Abstract

A ray optics approach was used to calculate the forces and the torque exerted on a dielectric sphere in the evanescent field produced by a linearly polarized Gaussian beam. The particle was assumed to be immersed in a dielectric fluid next to a solid dielectric plate with the evanescent field produced at the solid–fluid interface. Comparisons with calculations performed by use of more rigorous electromagnetic wave theory show that the ray optics results agree to within a factor of 2 even for particle radii as small as twice the incident wavelength. Calculation of the forces for conditions typical of a total internal reflection microscopy experiment show that the evanescent field has a negligible effect on either the net forces exerted on the particle or the particle motion (i.e., rotation or translation parallel to the interface). By our modifying the parameters of the experiment, however—namely, the incident beam power, radius of incident beam, and evanescent wave penetration depth—forces that are comparable with the net particle weight and capable of translating the particle several micrometers per second, as well as rotating the particle several revolutions per second, can be produced. The ability to micromanipulate a particle in this fashion could offer useful applications for studying particle and surface interactions.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
    [CrossRef]
  2. A. Ashkin, J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
    [CrossRef]
  3. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [CrossRef] [PubMed]
  4. B. J. Ackerson, A. H. Chowdhury, “Radiation pressure as a technique for manipulating the particle order in colloidal suspensions,” Faraday Discuss. Chem. Soc. 83 (22) , 1–8 (1987).
  5. T. C. B. Schut, G. Hesselink, B. G. de Grooth, J. Greve, “Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991).
    [CrossRef] [PubMed]
  6. S. Sato, M. Ohyumi, H. Shibata, H. Inaba, Y. Ogawa, “Optical trapping of small particles using a 1.3-µm compact InGaAsP diode laser,” Opt. Lett. 16, 282–284 (1991).
    [CrossRef] [PubMed]
  7. K. Visscher, G. J. Brakenhoff, “Single beam optical trapping integrated in a confocal microscope for biological applications,” Cytometry 12, 486–491 (1991).
    [CrossRef] [PubMed]
  8. J. Y. Walz, D. C. Prieve, “Prediction and measurement of the optical trapping forces on a microscopic dielectric sphere,” Langmuir 8, 3073–3082 (1992).
    [CrossRef]
  9. H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, H. Masuhara, “Laser manipulation and assembling of polymer latex particles in solution,” Macromolecules 26, 282–286 (1993).
    [CrossRef]
  10. L. P. Ghislain, N. A. Switz, W. W. Webb, “Measurement of small forces using an optical trap,” Rev. Sci. Instrum. 65, 2762–2768 (1994).
    [CrossRef]
  11. W. H. Wright, G. J. Sonek, M. W. Berns, “Radiation trapping forces on microspheres with optical tweezers,” Appl. Phys. Lett. 63, 715–717 (1993).
    [CrossRef]
  12. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
    [CrossRef]
  13. A. Hirai, H. Monjushiro, H. Watarai, “Laser photophoresis of a single droplet in oil in water emulsions,” Langmuir 12, 5570–5575 (1996).
    [CrossRef]
  14. A. Ashkin, J. M. Dziedzic, T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature (London) 330, 769–771 (1987).
    [CrossRef]
  15. A. Ashkin, J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
    [CrossRef] [PubMed]
  16. M. A. Brown, A. L. Smith, E. J. Staples, “A method using total internal reflection microscopy and radiation pressure to study weak interaction forces of particles near surfaces,” Langmuir 5, 1319–1324 (1989).
    [CrossRef]
  17. D. C. Prieve, N. A. Frej, “Total internal reflection microscopy: a quantitative tool for the measurement of colloidal forces,” Langmuir 6, 396–403 (1990).
    [CrossRef]
  18. S. G. Flicker, J. L. Tipa, S. G. Bike, “Quantifying double-layer repulsion between a colloidal sphere and a glass plate using total internal reflection microscopy,” J. Colloid Interface Sci. 158, 317–325 (1993).
    [CrossRef]
  19. N. A. Frej, D. C. Prieve, “Hindered diffusion of a single sphere very near a wall in a nonuniform force field,” J. Chem. Phys. 98, 7552–7564 (1993).
    [CrossRef]
  20. J. Y. Walz, L. Suresh, “Study of the sedimentation of a single particle toward a flat plate,” J. Chem. Phys. 103, 10,714–10,725 (1995).
    [CrossRef]
  21. E. S. Pagac, R. D. Tilton, D. C. Prieve, “Hindered mobility of a rigid sphere near a wall,” Chem. Eng. Commun. 148–150, 105–122 (1996).
    [CrossRef]
  22. G. A. Schumacher, T. G. M. van de Ven, “Evanescent wave scattering studies on latex-glass interactions,” Langmuir 7, 2028–2033 (1991).
    [CrossRef]
  23. M. Polverari, T. G. M. van de Ven, “Electrostatic and steric interactions in particle deposition studied by evanescent wave light scattering,” J. Colloid Interface Sci. 173, 343–353 (1995).
    [CrossRef]
  24. M. Polverari, T. G. M. van de Ven, “Effect of flow on the distribution of colloidal particles near surfaces studied by evanescent wave light scattering,” Langmuir 11, 1870–1876 (1995).
    [CrossRef]
  25. S. Tanimoto, H. Matsuoka, H. Yamaoka, “Direct estimation of dynamic characteristics and interaction potential of latex particles interacting with a glass surface by evanescent wave light-scattering microscope method,” Colloid Polym. Sci. 273, 1201–1205 (1995).
    [CrossRef]
  26. D. Gingell, I. Todd, J. Bailey, “Topography of cell-glass apposition revealed by total internal reflection fluorescence of volume markers,” J. Cell. Biol. 100, 1334–1338 (1985).
    [CrossRef] [PubMed]
  27. D. Gingell, O. S. Heavens, J. S. Mellor, “General electromagnetic theory of total internal reflection fluorescence: the quantitative basis for mapping cell-substratum topography,” J. Cell Sci. 87, 677–693 (1987).
    [PubMed]
  28. S. Kawata, T. Sugiura, “Movement of micrometer-sized particles in the evanescent field of a laser beam,” Opt. Lett. 17, 772–774 (1992).
    [CrossRef] [PubMed]
  29. S. Chang, J. H. Jo, S. S. Lee, “Theoretical calculations of optical force exerted on a dielectric sphere in the evanescent field generated with a totally reflected focused Gaussian beam,” Opt. Commun. 108, 133–143 (1994).
    [CrossRef]
  30. E. Almaas, I. Brevik, “Radiation forces on a micrometer-sized sphere in an evanescent field,” J. Opt. Soc. Am. B. 12, 2429–2438 (1995).
    [CrossRef]
  31. J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).
    [CrossRef]
  32. J. P. Barton, D. R. Alexander, S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989).
    [CrossRef]
  33. D. C. Prieve, J. Y. Walz, “Scattering of an evanescent surface wave by a microscopic dielectric sphere,” Appl. Opt. 32, 1629–1641 (1993).
    [CrossRef] [PubMed]
  34. G. Roosen, “La lévitation optique de sphères,” Can. J. Phys. 57, 1260–1279 (1979).
    [CrossRef]
  35. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957), Chap. 12, pp. 200–215.
  36. J. Y. Walz, “Measuring particle interactions with total internal reflection microscopy,” Curr. Opin. Colloid Interface Sci. 2, 600–606 (1997).
    [CrossRef]
  37. A. J. Goldman, R. G. Cox, H. Brenner, “Slow viscous motion of a sphere parallel to a plane wall. I. Motion through a quiescent fluid,” Chem. Eng. Sci. 22, 637–651 (1967).
    [CrossRef]

1997 (1)

J. Y. Walz, “Measuring particle interactions with total internal reflection microscopy,” Curr. Opin. Colloid Interface Sci. 2, 600–606 (1997).
[CrossRef]

1996 (2)

E. S. Pagac, R. D. Tilton, D. C. Prieve, “Hindered mobility of a rigid sphere near a wall,” Chem. Eng. Commun. 148–150, 105–122 (1996).
[CrossRef]

A. Hirai, H. Monjushiro, H. Watarai, “Laser photophoresis of a single droplet in oil in water emulsions,” Langmuir 12, 5570–5575 (1996).
[CrossRef]

1995 (5)

J. Y. Walz, L. Suresh, “Study of the sedimentation of a single particle toward a flat plate,” J. Chem. Phys. 103, 10,714–10,725 (1995).
[CrossRef]

M. Polverari, T. G. M. van de Ven, “Electrostatic and steric interactions in particle deposition studied by evanescent wave light scattering,” J. Colloid Interface Sci. 173, 343–353 (1995).
[CrossRef]

M. Polverari, T. G. M. van de Ven, “Effect of flow on the distribution of colloidal particles near surfaces studied by evanescent wave light scattering,” Langmuir 11, 1870–1876 (1995).
[CrossRef]

S. Tanimoto, H. Matsuoka, H. Yamaoka, “Direct estimation of dynamic characteristics and interaction potential of latex particles interacting with a glass surface by evanescent wave light-scattering microscope method,” Colloid Polym. Sci. 273, 1201–1205 (1995).
[CrossRef]

E. Almaas, I. Brevik, “Radiation forces on a micrometer-sized sphere in an evanescent field,” J. Opt. Soc. Am. B. 12, 2429–2438 (1995).
[CrossRef]

1994 (2)

S. Chang, J. H. Jo, S. S. Lee, “Theoretical calculations of optical force exerted on a dielectric sphere in the evanescent field generated with a totally reflected focused Gaussian beam,” Opt. Commun. 108, 133–143 (1994).
[CrossRef]

L. P. Ghislain, N. A. Switz, W. W. Webb, “Measurement of small forces using an optical trap,” Rev. Sci. Instrum. 65, 2762–2768 (1994).
[CrossRef]

1993 (5)

W. H. Wright, G. J. Sonek, M. W. Berns, “Radiation trapping forces on microspheres with optical tweezers,” Appl. Phys. Lett. 63, 715–717 (1993).
[CrossRef]

S. G. Flicker, J. L. Tipa, S. G. Bike, “Quantifying double-layer repulsion between a colloidal sphere and a glass plate using total internal reflection microscopy,” J. Colloid Interface Sci. 158, 317–325 (1993).
[CrossRef]

N. A. Frej, D. C. Prieve, “Hindered diffusion of a single sphere very near a wall in a nonuniform force field,” J. Chem. Phys. 98, 7552–7564 (1993).
[CrossRef]

H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, H. Masuhara, “Laser manipulation and assembling of polymer latex particles in solution,” Macromolecules 26, 282–286 (1993).
[CrossRef]

D. C. Prieve, J. Y. Walz, “Scattering of an evanescent surface wave by a microscopic dielectric sphere,” Appl. Opt. 32, 1629–1641 (1993).
[CrossRef] [PubMed]

1992 (3)

S. Kawata, T. Sugiura, “Movement of micrometer-sized particles in the evanescent field of a laser beam,” Opt. Lett. 17, 772–774 (1992).
[CrossRef] [PubMed]

J. Y. Walz, D. C. Prieve, “Prediction and measurement of the optical trapping forces on a microscopic dielectric sphere,” Langmuir 8, 3073–3082 (1992).
[CrossRef]

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
[CrossRef]

1991 (4)

T. C. B. Schut, G. Hesselink, B. G. de Grooth, J. Greve, “Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991).
[CrossRef] [PubMed]

S. Sato, M. Ohyumi, H. Shibata, H. Inaba, Y. Ogawa, “Optical trapping of small particles using a 1.3-µm compact InGaAsP diode laser,” Opt. Lett. 16, 282–284 (1991).
[CrossRef] [PubMed]

K. Visscher, G. J. Brakenhoff, “Single beam optical trapping integrated in a confocal microscope for biological applications,” Cytometry 12, 486–491 (1991).
[CrossRef] [PubMed]

G. A. Schumacher, T. G. M. van de Ven, “Evanescent wave scattering studies on latex-glass interactions,” Langmuir 7, 2028–2033 (1991).
[CrossRef]

1990 (1)

D. C. Prieve, N. A. Frej, “Total internal reflection microscopy: a quantitative tool for the measurement of colloidal forces,” Langmuir 6, 396–403 (1990).
[CrossRef]

1989 (2)

M. A. Brown, A. L. Smith, E. J. Staples, “A method using total internal reflection microscopy and radiation pressure to study weak interaction forces of particles near surfaces,” Langmuir 5, 1319–1324 (1989).
[CrossRef]

J. P. Barton, D. R. Alexander, S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989).
[CrossRef]

1988 (1)

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).
[CrossRef]

1987 (4)

D. Gingell, O. S. Heavens, J. S. Mellor, “General electromagnetic theory of total internal reflection fluorescence: the quantitative basis for mapping cell-substratum topography,” J. Cell Sci. 87, 677–693 (1987).
[PubMed]

A. Ashkin, J. M. Dziedzic, T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature (London) 330, 769–771 (1987).
[CrossRef]

A. Ashkin, J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[CrossRef] [PubMed]

B. J. Ackerson, A. H. Chowdhury, “Radiation pressure as a technique for manipulating the particle order in colloidal suspensions,” Faraday Discuss. Chem. Soc. 83 (22) , 1–8 (1987).

1986 (1)

1985 (1)

D. Gingell, I. Todd, J. Bailey, “Topography of cell-glass apposition revealed by total internal reflection fluorescence of volume markers,” J. Cell. Biol. 100, 1334–1338 (1985).
[CrossRef] [PubMed]

1979 (1)

G. Roosen, “La lévitation optique de sphères,” Can. J. Phys. 57, 1260–1279 (1979).
[CrossRef]

1971 (1)

A. Ashkin, J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[CrossRef]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

1967 (1)

A. J. Goldman, R. G. Cox, H. Brenner, “Slow viscous motion of a sphere parallel to a plane wall. I. Motion through a quiescent fluid,” Chem. Eng. Sci. 22, 637–651 (1967).
[CrossRef]

Ackerson, B. J.

B. J. Ackerson, A. H. Chowdhury, “Radiation pressure as a technique for manipulating the particle order in colloidal suspensions,” Faraday Discuss. Chem. Soc. 83 (22) , 1–8 (1987).

Alexander, D. R.

J. P. Barton, D. R. Alexander, S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989).
[CrossRef]

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).
[CrossRef]

Almaas, E.

E. Almaas, I. Brevik, “Radiation forces on a micrometer-sized sphere in an evanescent field,” J. Opt. Soc. Am. B. 12, 2429–2438 (1995).
[CrossRef]

Ashkin, A.

A. Ashkin, J. M. Dziedzic, T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature (London) 330, 769–771 (1987).
[CrossRef]

A. Ashkin, J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[CrossRef]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Bailey, J.

D. Gingell, I. Todd, J. Bailey, “Topography of cell-glass apposition revealed by total internal reflection fluorescence of volume markers,” J. Cell. Biol. 100, 1334–1338 (1985).
[CrossRef] [PubMed]

Barton, J. P.

J. P. Barton, D. R. Alexander, S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989).
[CrossRef]

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).
[CrossRef]

Berns, M. W.

W. H. Wright, G. J. Sonek, M. W. Berns, “Radiation trapping forces on microspheres with optical tweezers,” Appl. Phys. Lett. 63, 715–717 (1993).
[CrossRef]

Bike, S. G.

S. G. Flicker, J. L. Tipa, S. G. Bike, “Quantifying double-layer repulsion between a colloidal sphere and a glass plate using total internal reflection microscopy,” J. Colloid Interface Sci. 158, 317–325 (1993).
[CrossRef]

Bjorkholm, J. E.

Brakenhoff, G. J.

K. Visscher, G. J. Brakenhoff, “Single beam optical trapping integrated in a confocal microscope for biological applications,” Cytometry 12, 486–491 (1991).
[CrossRef] [PubMed]

Brenner, H.

A. J. Goldman, R. G. Cox, H. Brenner, “Slow viscous motion of a sphere parallel to a plane wall. I. Motion through a quiescent fluid,” Chem. Eng. Sci. 22, 637–651 (1967).
[CrossRef]

Brevik, I.

E. Almaas, I. Brevik, “Radiation forces on a micrometer-sized sphere in an evanescent field,” J. Opt. Soc. Am. B. 12, 2429–2438 (1995).
[CrossRef]

Brown, M. A.

M. A. Brown, A. L. Smith, E. J. Staples, “A method using total internal reflection microscopy and radiation pressure to study weak interaction forces of particles near surfaces,” Langmuir 5, 1319–1324 (1989).
[CrossRef]

Chang, S.

S. Chang, J. H. Jo, S. S. Lee, “Theoretical calculations of optical force exerted on a dielectric sphere in the evanescent field generated with a totally reflected focused Gaussian beam,” Opt. Commun. 108, 133–143 (1994).
[CrossRef]

Chowdhury, A. H.

B. J. Ackerson, A. H. Chowdhury, “Radiation pressure as a technique for manipulating the particle order in colloidal suspensions,” Faraday Discuss. Chem. Soc. 83 (22) , 1–8 (1987).

Chu, S.

Cox, R. G.

A. J. Goldman, R. G. Cox, H. Brenner, “Slow viscous motion of a sphere parallel to a plane wall. I. Motion through a quiescent fluid,” Chem. Eng. Sci. 22, 637–651 (1967).
[CrossRef]

de Grooth, B. G.

T. C. B. Schut, G. Hesselink, B. G. de Grooth, J. Greve, “Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991).
[CrossRef] [PubMed]

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature (London) 330, 769–771 (1987).
[CrossRef]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[CrossRef]

Flicker, S. G.

S. G. Flicker, J. L. Tipa, S. G. Bike, “Quantifying double-layer repulsion between a colloidal sphere and a glass plate using total internal reflection microscopy,” J. Colloid Interface Sci. 158, 317–325 (1993).
[CrossRef]

Frej, N. A.

N. A. Frej, D. C. Prieve, “Hindered diffusion of a single sphere very near a wall in a nonuniform force field,” J. Chem. Phys. 98, 7552–7564 (1993).
[CrossRef]

D. C. Prieve, N. A. Frej, “Total internal reflection microscopy: a quantitative tool for the measurement of colloidal forces,” Langmuir 6, 396–403 (1990).
[CrossRef]

Ghislain, L. P.

L. P. Ghislain, N. A. Switz, W. W. Webb, “Measurement of small forces using an optical trap,” Rev. Sci. Instrum. 65, 2762–2768 (1994).
[CrossRef]

Gingell, D.

D. Gingell, O. S. Heavens, J. S. Mellor, “General electromagnetic theory of total internal reflection fluorescence: the quantitative basis for mapping cell-substratum topography,” J. Cell Sci. 87, 677–693 (1987).
[PubMed]

D. Gingell, I. Todd, J. Bailey, “Topography of cell-glass apposition revealed by total internal reflection fluorescence of volume markers,” J. Cell. Biol. 100, 1334–1338 (1985).
[CrossRef] [PubMed]

Goldman, A. J.

A. J. Goldman, R. G. Cox, H. Brenner, “Slow viscous motion of a sphere parallel to a plane wall. I. Motion through a quiescent fluid,” Chem. Eng. Sci. 22, 637–651 (1967).
[CrossRef]

Greve, J.

T. C. B. Schut, G. Hesselink, B. G. de Grooth, J. Greve, “Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991).
[CrossRef] [PubMed]

Heavens, O. S.

D. Gingell, O. S. Heavens, J. S. Mellor, “General electromagnetic theory of total internal reflection fluorescence: the quantitative basis for mapping cell-substratum topography,” J. Cell Sci. 87, 677–693 (1987).
[PubMed]

Hesselink, G.

T. C. B. Schut, G. Hesselink, B. G. de Grooth, J. Greve, “Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991).
[CrossRef] [PubMed]

Hirai, A.

A. Hirai, H. Monjushiro, H. Watarai, “Laser photophoresis of a single droplet in oil in water emulsions,” Langmuir 12, 5570–5575 (1996).
[CrossRef]

Inaba, H.

Jo, J. H.

S. Chang, J. H. Jo, S. S. Lee, “Theoretical calculations of optical force exerted on a dielectric sphere in the evanescent field generated with a totally reflected focused Gaussian beam,” Opt. Commun. 108, 133–143 (1994).
[CrossRef]

Kawata, S.

Kitamura, N.

H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, H. Masuhara, “Laser manipulation and assembling of polymer latex particles in solution,” Macromolecules 26, 282–286 (1993).
[CrossRef]

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
[CrossRef]

Koshioka, M.

H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, H. Masuhara, “Laser manipulation and assembling of polymer latex particles in solution,” Macromolecules 26, 282–286 (1993).
[CrossRef]

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
[CrossRef]

Lee, S. S.

S. Chang, J. H. Jo, S. S. Lee, “Theoretical calculations of optical force exerted on a dielectric sphere in the evanescent field generated with a totally reflected focused Gaussian beam,” Opt. Commun. 108, 133–143 (1994).
[CrossRef]

Masuhara, H.

H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, H. Masuhara, “Laser manipulation and assembling of polymer latex particles in solution,” Macromolecules 26, 282–286 (1993).
[CrossRef]

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
[CrossRef]

Matsuoka, H.

S. Tanimoto, H. Matsuoka, H. Yamaoka, “Direct estimation of dynamic characteristics and interaction potential of latex particles interacting with a glass surface by evanescent wave light-scattering microscope method,” Colloid Polym. Sci. 273, 1201–1205 (1995).
[CrossRef]

Mellor, J. S.

D. Gingell, O. S. Heavens, J. S. Mellor, “General electromagnetic theory of total internal reflection fluorescence: the quantitative basis for mapping cell-substratum topography,” J. Cell Sci. 87, 677–693 (1987).
[PubMed]

Misawa, H.

H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, H. Masuhara, “Laser manipulation and assembling of polymer latex particles in solution,” Macromolecules 26, 282–286 (1993).
[CrossRef]

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
[CrossRef]

Monjushiro, H.

A. Hirai, H. Monjushiro, H. Watarai, “Laser photophoresis of a single droplet in oil in water emulsions,” Langmuir 12, 5570–5575 (1996).
[CrossRef]

Ogawa, Y.

Ohyumi, M.

Pagac, E. S.

E. S. Pagac, R. D. Tilton, D. C. Prieve, “Hindered mobility of a rigid sphere near a wall,” Chem. Eng. Commun. 148–150, 105–122 (1996).
[CrossRef]

Polverari, M.

M. Polverari, T. G. M. van de Ven, “Electrostatic and steric interactions in particle deposition studied by evanescent wave light scattering,” J. Colloid Interface Sci. 173, 343–353 (1995).
[CrossRef]

M. Polverari, T. G. M. van de Ven, “Effect of flow on the distribution of colloidal particles near surfaces studied by evanescent wave light scattering,” Langmuir 11, 1870–1876 (1995).
[CrossRef]

Prieve, D. C.

E. S. Pagac, R. D. Tilton, D. C. Prieve, “Hindered mobility of a rigid sphere near a wall,” Chem. Eng. Commun. 148–150, 105–122 (1996).
[CrossRef]

N. A. Frej, D. C. Prieve, “Hindered diffusion of a single sphere very near a wall in a nonuniform force field,” J. Chem. Phys. 98, 7552–7564 (1993).
[CrossRef]

D. C. Prieve, J. Y. Walz, “Scattering of an evanescent surface wave by a microscopic dielectric sphere,” Appl. Opt. 32, 1629–1641 (1993).
[CrossRef] [PubMed]

J. Y. Walz, D. C. Prieve, “Prediction and measurement of the optical trapping forces on a microscopic dielectric sphere,” Langmuir 8, 3073–3082 (1992).
[CrossRef]

D. C. Prieve, N. A. Frej, “Total internal reflection microscopy: a quantitative tool for the measurement of colloidal forces,” Langmuir 6, 396–403 (1990).
[CrossRef]

Roosen, G.

G. Roosen, “La lévitation optique de sphères,” Can. J. Phys. 57, 1260–1279 (1979).
[CrossRef]

Sasaki, K.

H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, H. Masuhara, “Laser manipulation and assembling of polymer latex particles in solution,” Macromolecules 26, 282–286 (1993).
[CrossRef]

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
[CrossRef]

Sato, S.

Schaub, S. A.

J. P. Barton, D. R. Alexander, S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989).
[CrossRef]

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).
[CrossRef]

Schumacher, G. A.

G. A. Schumacher, T. G. M. van de Ven, “Evanescent wave scattering studies on latex-glass interactions,” Langmuir 7, 2028–2033 (1991).
[CrossRef]

Schut, T. C. B.

T. C. B. Schut, G. Hesselink, B. G. de Grooth, J. Greve, “Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991).
[CrossRef] [PubMed]

Shibata, H.

Smith, A. L.

M. A. Brown, A. L. Smith, E. J. Staples, “A method using total internal reflection microscopy and radiation pressure to study weak interaction forces of particles near surfaces,” Langmuir 5, 1319–1324 (1989).
[CrossRef]

Sonek, G. J.

W. H. Wright, G. J. Sonek, M. W. Berns, “Radiation trapping forces on microspheres with optical tweezers,” Appl. Phys. Lett. 63, 715–717 (1993).
[CrossRef]

Staples, E. J.

M. A. Brown, A. L. Smith, E. J. Staples, “A method using total internal reflection microscopy and radiation pressure to study weak interaction forces of particles near surfaces,” Langmuir 5, 1319–1324 (1989).
[CrossRef]

Sugiura, T.

Suresh, L.

J. Y. Walz, L. Suresh, “Study of the sedimentation of a single particle toward a flat plate,” J. Chem. Phys. 103, 10,714–10,725 (1995).
[CrossRef]

Switz, N. A.

L. P. Ghislain, N. A. Switz, W. W. Webb, “Measurement of small forces using an optical trap,” Rev. Sci. Instrum. 65, 2762–2768 (1994).
[CrossRef]

Tanimoto, S.

S. Tanimoto, H. Matsuoka, H. Yamaoka, “Direct estimation of dynamic characteristics and interaction potential of latex particles interacting with a glass surface by evanescent wave light-scattering microscope method,” Colloid Polym. Sci. 273, 1201–1205 (1995).
[CrossRef]

Tilton, R. D.

E. S. Pagac, R. D. Tilton, D. C. Prieve, “Hindered mobility of a rigid sphere near a wall,” Chem. Eng. Commun. 148–150, 105–122 (1996).
[CrossRef]

Tipa, J. L.

S. G. Flicker, J. L. Tipa, S. G. Bike, “Quantifying double-layer repulsion between a colloidal sphere and a glass plate using total internal reflection microscopy,” J. Colloid Interface Sci. 158, 317–325 (1993).
[CrossRef]

Todd, I.

D. Gingell, I. Todd, J. Bailey, “Topography of cell-glass apposition revealed by total internal reflection fluorescence of volume markers,” J. Cell. Biol. 100, 1334–1338 (1985).
[CrossRef] [PubMed]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957), Chap. 12, pp. 200–215.

van de Ven, T. G. M.

M. Polverari, T. G. M. van de Ven, “Effect of flow on the distribution of colloidal particles near surfaces studied by evanescent wave light scattering,” Langmuir 11, 1870–1876 (1995).
[CrossRef]

M. Polverari, T. G. M. van de Ven, “Electrostatic and steric interactions in particle deposition studied by evanescent wave light scattering,” J. Colloid Interface Sci. 173, 343–353 (1995).
[CrossRef]

G. A. Schumacher, T. G. M. van de Ven, “Evanescent wave scattering studies on latex-glass interactions,” Langmuir 7, 2028–2033 (1991).
[CrossRef]

Visscher, K.

K. Visscher, G. J. Brakenhoff, “Single beam optical trapping integrated in a confocal microscope for biological applications,” Cytometry 12, 486–491 (1991).
[CrossRef] [PubMed]

Walz, J. Y.

J. Y. Walz, “Measuring particle interactions with total internal reflection microscopy,” Curr. Opin. Colloid Interface Sci. 2, 600–606 (1997).
[CrossRef]

J. Y. Walz, L. Suresh, “Study of the sedimentation of a single particle toward a flat plate,” J. Chem. Phys. 103, 10,714–10,725 (1995).
[CrossRef]

D. C. Prieve, J. Y. Walz, “Scattering of an evanescent surface wave by a microscopic dielectric sphere,” Appl. Opt. 32, 1629–1641 (1993).
[CrossRef] [PubMed]

J. Y. Walz, D. C. Prieve, “Prediction and measurement of the optical trapping forces on a microscopic dielectric sphere,” Langmuir 8, 3073–3082 (1992).
[CrossRef]

Watarai, H.

A. Hirai, H. Monjushiro, H. Watarai, “Laser photophoresis of a single droplet in oil in water emulsions,” Langmuir 12, 5570–5575 (1996).
[CrossRef]

Webb, W. W.

L. P. Ghislain, N. A. Switz, W. W. Webb, “Measurement of small forces using an optical trap,” Rev. Sci. Instrum. 65, 2762–2768 (1994).
[CrossRef]

Wright, W. H.

W. H. Wright, G. J. Sonek, M. W. Berns, “Radiation trapping forces on microspheres with optical tweezers,” Appl. Phys. Lett. 63, 715–717 (1993).
[CrossRef]

Yamane, T.

A. Ashkin, J. M. Dziedzic, T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature (London) 330, 769–771 (1987).
[CrossRef]

Yamaoka, H.

S. Tanimoto, H. Matsuoka, H. Yamaoka, “Direct estimation of dynamic characteristics and interaction potential of latex particles interacting with a glass surface by evanescent wave light-scattering microscope method,” Colloid Polym. Sci. 273, 1201–1205 (1995).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

A. Ashkin, J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[CrossRef]

W. H. Wright, G. J. Sonek, M. W. Berns, “Radiation trapping forces on microspheres with optical tweezers,” Appl. Phys. Lett. 63, 715–717 (1993).
[CrossRef]

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
[CrossRef]

Can. J. Phys. (1)

G. Roosen, “La lévitation optique de sphères,” Can. J. Phys. 57, 1260–1279 (1979).
[CrossRef]

Chem. Eng. Commun. (1)

E. S. Pagac, R. D. Tilton, D. C. Prieve, “Hindered mobility of a rigid sphere near a wall,” Chem. Eng. Commun. 148–150, 105–122 (1996).
[CrossRef]

Chem. Eng. Sci. (1)

A. J. Goldman, R. G. Cox, H. Brenner, “Slow viscous motion of a sphere parallel to a plane wall. I. Motion through a quiescent fluid,” Chem. Eng. Sci. 22, 637–651 (1967).
[CrossRef]

Colloid Polym. Sci. (1)

S. Tanimoto, H. Matsuoka, H. Yamaoka, “Direct estimation of dynamic characteristics and interaction potential of latex particles interacting with a glass surface by evanescent wave light-scattering microscope method,” Colloid Polym. Sci. 273, 1201–1205 (1995).
[CrossRef]

Curr. Opin. Colloid Interface Sci. (1)

J. Y. Walz, “Measuring particle interactions with total internal reflection microscopy,” Curr. Opin. Colloid Interface Sci. 2, 600–606 (1997).
[CrossRef]

Cytometry (2)

T. C. B. Schut, G. Hesselink, B. G. de Grooth, J. Greve, “Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991).
[CrossRef] [PubMed]

K. Visscher, G. J. Brakenhoff, “Single beam optical trapping integrated in a confocal microscope for biological applications,” Cytometry 12, 486–491 (1991).
[CrossRef] [PubMed]

Faraday Discuss. Chem. Soc. (1)

B. J. Ackerson, A. H. Chowdhury, “Radiation pressure as a technique for manipulating the particle order in colloidal suspensions,” Faraday Discuss. Chem. Soc. 83 (22) , 1–8 (1987).

J. Appl. Phys. (2)

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).
[CrossRef]

J. P. Barton, D. R. Alexander, S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989).
[CrossRef]

J. Cell Sci. (1)

D. Gingell, O. S. Heavens, J. S. Mellor, “General electromagnetic theory of total internal reflection fluorescence: the quantitative basis for mapping cell-substratum topography,” J. Cell Sci. 87, 677–693 (1987).
[PubMed]

J. Cell. Biol. (1)

D. Gingell, I. Todd, J. Bailey, “Topography of cell-glass apposition revealed by total internal reflection fluorescence of volume markers,” J. Cell. Biol. 100, 1334–1338 (1985).
[CrossRef] [PubMed]

J. Chem. Phys. (2)

N. A. Frej, D. C. Prieve, “Hindered diffusion of a single sphere very near a wall in a nonuniform force field,” J. Chem. Phys. 98, 7552–7564 (1993).
[CrossRef]

J. Y. Walz, L. Suresh, “Study of the sedimentation of a single particle toward a flat plate,” J. Chem. Phys. 103, 10,714–10,725 (1995).
[CrossRef]

J. Colloid Interface Sci. (2)

M. Polverari, T. G. M. van de Ven, “Electrostatic and steric interactions in particle deposition studied by evanescent wave light scattering,” J. Colloid Interface Sci. 173, 343–353 (1995).
[CrossRef]

S. G. Flicker, J. L. Tipa, S. G. Bike, “Quantifying double-layer repulsion between a colloidal sphere and a glass plate using total internal reflection microscopy,” J. Colloid Interface Sci. 158, 317–325 (1993).
[CrossRef]

J. Opt. Soc. Am. B. (1)

E. Almaas, I. Brevik, “Radiation forces on a micrometer-sized sphere in an evanescent field,” J. Opt. Soc. Am. B. 12, 2429–2438 (1995).
[CrossRef]

Langmuir (6)

M. Polverari, T. G. M. van de Ven, “Effect of flow on the distribution of colloidal particles near surfaces studied by evanescent wave light scattering,” Langmuir 11, 1870–1876 (1995).
[CrossRef]

G. A. Schumacher, T. G. M. van de Ven, “Evanescent wave scattering studies on latex-glass interactions,” Langmuir 7, 2028–2033 (1991).
[CrossRef]

J. Y. Walz, D. C. Prieve, “Prediction and measurement of the optical trapping forces on a microscopic dielectric sphere,” Langmuir 8, 3073–3082 (1992).
[CrossRef]

M. A. Brown, A. L. Smith, E. J. Staples, “A method using total internal reflection microscopy and radiation pressure to study weak interaction forces of particles near surfaces,” Langmuir 5, 1319–1324 (1989).
[CrossRef]

D. C. Prieve, N. A. Frej, “Total internal reflection microscopy: a quantitative tool for the measurement of colloidal forces,” Langmuir 6, 396–403 (1990).
[CrossRef]

A. Hirai, H. Monjushiro, H. Watarai, “Laser photophoresis of a single droplet in oil in water emulsions,” Langmuir 12, 5570–5575 (1996).
[CrossRef]

Macromolecules (1)

H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, H. Masuhara, “Laser manipulation and assembling of polymer latex particles in solution,” Macromolecules 26, 282–286 (1993).
[CrossRef]

Nature (London) (1)

A. Ashkin, J. M. Dziedzic, T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature (London) 330, 769–771 (1987).
[CrossRef]

Opt. Commun. (1)

S. Chang, J. H. Jo, S. S. Lee, “Theoretical calculations of optical force exerted on a dielectric sphere in the evanescent field generated with a totally reflected focused Gaussian beam,” Opt. Commun. 108, 133–143 (1994).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. Lett. (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Rev. Sci. Instrum. (1)

L. P. Ghislain, N. A. Switz, W. W. Webb, “Measurement of small forces using an optical trap,” Rev. Sci. Instrum. 65, 2762–2768 (1994).
[CrossRef]

Science (1)

A. Ashkin, J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[CrossRef] [PubMed]

Other (1)

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957), Chap. 12, pp. 200–215.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic illustrating the geometry and the coordinate systems for the ray tracing procedure.

Fig. 2
Fig. 2

Point of contact of a ray with sphere P 1 characterized by the angles τ and ϕ.

Fig. 3
Fig. 3

Schematic defining the variables used in tracing the path of a ray through the dielectric sphere.

Fig. 4
Fig. 4

Comparison with the results of Almaas and Brevik30 for the x component of force (perpendicular to the interface). Q x is the dimensionless force, F x 0 E 0 2 R 2, and α is the dimensionless particle radius 2πn 2 R0. The specific conditions used were n 1 = 1.75, n 2 = 1.33, n 3 = 1.50, λ0 = 1.06 µm, θ i = 51°, and h 0 = 0.0, and the incident beam was a uniform field of infinite diameter. A negative force means that the particle is pulled closer to the interface. S polarization represents the case when the electric field of the incident beam is parallel to the y′ axis, whereas in p polarization the field is in the x′–z′ plane.

Fig. 5
Fig. 5

Comparison with the results of Almaas and Brevik30 for the z component of force (parallel to the interface). Q z is the dimensionless force, F z 0 E 0 2 R 2, and α is the dimensionless particle radius 2πn 2 R0. The specific conditions used were the same as in Fig. 4. A positive force means that the particle is pushed along by the beam in the direction of the real component of the evanescent wave vector.

Fig. 6
Fig. 6

The x component of the force in a typical TIRM experiment. The specific conditions were n 1 = 1.52, n 2 = 1.33, n 3 = 1.60, λ0 = 488 nm, θ i = 68°, h 0 = 50 nm, w 0 = 0.5 mm, and Πbeam = 0.1 W. The ordinate is the force divided by a characteristic measure of the rate of momentum striking the sphere. The numbers on the graph give the force as a fraction of the net weight of the particle in water at the specific locations indicated.

Fig. 7
Fig. 7

The z component of the force in a typical TIRM experiment. The conditions used in the calculations and the scaling of the force are the same as in Fig. 6. The numbers in the graph here give the steady-state translation velocity of the particle parallel to the interface in micrometers per second.

Fig. 8
Fig. 8

The y component of the torque produced in a typical TIRM experiment. The calculation conditions are the same as those in Fig. 6. The ordinate is the torque divided by the characteristic rate of momentum striking the sphere multiplied by the particle radius. A positive value means that the bottom of the sphere is moving in the +z direction. The values here are the steady-state rotation rates of the particle in revolutions per second.

Fig. 9
Fig. 9

The x component of the force at conditions designed to maximize the forces. Specifically, n 1 = 1.52, n 2 = 1.33, n 3 = 1.60, λ0 = 488 nm, θ i = 63°, h 0 = 50 nm, w 0 = 0.05 mm, and Πbeam = 1.0 W. The numbers on the graph give the force as a fraction of the net weight of the particle in water at the specific locations indicated.

Fig. 10
Fig. 10

The z component of the force at conditions designed to maximize the forces. The conditions used are the same as in Fig. 9. The numbers in the graph here give the steady-state translation velocity of the particle parallel to the interface in micrometers per second.

Fig. 11
Fig. 11

The y component of the torque at conditions designed to maximize the forces. The calculation conditions are the same as those in Fig. 9. The values here are the steady-state rotation rates of the particle in revolutions per second.

Fig. 12
Fig. 12

Graph showing the variation in both the x and z components of the force with the refractive index of the sphere. The system parameters are the same as in Fig. 9, with α = 125 (R = 7.30 µm). Only the case of p polarization is shown.

Fig. 13
Fig. 13

Schematic explaining the variation in the direction of the x component of the force with n sphere. The direction of the p = 1 ray, which contains a significant fraction of the momentum of the incident ray, will vary with the n sphere/n fluid ratio. When n spheren fluid, the bulk of the incident momentum will be contained in the p = 0 ray.

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

α=2πn2R/λ0,
w1=w0cos θi.
sin θ2=n1/n2sin θi,
cos θ2=1-sin2 θ21/2.
cos θ3=cos θ2 cos τ+sin θ2 sin τ,
sin θ3=1-cos2 θ31/2,
sin θ4=n1n3sin θi cos τ-n2n3cos θ2 sin τ,
cos θ4=1-sin2 θ41/2.
2θ3-2pθ4=j2π+qξ,
F=Min-Mout,
M=Πnck,
T=r×F,
T=r×Min-r×Mout.
Ix=0, y, z=2Πbeaminter2πw1w0×exp-2zw12+yw02,
h=R1+cos τ cos ϕ+h0.
Ix=h, y, z=Ix=0, y, zexp-4πn2βh/λ0,
β=n1n22 sin2 θi-11/2.
δ=-4πn2β/λ0-1.
dA =R2 cos τdτdϕ.
Πin=2Πbeaminter2πw1w0 exp-2zw12+yw02×exp-h/δR2 cos τ sin τdτdϕ,
f1=n2 cos θ3-n3 cos θ4n2 cos θ3+n3 cos θ4, f2=n2 cos θ3-n3 cos θ4n3 cos θ3+n2 cos θ4.
i=fifor p=01-fi2-fip-1for p1,
fractional energy=1 sinpolarization angle2+ 2 cospolarization angle2,
Qx=Fxε0E02R2, Qz=Fzε0E02R2.
M*=ΠbeamRδn2 exp-h0/δ/w02c
Fdrag=-6πηRu,
Tdrag=-8πηR3ν,

Metrics