigneault, S. Monneret, “Modal analysis of spontaneous emission in a planar microcavity,” Phys. Rev. A 54, 2356–2368 (1996).
[CrossRef] [PubMed]

Robert, S.

H. Rigneault, S. Robert, C. Begon, B. Jacquier, P. Moretti, “Radiative and guided wave emission of Er3+ atoms located in planar multidielectric structures,” Phys. Rev. A 55, 1497–1502 (1997).
[CrossRef]

Roche, P.

A. Gatto, L. Escoubas, P. Roche, M. Commandré, “Simulation of the degradation of optical glass substrates caused by UV irradiation while coating,” Opt. Commun. 148, 347–354 (1998).
[CrossRef]

Rosenthal, S.

Sasagane, K.

R. Tohmon, H. Mizuno, Y. Ohki, K. Sasagane, K. Nagasawa, Y. Hama, “Correlation of the 5.0- and 7.6-ev absorption bands in SiO2 with oxygen vacancy,” Phys. Rev. B 39, 1337–1345 (1989).
[CrossRef]

Shokair, I.

Siragusa, G.

Tisnès, P.

C. Galaup, C. Picard, L. Cazaux, P. Tisnès, D. Aspe, H. Autiero, “Synthesis and luminescence of Eu3+ complexes derived from novel receptors containing a tetralactam unit,” New J. Chem. 20, 997–999 (1996).

Tisone, G.

Tohmon, R.

R. Tohmon, H. Mizuno, Y. Ohki, K. Sasagane, K. Nagasawa, Y. Hama, “Correlation of the 5.0- and 7.6-ev absorption bands in SiO2 with oxygen vacancy,” Phys. Rev. B 39, 1337–1345 (1989).
[CrossRef]

Wagner, J.

Appl. Opt. (2)

J. Appl. Phys. (1)

T. Kanashima, R. Nagayoshi, M. Okuyama, Y. Hamakawa, “Optical characterizations of photo-induced chemical vapor deposition produced SiO2 films in vacuum ultraviolet, ultraviolet and visible region,” J. Appl. Phys. 74, 5742–5747 (1993).
[CrossRef]

J. Photochem. Photobiol. B (1)

E. F. Gudgin Dickson, A. Pollak, E. Diamandis, “Time-resolved detection of lanthanide luminescence for ultrasensitive bioanalytical assays,” J. Photochem. Photobiol. B 27, 3–19 (1995).
[CrossRef]

New J. Chem. (1)

C. Galaup, C. Picard, L. Cazaux, P. Tisnès, D. Aspe, H. Autiero, “Synthesis and luminescence of Eu3+ complexes derived from novel receptors containing a tetralactam unit,” New J. Chem. 20, 997–999 (1996).

Opt. Commun. (1)

A. Gatto, L. Escoubas, P. Roche, M. Commandré, “Simulation of the degradation of optical glass substrates caused by UV irradiation while coating,” Opt. Commun. 148, 347–354 (1998).
[CrossRef]

Phys. Rev. A (2)

H. Rigneault, S. Monneret, “Modal analysis of spontaneous emission in a planar microcavity,” Phys. Rev. A 54, 2356–2368 (1996).
[CrossRef] [PubMed]

H. Rigneault, S. Robert, C. Begon, B. Jacquier, P. Moretti, “Radiative and guided wave emission of Er3+ atoms located in planar multidielectric structures,” Phys. Rev. A 55, 1497–1502 (1997).
[CrossRef]

Phys. Rev. B (1)

R. Tohmon, H. Mizuno, Y. Ohki, K. Sasagane, K. Nagasawa, Y. Hama, “Correlation of the 5.0- and 7.6-ev absorption bands in SiO2 with oxygen vacancy,” Phys. Rev. B 39, 1337–1345 (1989).
[CrossRef]

Other (2)

H. A. Macleod, Thin Film Optical Filters (Hilger, Bristol, U. K., 1986), pp. 158–187.

G. Mathis, “Rare earth cryptates and homogeneous fluorimmunoassays with human sera,” Clin. Chem. (Washington, D.C.) 39, 1953–1959 (1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Experimental setup for spectrum and lifetime measurements. PMT, photomultiplier tube.

Fig. 2
Fig. 2

Experimental setup for radiation pattern measurements.

Fig. 3
Fig. 3

Luminescence spectra of HfO2 and SiO2 single layers.

Fig. 4
Fig. 4

Luminescence of HfO2 layers for two values of thickness.

Fig. 5
Fig. 5

Luminescence of SiO2 layers for two values of thickness.

Fig. 6
Fig. 6

Luminescence aging of HfO2 spectrum under irradiation (irrad).

Fig. 7
Fig. 7

Luminescence aging of SiO2 spectrum under irradiation.

Fig. 8
Fig. 8

UV pump intensity profile in the depth of {substrate/[HL]10H} (the 0 abscissa corresponds to the coating surface).

Fig. 9
Fig. 9

UV pump intensity profile in the depth of {substrate/[HL]102L} (the 0 abscissa corresponds to the coating surface).

Fig. 10
Fig. 10

UV pump intensity profile in the depth of {substrate/(0.5H)L[HL]9(0.5H)} (the 0 abscissa corresponds to the coating surface).

Fig. 11
Fig. 11

Radiation pattern of {substrate/[HL]10H}.

Fig. 12
Fig. 12

Radiation pattern of {substrate/[HL]102L}.

Fig. 13
Fig. 13

Radiation pattern of {substrate/(0.5H)L[HL]9(0.5H)}.

Fig. 14
Fig. 14

Luminescence ageing of {substrate/(0.5H)L[HL]9(0.5H)} under UV irradiation.

Tables (1)

Tables Icon

Table 1 Values of the In-Depth Integrated Weighted Field Intensity and the Transmission Coefficient at 620 nm for an Incidence Angle of 45°

Metrics