Abstract

We demonstrate aberration-free dynamic focusing with a low-cost 19-channel continuous-surface micromachined membrane deformable mirror (MMDM). A lookup table of the optimum control voltages for various focal lengths is obtained with an adaptive optics algorithm. Diffraction-limited imaging resolution is achieved owing to the capablility of the MMDM for aberration compensation. The measured speed of the MMDM supports dynamic focusing operations at several hundred hertz. Our dynamic focusing approach is shown to function with either monochromatic or broadband optical sources.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. T. Kowel, P. Kornreich, A. Nouhi, “Adaptive spherical lens,” Appl. Opt. 23, 2774–2777 (1984).
    [CrossRef] [PubMed]
  2. T. Tatebayashi, T. Yamamoto, H. Sato, “Electro-optic variable focal-length lens using PLZT ceramic,” Appl. Opt. 30, 5049–5055 (1991).
    [CrossRef] [PubMed]
  3. J. Ma, B. Catanzaro, J. E. Ford, Y. Fainman, S. H. Lee, “Photorefractive holographic lenses and applications for dynamic focusing and dynamic image shifting,” J. Opt. Soc. Am. A 11, 2471–2480 (1994).
    [CrossRef]
  4. T. Kaneko, T. Ohmi, N. Ohya, N. Kawahara, “A compact and quick-response dynamic focusing lens,” Sens. Actuators A 70, 92–97 (1998).
    [CrossRef]
  5. T. Koumura, T. Kaneko, T. Hattori, “Aberration reduction of Si diaphragm dynamic focusing mirror,” J. Japan Soc. Precis. Eng. 61, 697–701 (1995).
    [CrossRef]
  6. G. Vdovin, P. M. Sarro, “Flexible mirror micromachined in silicon,” Appl. Opt. 34, 2968–2972 (1995).
    [CrossRef] [PubMed]
  7. L. Zhu, P.-C. Sun, D.-U. Bartsch, W. R. Freeman, Y. Fainman, “Adaptive control of a micromachined continuous-membrane deformable mirror for aberration compensation,” Appl. Opt. 38, 168–176 (1999).
    [CrossRef]
  8. D. Malacara, S. L. DeVore, “Interferogram evaluation and wavefront fitting,” in Optical Shop Testing, 2nd ed., D. Malacara, ed. (Wiley, New York, 1992), pp. 461–472.

1999 (1)

1998 (1)

T. Kaneko, T. Ohmi, N. Ohya, N. Kawahara, “A compact and quick-response dynamic focusing lens,” Sens. Actuators A 70, 92–97 (1998).
[CrossRef]

1995 (2)

T. Koumura, T. Kaneko, T. Hattori, “Aberration reduction of Si diaphragm dynamic focusing mirror,” J. Japan Soc. Precis. Eng. 61, 697–701 (1995).
[CrossRef]

G. Vdovin, P. M. Sarro, “Flexible mirror micromachined in silicon,” Appl. Opt. 34, 2968–2972 (1995).
[CrossRef] [PubMed]

1994 (1)

1991 (1)

1984 (1)

Bartsch, D.-U.

Catanzaro, B.

DeVore, S. L.

D. Malacara, S. L. DeVore, “Interferogram evaluation and wavefront fitting,” in Optical Shop Testing, 2nd ed., D. Malacara, ed. (Wiley, New York, 1992), pp. 461–472.

Fainman, Y.

Ford, J. E.

Freeman, W. R.

Hattori, T.

T. Koumura, T. Kaneko, T. Hattori, “Aberration reduction of Si diaphragm dynamic focusing mirror,” J. Japan Soc. Precis. Eng. 61, 697–701 (1995).
[CrossRef]

Kaneko, T.

T. Kaneko, T. Ohmi, N. Ohya, N. Kawahara, “A compact and quick-response dynamic focusing lens,” Sens. Actuators A 70, 92–97 (1998).
[CrossRef]

T. Koumura, T. Kaneko, T. Hattori, “Aberration reduction of Si diaphragm dynamic focusing mirror,” J. Japan Soc. Precis. Eng. 61, 697–701 (1995).
[CrossRef]

Kawahara, N.

T. Kaneko, T. Ohmi, N. Ohya, N. Kawahara, “A compact and quick-response dynamic focusing lens,” Sens. Actuators A 70, 92–97 (1998).
[CrossRef]

Kornreich, P.

Koumura, T.

T. Koumura, T. Kaneko, T. Hattori, “Aberration reduction of Si diaphragm dynamic focusing mirror,” J. Japan Soc. Precis. Eng. 61, 697–701 (1995).
[CrossRef]

Kowel, S. T.

Lee, S. H.

Ma, J.

Malacara, D.

D. Malacara, S. L. DeVore, “Interferogram evaluation and wavefront fitting,” in Optical Shop Testing, 2nd ed., D. Malacara, ed. (Wiley, New York, 1992), pp. 461–472.

Nouhi, A.

Ohmi, T.

T. Kaneko, T. Ohmi, N. Ohya, N. Kawahara, “A compact and quick-response dynamic focusing lens,” Sens. Actuators A 70, 92–97 (1998).
[CrossRef]

Ohya, N.

T. Kaneko, T. Ohmi, N. Ohya, N. Kawahara, “A compact and quick-response dynamic focusing lens,” Sens. Actuators A 70, 92–97 (1998).
[CrossRef]

Sarro, P. M.

Sato, H.

Sun, P.-C.

Tatebayashi, T.

Vdovin, G.

Yamamoto, T.

Zhu, L.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic diagram and (b) electrode layout of the MMDM.

Fig. 2
Fig. 2

Experimental setup used to obtain the optimum driving voltages of the MMDM for aberration-free dynamic focusing. All lenses are achromatic doublets.

Fig. 3
Fig. 3

Images of the USAF resolution target obtained (a) without and (b) with aberration compensation.

Fig. 4
Fig. 4

Dynamic focusing images of both halves of a paper copy of the USAF resolution target separated by a distance of 4 mm in depth.

Fig. 5
Fig. 5

Time response of the MMDM: Oscilloscope trace of the detected power as the MMDM switchs between two focal lengths at 200 Hz.

Tables (1)

Tables Icon

Table 1 Focal Lengths, Curvatures, and Root-Mean-Square Variances of the Wave Fronts Reflected from the MMDM

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ϕx, y=2πλk=1M akzkx, y,
σ2=1A apertureϕx, y-ϕ0x, y2dxdy,
cnew=cold-2μBTa-a0*w,
z4x, y=2x2+2y2-1,
ϕ0x, y=2πλ a04z4x, y=2πλ2a04x2+y2-a04.
f=14a04.

Metrics