Abstract

Brillouin-scattering-based sensors are capable of measuring either the strain or the temperature along the length of an optical fiber in a distributed fashion through measurement of the Brillouin-frequency shift. The cross sensitivity of the frequency shift to these two parameters makes it impossible to differentiate between them by measurement of the frequency shift alone. We report on a new technique that permits the simultaneous measurement of strain and temperature to resolutions of ±178 µε and ±3.9 °C at a spatial resolution of 3.5 m by incorporation of the Brillouin-loss peak power with the conventional Brillouin-frequency measurement.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Bao, D. J. Webb, D. A. Jackson, “32-km distributed temperature sensor based on Brillouin loss in an optical fiber,” Opt. Lett. 18, 1561–1563 (1993).
    [CrossRef] [PubMed]
  2. A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 324–327.
  3. A. W. Brown, M. DeMerchant, X. Bao, T. W. Bremner, “Advances in distributed sensing using Brillouin scattering,” in Smart Structures and Materials 1998: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, eds., Proc. SPIE3330, 294–300 (1998).
  4. T. Horiguchi, T. Kurashima, M. Tateda, “Tensile strain dependance of Brillouin frequency shift in silica optical fibers,” Photon. Technol. Lett. 1, 107–108 (1989).
    [CrossRef]
  5. D. Culverhouse, F. Farahi, C. N. Pannell, D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25, 913–915 (1989).
    [CrossRef]
  6. X. Bao, D. J. Webb, D. A. Jackson, “Combined distributed temperature and strain sensor based on Brillouin loss in an optical fiber,” Opt. Lett. 19, 141–143 (1994).
    [CrossRef] [PubMed]
  7. T. R. Parker, M. Farhadiroushan, R. Feced, V. A. Handerek, “Simultaneous distributed measurement of strain and temperature from noise-initiated Brillouin scattering in optical fibers,” Quantum Electron. 34, 645–659 (1998).
    [CrossRef]
  8. M. Niklès, L. Thévenaz, P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
    [CrossRef]
  9. P. C. Wait, T. P. Newson, “Landau Placzek ratio applied to distributed fibre sensing,” Opt. Commun. 122, 141–146 (1996).
    [CrossRef]
  10. G. P. Agrawal, Nonlinear Fiber Optics, (Academic, Boston, 1989), Chap. 8.
  11. G. P. Agrawal, Nonlinear Fiber Optics, (Academic, Boston, 1989), Chap. 9.
  12. M. O. van Deventer, A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12, 585–590 (1994).
    [CrossRef]
  13. M. D. DeMerchant, A. W. Brown, X. Bao, T. W. Bremner, “Automated system for distributed sensing,” in Smart Structures and Materials 1998: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, eds., Proc. SPIE3330, 315–323 (1998).

1998 (1)

T. R. Parker, M. Farhadiroushan, R. Feced, V. A. Handerek, “Simultaneous distributed measurement of strain and temperature from noise-initiated Brillouin scattering in optical fibers,” Quantum Electron. 34, 645–659 (1998).
[CrossRef]

1997 (1)

M. Niklès, L. Thévenaz, P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

1996 (1)

P. C. Wait, T. P. Newson, “Landau Placzek ratio applied to distributed fibre sensing,” Opt. Commun. 122, 141–146 (1996).
[CrossRef]

1994 (2)

M. O. van Deventer, A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12, 585–590 (1994).
[CrossRef]

X. Bao, D. J. Webb, D. A. Jackson, “Combined distributed temperature and strain sensor based on Brillouin loss in an optical fiber,” Opt. Lett. 19, 141–143 (1994).
[CrossRef] [PubMed]

1993 (1)

X. Bao, D. J. Webb, D. A. Jackson, “32-km distributed temperature sensor based on Brillouin loss in an optical fiber,” Opt. Lett. 18, 1561–1563 (1993).
[CrossRef] [PubMed]

1989 (2)

T. Horiguchi, T. Kurashima, M. Tateda, “Tensile strain dependance of Brillouin frequency shift in silica optical fibers,” Photon. Technol. Lett. 1, 107–108 (1989).
[CrossRef]

D. Culverhouse, F. Farahi, C. N. Pannell, D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25, 913–915 (1989).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, (Academic, Boston, 1989), Chap. 8.

G. P. Agrawal, Nonlinear Fiber Optics, (Academic, Boston, 1989), Chap. 9.

Bao, X.

X. Bao, D. J. Webb, D. A. Jackson, “Combined distributed temperature and strain sensor based on Brillouin loss in an optical fiber,” Opt. Lett. 19, 141–143 (1994).
[CrossRef] [PubMed]

X. Bao, D. J. Webb, D. A. Jackson, “32-km distributed temperature sensor based on Brillouin loss in an optical fiber,” Opt. Lett. 18, 1561–1563 (1993).
[CrossRef] [PubMed]

A. W. Brown, M. DeMerchant, X. Bao, T. W. Bremner, “Advances in distributed sensing using Brillouin scattering,” in Smart Structures and Materials 1998: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, eds., Proc. SPIE3330, 294–300 (1998).

M. D. DeMerchant, A. W. Brown, X. Bao, T. W. Bremner, “Automated system for distributed sensing,” in Smart Structures and Materials 1998: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, eds., Proc. SPIE3330, 315–323 (1998).

Boot, A. J.

M. O. van Deventer, A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12, 585–590 (1994).
[CrossRef]

Bremner, T. W.

A. W. Brown, M. DeMerchant, X. Bao, T. W. Bremner, “Advances in distributed sensing using Brillouin scattering,” in Smart Structures and Materials 1998: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, eds., Proc. SPIE3330, 294–300 (1998).

M. D. DeMerchant, A. W. Brown, X. Bao, T. W. Bremner, “Automated system for distributed sensing,” in Smart Structures and Materials 1998: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, eds., Proc. SPIE3330, 315–323 (1998).

Brown, A. W.

A. W. Brown, M. DeMerchant, X. Bao, T. W. Bremner, “Advances in distributed sensing using Brillouin scattering,” in Smart Structures and Materials 1998: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, eds., Proc. SPIE3330, 294–300 (1998).

M. D. DeMerchant, A. W. Brown, X. Bao, T. W. Bremner, “Automated system for distributed sensing,” in Smart Structures and Materials 1998: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, eds., Proc. SPIE3330, 315–323 (1998).

Culverhouse, D.

D. Culverhouse, F. Farahi, C. N. Pannell, D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25, 913–915 (1989).
[CrossRef]

DeMerchant, M.

A. W. Brown, M. DeMerchant, X. Bao, T. W. Bremner, “Advances in distributed sensing using Brillouin scattering,” in Smart Structures and Materials 1998: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, eds., Proc. SPIE3330, 294–300 (1998).

DeMerchant, M. D.

M. D. DeMerchant, A. W. Brown, X. Bao, T. W. Bremner, “Automated system for distributed sensing,” in Smart Structures and Materials 1998: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, eds., Proc. SPIE3330, 315–323 (1998).

Facchini, M.

A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 324–327.

Farahi, F.

D. Culverhouse, F. Farahi, C. N. Pannell, D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25, 913–915 (1989).
[CrossRef]

Farhadiroushan, M.

T. R. Parker, M. Farhadiroushan, R. Feced, V. A. Handerek, “Simultaneous distributed measurement of strain and temperature from noise-initiated Brillouin scattering in optical fibers,” Quantum Electron. 34, 645–659 (1998).
[CrossRef]

Feced, R.

T. R. Parker, M. Farhadiroushan, R. Feced, V. A. Handerek, “Simultaneous distributed measurement of strain and temperature from noise-initiated Brillouin scattering in optical fibers,” Quantum Electron. 34, 645–659 (1998).
[CrossRef]

Fellay, A.

A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 324–327.

Handerek, V. A.

T. R. Parker, M. Farhadiroushan, R. Feced, V. A. Handerek, “Simultaneous distributed measurement of strain and temperature from noise-initiated Brillouin scattering in optical fibers,” Quantum Electron. 34, 645–659 (1998).
[CrossRef]

Horiguchi, T.

T. Horiguchi, T. Kurashima, M. Tateda, “Tensile strain dependance of Brillouin frequency shift in silica optical fibers,” Photon. Technol. Lett. 1, 107–108 (1989).
[CrossRef]

Jackson, D. A.

X. Bao, D. J. Webb, D. A. Jackson, “Combined distributed temperature and strain sensor based on Brillouin loss in an optical fiber,” Opt. Lett. 19, 141–143 (1994).
[CrossRef] [PubMed]

X. Bao, D. J. Webb, D. A. Jackson, “32-km distributed temperature sensor based on Brillouin loss in an optical fiber,” Opt. Lett. 18, 1561–1563 (1993).
[CrossRef] [PubMed]

D. Culverhouse, F. Farahi, C. N. Pannell, D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25, 913–915 (1989).
[CrossRef]

Kurashima, T.

T. Horiguchi, T. Kurashima, M. Tateda, “Tensile strain dependance of Brillouin frequency shift in silica optical fibers,” Photon. Technol. Lett. 1, 107–108 (1989).
[CrossRef]

Newson, T. P.

P. C. Wait, T. P. Newson, “Landau Placzek ratio applied to distributed fibre sensing,” Opt. Commun. 122, 141–146 (1996).
[CrossRef]

Niklès, M.

M. Niklès, L. Thévenaz, P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 324–327.

Pannell, C. N.

D. Culverhouse, F. Farahi, C. N. Pannell, D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25, 913–915 (1989).
[CrossRef]

Parker, T. R.

T. R. Parker, M. Farhadiroushan, R. Feced, V. A. Handerek, “Simultaneous distributed measurement of strain and temperature from noise-initiated Brillouin scattering in optical fibers,” Quantum Electron. 34, 645–659 (1998).
[CrossRef]

Robert, P.

A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 324–327.

Robert, P. A.

M. Niklès, L. Thévenaz, P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

Tateda, M.

T. Horiguchi, T. Kurashima, M. Tateda, “Tensile strain dependance of Brillouin frequency shift in silica optical fibers,” Photon. Technol. Lett. 1, 107–108 (1989).
[CrossRef]

Thévenaz, L.

M. Niklès, L. Thévenaz, P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 324–327.

van Deventer, M. O.

M. O. van Deventer, A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12, 585–590 (1994).
[CrossRef]

Wait, P. C.

P. C. Wait, T. P. Newson, “Landau Placzek ratio applied to distributed fibre sensing,” Opt. Commun. 122, 141–146 (1996).
[CrossRef]

Webb, D. J.

X. Bao, D. J. Webb, D. A. Jackson, “Combined distributed temperature and strain sensor based on Brillouin loss in an optical fiber,” Opt. Lett. 19, 141–143 (1994).
[CrossRef] [PubMed]

X. Bao, D. J. Webb, D. A. Jackson, “32-km distributed temperature sensor based on Brillouin loss in an optical fiber,” Opt. Lett. 18, 1561–1563 (1993).
[CrossRef] [PubMed]

Electron. Lett. (1)

D. Culverhouse, F. Farahi, C. N. Pannell, D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25, 913–915 (1989).
[CrossRef]

J. Lightwave Technol. (1)

M. O. van Deventer, A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12, 585–590 (1994).
[CrossRef]

J. Lightwave Technol. (1)

M. Niklès, L. Thévenaz, P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

Opt. Lett. (1)

X. Bao, D. J. Webb, D. A. Jackson, “32-km distributed temperature sensor based on Brillouin loss in an optical fiber,” Opt. Lett. 18, 1561–1563 (1993).
[CrossRef] [PubMed]

Opt. Commun. (1)

P. C. Wait, T. P. Newson, “Landau Placzek ratio applied to distributed fibre sensing,” Opt. Commun. 122, 141–146 (1996).
[CrossRef]

Opt. Lett. (1)

Photon. Technol. Lett. (1)

T. Horiguchi, T. Kurashima, M. Tateda, “Tensile strain dependance of Brillouin frequency shift in silica optical fibers,” Photon. Technol. Lett. 1, 107–108 (1989).
[CrossRef]

Quantum Electron. (1)

T. R. Parker, M. Farhadiroushan, R. Feced, V. A. Handerek, “Simultaneous distributed measurement of strain and temperature from noise-initiated Brillouin scattering in optical fibers,” Quantum Electron. 34, 645–659 (1998).
[CrossRef]

Other (5)

A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 324–327.

A. W. Brown, M. DeMerchant, X. Bao, T. W. Bremner, “Advances in distributed sensing using Brillouin scattering,” in Smart Structures and Materials 1998: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, eds., Proc. SPIE3330, 294–300 (1998).

G. P. Agrawal, Nonlinear Fiber Optics, (Academic, Boston, 1989), Chap. 8.

G. P. Agrawal, Nonlinear Fiber Optics, (Academic, Boston, 1989), Chap. 9.

M. D. DeMerchant, A. W. Brown, X. Bao, T. W. Bremner, “Automated system for distributed sensing,” in Smart Structures and Materials 1998: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, eds., Proc. SPIE3330, 315–323 (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Distributed-fiber-optic strain-sensing system based on the Brillouin-loss mechanism.

Fig. 2
Fig. 2

Layout of the sensing fiber. Various controlled strains and temperatures can be applied to the fiber at different positions along the fiber length.

Fig. 3
Fig. 3

Brillouin frequency as a function (a) of strain and (b) of temperature for PM fiber.

Fig. 4
Fig. 4

Normalized Brillouin power as a function of the difference (a) in strain and (b) in temperature between the measurement and the reference position.

Fig. 5
Fig. 5

(a) Typical Brillouin spectrum for a section of fiber under uniform conditions. (b) Spectrum for a section of fiber under nonuniform conditions, containing two peaks of reduced power.

Fig. 6
Fig. 6

Actual and measured strain and temperature as a function of position along the fiber.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ν B = 2 nV a λ ,
ν B = ν B 0 + ν T   T + ν ε   ε
P B = P cw   exp - α L 1 - exp - g B P P L eff A eff ,
g B ν B = 2 π n 7 p 12 2 c λ 2 ρ V A Δ ν B ,
P B = P 0 + P T   T + P ε   ε ,
P BN = P B / P N ,
T ° C = T N + ν ε   Δ P - P BN ε   Δ ν ν ε P BN T - ν T P BN ε ,
ε μ ε = ε N + Δ ν - ν T   T ν ε
Δ P = P BN - P ON     Δ ν = ν B - ν N .
ν / T = 1.590   MHz / ° C ,     ν / ε = 0.0557   MHz / μ ε .

Metrics