Abstract

We describe a micromachined optical fiber current sensor. The sensing element consists of a squared silicon membrane (8 mm long and 20 µm thick) that has a cylindrical permanent magnet (NdFeB alloy, 3-mm diameter, 1.5 mm high) fixed on its central region. This structure allows the permanent magnet to vibrate in the presence of the magnetic field gradient generated by an ac. A linear relation between the electrical current and the magnet displacement was measured with white-light interferometry with an optical fiber low-finesse Fabry–Perot microcavity. A measurement range of 0–70 A and a minimum detectable intensity of 20 mA were obtained when distance D between the membrane and the electrical power line was 5 mm. The output signal directly shows a linear response with distance D.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Saito, Y. Fujii, K. Yokoyama, J. Hamasaki, Y. Ohno, “The laser current transformer for EHV power transmission lines,” IEEE J. Quantum Electron. 2, 255–259 (1966).
    [CrossRef]
  2. Y. Pelenc, “Transoptics: current transformers using magnetooptic effect for very high voltages,” L’Electricien 82, 63–66 (1969).
  3. W. Hermstein, “Development trends in the construction of measuring transformers—with special reference to unconventional instrument transformers for high voltages,” Elektrizitaetswirtschaft 68, 246–257 (1969).
  4. Emerging Technologies Working Group, Power Systems Instrumentation and Measurements Committee, the Fiber Optic Subcommittee, Power Systems Communications Committee, “Optical current sensors for power systems: a review,” IEEE Trans. Power Deliv. 9, 1778–1788 (1994).
  5. S. Matsushita, S. Konishi, Y. Sakurai, “Magnetooptical ammeter,” IEEE Trans. Magn. 6, 569–571 (1970).
    [CrossRef]
  6. A. D. Higham, J. D. Newman, “Measurement of current using Faraday rotation in glass fiber,” in Colloquium Digest on Novel Types of Transducer (IEEE, London, UK), pp. 1–2.
  7. G. W. Day, A. H. Rose, “Faraday effect sensors: the state of the art,” in Fiber Optic and Laser Sensors VI, R. P. DePaula, E. Udd, eds., Proc. SPIE985, 138–150 (1988).
    [CrossRef]
  8. Y. N. Ning, D. A. Jackson, “Review of optical current sensors using bulk-glass sensing elements,” Sens. Actuators A 39, 219–224 (1993).
    [CrossRef]
  9. Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattam, D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
    [CrossRef]
  10. Z. P. Wang, S. Q. Zhang, L. B. Zhang, “Recent advances in optical current-sensing techniques,” Sens. Actuators A 50, 169–175 (1995).
    [CrossRef]
  11. E. F. Carome, V. E. Kubulins, R. L. Flanagan, P. Shamray-Bertaud, “Intensity-type fiber optic electric current sensor,” in Fiber Optic and Laser Sensors XI, R. DePaula, E. Udd, eds., Proc. SPIE1584, 110–117 (1991).
    [CrossRef]
  12. P. D. Dinev, “A two-dimensional remote fiber-optic magnetic field and current sensor,” Meas. Sci. Technol. 7, 1233–1237 (1997).
    [CrossRef]
  13. Y. Park, W. Seo, C. E. Lee, H. F. Taylor, “Fiber Fabry–Perot type optical current sensor with frequency ramped signal processing scheme,” J. Opt. Soc. (Korea) 2, 74–9 (1998).
    [CrossRef]
  14. Y. Zhan, M. Lu, “The analysis of an all multimode fiber electric current sensor with a fiber Fabry–Perot interferometer,” in International Conference on Optoelectronic Science and Engineering ’90, E. M. Campbell, ed., Proc. SPIE1230, 539–540 (1990).
  15. B. Wagner, W. Benecke, “Magnetically driven microactuator,” in Microsystem Technologies 90, H. Reichl, ed. (Springer-Verlag, Berlin, 1990), pp. 838–843.
    [CrossRef]
  16. F. Ayela, T. Fournier, J. Chaussy, “A micromachined silicon magnetometer,” Sens. Actuators A 61, 339–341 (1997).
    [CrossRef]
  17. R. A. Pinnock, “Micromachined silicon resonant sensors with robust optical interrogation,” in Sensors VI: Technology Systems and Applications, K. T. V. Grattan, A. T. Augousti, eds., (Institute of Physics Publishing, Bristol, 1993), Sec. B, pp. 141–146.
  18. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980), Chap. 7.
  19. A. D. Kersey, D. A. Jackson, M. Corke, “A simple fiber Fabry–Perot sensor,” Opt. Commun. 45, 71–75 (1983).
    [CrossRef]
  20. K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, R. O. Claus, “Quadrature phase-shifted, extrinsic Fabry–Perot optical fiber sensors,” Opt. Lett. 16, 273–275 (1991).
    [CrossRef] [PubMed]
  21. J. L. Santos, A. P. Leite, D. A. Jackson, “Optical fiber sensing with a low-finesse Fabry–Perot cavity,” Appl. Opt. 31, 7361–7366 (1992).
    [CrossRef] [PubMed]
  22. N. E. Fisher, D. A. Jackson, “A common-mode optical noise-rejection scheme for an extrinsic Faraday current sensor,” Meas. Sci. Technol. 7, 796–800 (1996).
    [CrossRef]
  23. N. C. Pistoni, M. Martinelli, “Vibration-insensitive fiber-optic current sensor,” Opt. Lett. 18, 314–316 (1993).
    [CrossRef] [PubMed]
  24. A. J. Rogers, J. Xu, J. Yao, “Vibration immunity for optical-fiber current measurement,” J. Lightwave Technol. 13, 1371–1377 (1995).
    [CrossRef]
  25. M. J. Weber, “Faraday rotator materials for laser systems,” in Laser and Nonlinear Optical Materials, L. G. DeShazer, ed., Proc. SPIE681, 75–90 (1986).
    [CrossRef]
  26. P. A. Williams, A. H. Rose, G. W. Day, T. E. Milner, M. N. Deeter, “Temperature dependence of the Verdet constant in several diamagnetic glasses,” Appl. Opt. 30, 1176–1178 (1991).
    [CrossRef] [PubMed]
  27. T. W. Cease, J. G. Driggans, S. J. Weikel, “Optical voltage and current sensors used in a revenue metering system,” IEEE Trans. Power Deliv. 6, 1374–1379 (1991).
    [CrossRef]
  28. P. Menke, T. Bosselmann, “Temperature compensation in magnetooptic ac current sensors using an intelligent ac-dc signal evaluation,” J. Lightwave Technol. 13, 1362–1370 (1995).
    [CrossRef]

1998 (1)

Y. Park, W. Seo, C. E. Lee, H. F. Taylor, “Fiber Fabry–Perot type optical current sensor with frequency ramped signal processing scheme,” J. Opt. Soc. (Korea) 2, 74–9 (1998).
[CrossRef]

1997 (2)

F. Ayela, T. Fournier, J. Chaussy, “A micromachined silicon magnetometer,” Sens. Actuators A 61, 339–341 (1997).
[CrossRef]

P. D. Dinev, “A two-dimensional remote fiber-optic magnetic field and current sensor,” Meas. Sci. Technol. 7, 1233–1237 (1997).
[CrossRef]

1996 (1)

N. E. Fisher, D. A. Jackson, “A common-mode optical noise-rejection scheme for an extrinsic Faraday current sensor,” Meas. Sci. Technol. 7, 796–800 (1996).
[CrossRef]

1995 (4)

A. J. Rogers, J. Xu, J. Yao, “Vibration immunity for optical-fiber current measurement,” J. Lightwave Technol. 13, 1371–1377 (1995).
[CrossRef]

P. Menke, T. Bosselmann, “Temperature compensation in magnetooptic ac current sensors using an intelligent ac-dc signal evaluation,” J. Lightwave Technol. 13, 1362–1370 (1995).
[CrossRef]

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattam, D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

Z. P. Wang, S. Q. Zhang, L. B. Zhang, “Recent advances in optical current-sensing techniques,” Sens. Actuators A 50, 169–175 (1995).
[CrossRef]

1994 (1)

Emerging Technologies Working Group, Power Systems Instrumentation and Measurements Committee, the Fiber Optic Subcommittee, Power Systems Communications Committee, “Optical current sensors for power systems: a review,” IEEE Trans. Power Deliv. 9, 1778–1788 (1994).

1993 (2)

Y. N. Ning, D. A. Jackson, “Review of optical current sensors using bulk-glass sensing elements,” Sens. Actuators A 39, 219–224 (1993).
[CrossRef]

N. C. Pistoni, M. Martinelli, “Vibration-insensitive fiber-optic current sensor,” Opt. Lett. 18, 314–316 (1993).
[CrossRef] [PubMed]

1992 (1)

1991 (3)

1983 (1)

A. D. Kersey, D. A. Jackson, M. Corke, “A simple fiber Fabry–Perot sensor,” Opt. Commun. 45, 71–75 (1983).
[CrossRef]

1970 (1)

S. Matsushita, S. Konishi, Y. Sakurai, “Magnetooptical ammeter,” IEEE Trans. Magn. 6, 569–571 (1970).
[CrossRef]

1969 (2)

Y. Pelenc, “Transoptics: current transformers using magnetooptic effect for very high voltages,” L’Electricien 82, 63–66 (1969).

W. Hermstein, “Development trends in the construction of measuring transformers—with special reference to unconventional instrument transformers for high voltages,” Elektrizitaetswirtschaft 68, 246–257 (1969).

1966 (1)

S. Saito, Y. Fujii, K. Yokoyama, J. Hamasaki, Y. Ohno, “The laser current transformer for EHV power transmission lines,” IEEE J. Quantum Electron. 2, 255–259 (1966).
[CrossRef]

Ayela, F.

F. Ayela, T. Fournier, J. Chaussy, “A micromachined silicon magnetometer,” Sens. Actuators A 61, 339–341 (1997).
[CrossRef]

Benecke, W.

B. Wagner, W. Benecke, “Magnetically driven microactuator,” in Microsystem Technologies 90, H. Reichl, ed. (Springer-Verlag, Berlin, 1990), pp. 838–843.
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980), Chap. 7.

Bosselmann, T.

P. Menke, T. Bosselmann, “Temperature compensation in magnetooptic ac current sensors using an intelligent ac-dc signal evaluation,” J. Lightwave Technol. 13, 1362–1370 (1995).
[CrossRef]

Carome, E. F.

E. F. Carome, V. E. Kubulins, R. L. Flanagan, P. Shamray-Bertaud, “Intensity-type fiber optic electric current sensor,” in Fiber Optic and Laser Sensors XI, R. DePaula, E. Udd, eds., Proc. SPIE1584, 110–117 (1991).
[CrossRef]

Cease, T. W.

T. W. Cease, J. G. Driggans, S. J. Weikel, “Optical voltage and current sensors used in a revenue metering system,” IEEE Trans. Power Deliv. 6, 1374–1379 (1991).
[CrossRef]

Chaussy, J.

F. Ayela, T. Fournier, J. Chaussy, “A micromachined silicon magnetometer,” Sens. Actuators A 61, 339–341 (1997).
[CrossRef]

Claus, R. O.

Corke, M.

A. D. Kersey, D. A. Jackson, M. Corke, “A simple fiber Fabry–Perot sensor,” Opt. Commun. 45, 71–75 (1983).
[CrossRef]

Day, G. W.

P. A. Williams, A. H. Rose, G. W. Day, T. E. Milner, M. N. Deeter, “Temperature dependence of the Verdet constant in several diamagnetic glasses,” Appl. Opt. 30, 1176–1178 (1991).
[CrossRef] [PubMed]

G. W. Day, A. H. Rose, “Faraday effect sensors: the state of the art,” in Fiber Optic and Laser Sensors VI, R. P. DePaula, E. Udd, eds., Proc. SPIE985, 138–150 (1988).
[CrossRef]

Deeter, M. N.

Dinev, P. D.

P. D. Dinev, “A two-dimensional remote fiber-optic magnetic field and current sensor,” Meas. Sci. Technol. 7, 1233–1237 (1997).
[CrossRef]

Driggans, J. G.

T. W. Cease, J. G. Driggans, S. J. Weikel, “Optical voltage and current sensors used in a revenue metering system,” IEEE Trans. Power Deliv. 6, 1374–1379 (1991).
[CrossRef]

Fisher, N. E.

N. E. Fisher, D. A. Jackson, “A common-mode optical noise-rejection scheme for an extrinsic Faraday current sensor,” Meas. Sci. Technol. 7, 796–800 (1996).
[CrossRef]

Flanagan, R. L.

E. F. Carome, V. E. Kubulins, R. L. Flanagan, P. Shamray-Bertaud, “Intensity-type fiber optic electric current sensor,” in Fiber Optic and Laser Sensors XI, R. DePaula, E. Udd, eds., Proc. SPIE1584, 110–117 (1991).
[CrossRef]

Fournier, T.

F. Ayela, T. Fournier, J. Chaussy, “A micromachined silicon magnetometer,” Sens. Actuators A 61, 339–341 (1997).
[CrossRef]

Fujii, Y.

S. Saito, Y. Fujii, K. Yokoyama, J. Hamasaki, Y. Ohno, “The laser current transformer for EHV power transmission lines,” IEEE J. Quantum Electron. 2, 255–259 (1966).
[CrossRef]

Grattam, K. T. V.

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattam, D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

Gunther, M. F.

Hamasaki, J.

S. Saito, Y. Fujii, K. Yokoyama, J. Hamasaki, Y. Ohno, “The laser current transformer for EHV power transmission lines,” IEEE J. Quantum Electron. 2, 255–259 (1966).
[CrossRef]

Hermstein, W.

W. Hermstein, “Development trends in the construction of measuring transformers—with special reference to unconventional instrument transformers for high voltages,” Elektrizitaetswirtschaft 68, 246–257 (1969).

Jackson, D. A.

N. E. Fisher, D. A. Jackson, “A common-mode optical noise-rejection scheme for an extrinsic Faraday current sensor,” Meas. Sci. Technol. 7, 796–800 (1996).
[CrossRef]

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattam, D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

Y. N. Ning, D. A. Jackson, “Review of optical current sensors using bulk-glass sensing elements,” Sens. Actuators A 39, 219–224 (1993).
[CrossRef]

J. L. Santos, A. P. Leite, D. A. Jackson, “Optical fiber sensing with a low-finesse Fabry–Perot cavity,” Appl. Opt. 31, 7361–7366 (1992).
[CrossRef] [PubMed]

A. D. Kersey, D. A. Jackson, M. Corke, “A simple fiber Fabry–Perot sensor,” Opt. Commun. 45, 71–75 (1983).
[CrossRef]

Kersey, A. D.

A. D. Kersey, D. A. Jackson, M. Corke, “A simple fiber Fabry–Perot sensor,” Opt. Commun. 45, 71–75 (1983).
[CrossRef]

Konishi, S.

S. Matsushita, S. Konishi, Y. Sakurai, “Magnetooptical ammeter,” IEEE Trans. Magn. 6, 569–571 (1970).
[CrossRef]

Kubulins, V. E.

E. F. Carome, V. E. Kubulins, R. L. Flanagan, P. Shamray-Bertaud, “Intensity-type fiber optic electric current sensor,” in Fiber Optic and Laser Sensors XI, R. DePaula, E. Udd, eds., Proc. SPIE1584, 110–117 (1991).
[CrossRef]

Lee, C. E.

Y. Park, W. Seo, C. E. Lee, H. F. Taylor, “Fiber Fabry–Perot type optical current sensor with frequency ramped signal processing scheme,” J. Opt. Soc. (Korea) 2, 74–9 (1998).
[CrossRef]

Leite, A. P.

Lu, M.

Y. Zhan, M. Lu, “The analysis of an all multimode fiber electric current sensor with a fiber Fabry–Perot interferometer,” in International Conference on Optoelectronic Science and Engineering ’90, E. M. Campbell, ed., Proc. SPIE1230, 539–540 (1990).

Martinelli, M.

Matsushita, S.

S. Matsushita, S. Konishi, Y. Sakurai, “Magnetooptical ammeter,” IEEE Trans. Magn. 6, 569–571 (1970).
[CrossRef]

Menke, P.

P. Menke, T. Bosselmann, “Temperature compensation in magnetooptic ac current sensors using an intelligent ac-dc signal evaluation,” J. Lightwave Technol. 13, 1362–1370 (1995).
[CrossRef]

Milner, T. E.

Murphy, K. A.

Ning, Y. N.

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattam, D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

Y. N. Ning, D. A. Jackson, “Review of optical current sensors using bulk-glass sensing elements,” Sens. Actuators A 39, 219–224 (1993).
[CrossRef]

Ohno, Y.

S. Saito, Y. Fujii, K. Yokoyama, J. Hamasaki, Y. Ohno, “The laser current transformer for EHV power transmission lines,” IEEE J. Quantum Electron. 2, 255–259 (1966).
[CrossRef]

Palmer, A. W.

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattam, D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

Park, Y.

Y. Park, W. Seo, C. E. Lee, H. F. Taylor, “Fiber Fabry–Perot type optical current sensor with frequency ramped signal processing scheme,” J. Opt. Soc. (Korea) 2, 74–9 (1998).
[CrossRef]

Pelenc, Y.

Y. Pelenc, “Transoptics: current transformers using magnetooptic effect for very high voltages,” L’Electricien 82, 63–66 (1969).

Pinnock, R. A.

R. A. Pinnock, “Micromachined silicon resonant sensors with robust optical interrogation,” in Sensors VI: Technology Systems and Applications, K. T. V. Grattan, A. T. Augousti, eds., (Institute of Physics Publishing, Bristol, 1993), Sec. B, pp. 141–146.

Pistoni, N. C.

Rogers, A. J.

A. J. Rogers, J. Xu, J. Yao, “Vibration immunity for optical-fiber current measurement,” J. Lightwave Technol. 13, 1371–1377 (1995).
[CrossRef]

Rose, A. H.

P. A. Williams, A. H. Rose, G. W. Day, T. E. Milner, M. N. Deeter, “Temperature dependence of the Verdet constant in several diamagnetic glasses,” Appl. Opt. 30, 1176–1178 (1991).
[CrossRef] [PubMed]

G. W. Day, A. H. Rose, “Faraday effect sensors: the state of the art,” in Fiber Optic and Laser Sensors VI, R. P. DePaula, E. Udd, eds., Proc. SPIE985, 138–150 (1988).
[CrossRef]

Saito, S.

S. Saito, Y. Fujii, K. Yokoyama, J. Hamasaki, Y. Ohno, “The laser current transformer for EHV power transmission lines,” IEEE J. Quantum Electron. 2, 255–259 (1966).
[CrossRef]

Sakurai, Y.

S. Matsushita, S. Konishi, Y. Sakurai, “Magnetooptical ammeter,” IEEE Trans. Magn. 6, 569–571 (1970).
[CrossRef]

Santos, J. L.

Seo, W.

Y. Park, W. Seo, C. E. Lee, H. F. Taylor, “Fiber Fabry–Perot type optical current sensor with frequency ramped signal processing scheme,” J. Opt. Soc. (Korea) 2, 74–9 (1998).
[CrossRef]

Shamray-Bertaud, P.

E. F. Carome, V. E. Kubulins, R. L. Flanagan, P. Shamray-Bertaud, “Intensity-type fiber optic electric current sensor,” in Fiber Optic and Laser Sensors XI, R. DePaula, E. Udd, eds., Proc. SPIE1584, 110–117 (1991).
[CrossRef]

Taylor, H. F.

Y. Park, W. Seo, C. E. Lee, H. F. Taylor, “Fiber Fabry–Perot type optical current sensor with frequency ramped signal processing scheme,” J. Opt. Soc. (Korea) 2, 74–9 (1998).
[CrossRef]

Vengsarkar, A. M.

Wagner, B.

B. Wagner, W. Benecke, “Magnetically driven microactuator,” in Microsystem Technologies 90, H. Reichl, ed. (Springer-Verlag, Berlin, 1990), pp. 838–843.
[CrossRef]

Wang, Z. P.

Z. P. Wang, S. Q. Zhang, L. B. Zhang, “Recent advances in optical current-sensing techniques,” Sens. Actuators A 50, 169–175 (1995).
[CrossRef]

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattam, D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

Weber, M. J.

M. J. Weber, “Faraday rotator materials for laser systems,” in Laser and Nonlinear Optical Materials, L. G. DeShazer, ed., Proc. SPIE681, 75–90 (1986).
[CrossRef]

Weikel, S. J.

T. W. Cease, J. G. Driggans, S. J. Weikel, “Optical voltage and current sensors used in a revenue metering system,” IEEE Trans. Power Deliv. 6, 1374–1379 (1991).
[CrossRef]

Williams, P. A.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980), Chap. 7.

Xu, J.

A. J. Rogers, J. Xu, J. Yao, “Vibration immunity for optical-fiber current measurement,” J. Lightwave Technol. 13, 1371–1377 (1995).
[CrossRef]

Yao, J.

A. J. Rogers, J. Xu, J. Yao, “Vibration immunity for optical-fiber current measurement,” J. Lightwave Technol. 13, 1371–1377 (1995).
[CrossRef]

Yokoyama, K.

S. Saito, Y. Fujii, K. Yokoyama, J. Hamasaki, Y. Ohno, “The laser current transformer for EHV power transmission lines,” IEEE J. Quantum Electron. 2, 255–259 (1966).
[CrossRef]

Zhan, Y.

Y. Zhan, M. Lu, “The analysis of an all multimode fiber electric current sensor with a fiber Fabry–Perot interferometer,” in International Conference on Optoelectronic Science and Engineering ’90, E. M. Campbell, ed., Proc. SPIE1230, 539–540 (1990).

Zhang, L. B.

Z. P. Wang, S. Q. Zhang, L. B. Zhang, “Recent advances in optical current-sensing techniques,” Sens. Actuators A 50, 169–175 (1995).
[CrossRef]

Zhang, S. Q.

Z. P. Wang, S. Q. Zhang, L. B. Zhang, “Recent advances in optical current-sensing techniques,” Sens. Actuators A 50, 169–175 (1995).
[CrossRef]

Appl. Opt. (2)

Elektrizitaetswirtschaft (1)

W. Hermstein, “Development trends in the construction of measuring transformers—with special reference to unconventional instrument transformers for high voltages,” Elektrizitaetswirtschaft 68, 246–257 (1969).

IEEE J. Quantum Electron. (1)

S. Saito, Y. Fujii, K. Yokoyama, J. Hamasaki, Y. Ohno, “The laser current transformer for EHV power transmission lines,” IEEE J. Quantum Electron. 2, 255–259 (1966).
[CrossRef]

IEEE Trans. Magn. (1)

S. Matsushita, S. Konishi, Y. Sakurai, “Magnetooptical ammeter,” IEEE Trans. Magn. 6, 569–571 (1970).
[CrossRef]

IEEE Trans. Power Deliv. (2)

Emerging Technologies Working Group, Power Systems Instrumentation and Measurements Committee, the Fiber Optic Subcommittee, Power Systems Communications Committee, “Optical current sensors for power systems: a review,” IEEE Trans. Power Deliv. 9, 1778–1788 (1994).

T. W. Cease, J. G. Driggans, S. J. Weikel, “Optical voltage and current sensors used in a revenue metering system,” IEEE Trans. Power Deliv. 6, 1374–1379 (1991).
[CrossRef]

J. Lightwave Technol. (2)

P. Menke, T. Bosselmann, “Temperature compensation in magnetooptic ac current sensors using an intelligent ac-dc signal evaluation,” J. Lightwave Technol. 13, 1362–1370 (1995).
[CrossRef]

A. J. Rogers, J. Xu, J. Yao, “Vibration immunity for optical-fiber current measurement,” J. Lightwave Technol. 13, 1371–1377 (1995).
[CrossRef]

J. Opt. Soc. (Korea) (1)

Y. Park, W. Seo, C. E. Lee, H. F. Taylor, “Fiber Fabry–Perot type optical current sensor with frequency ramped signal processing scheme,” J. Opt. Soc. (Korea) 2, 74–9 (1998).
[CrossRef]

L’Electricien (1)

Y. Pelenc, “Transoptics: current transformers using magnetooptic effect for very high voltages,” L’Electricien 82, 63–66 (1969).

Meas. Sci. Technol. (2)

P. D. Dinev, “A two-dimensional remote fiber-optic magnetic field and current sensor,” Meas. Sci. Technol. 7, 1233–1237 (1997).
[CrossRef]

N. E. Fisher, D. A. Jackson, “A common-mode optical noise-rejection scheme for an extrinsic Faraday current sensor,” Meas. Sci. Technol. 7, 796–800 (1996).
[CrossRef]

Opt. Commun. (1)

A. D. Kersey, D. A. Jackson, M. Corke, “A simple fiber Fabry–Perot sensor,” Opt. Commun. 45, 71–75 (1983).
[CrossRef]

Opt. Lett. (2)

Rev. Sci. Instrum. (1)

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattam, D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

Sens. Actuators A (3)

Z. P. Wang, S. Q. Zhang, L. B. Zhang, “Recent advances in optical current-sensing techniques,” Sens. Actuators A 50, 169–175 (1995).
[CrossRef]

F. Ayela, T. Fournier, J. Chaussy, “A micromachined silicon magnetometer,” Sens. Actuators A 61, 339–341 (1997).
[CrossRef]

Y. N. Ning, D. A. Jackson, “Review of optical current sensors using bulk-glass sensing elements,” Sens. Actuators A 39, 219–224 (1993).
[CrossRef]

Other (8)

Y. Zhan, M. Lu, “The analysis of an all multimode fiber electric current sensor with a fiber Fabry–Perot interferometer,” in International Conference on Optoelectronic Science and Engineering ’90, E. M. Campbell, ed., Proc. SPIE1230, 539–540 (1990).

B. Wagner, W. Benecke, “Magnetically driven microactuator,” in Microsystem Technologies 90, H. Reichl, ed. (Springer-Verlag, Berlin, 1990), pp. 838–843.
[CrossRef]

R. A. Pinnock, “Micromachined silicon resonant sensors with robust optical interrogation,” in Sensors VI: Technology Systems and Applications, K. T. V. Grattan, A. T. Augousti, eds., (Institute of Physics Publishing, Bristol, 1993), Sec. B, pp. 141–146.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980), Chap. 7.

E. F. Carome, V. E. Kubulins, R. L. Flanagan, P. Shamray-Bertaud, “Intensity-type fiber optic electric current sensor,” in Fiber Optic and Laser Sensors XI, R. DePaula, E. Udd, eds., Proc. SPIE1584, 110–117 (1991).
[CrossRef]

A. D. Higham, J. D. Newman, “Measurement of current using Faraday rotation in glass fiber,” in Colloquium Digest on Novel Types of Transducer (IEEE, London, UK), pp. 1–2.

G. W. Day, A. H. Rose, “Faraday effect sensors: the state of the art,” in Fiber Optic and Laser Sensors VI, R. P. DePaula, E. Udd, eds., Proc. SPIE985, 138–150 (1988).
[CrossRef]

M. J. Weber, “Faraday rotator materials for laser systems,” in Laser and Nonlinear Optical Materials, L. G. DeShazer, ed., Proc. SPIE681, 75–90 (1986).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Micromachined Si transducer working principle. An ac generates a magnetic field gradient that produces a permanent magnet to vibrate on a Si membrane. This movement is detected optically.

Fig. 2
Fig. 2

Michelson bulk configuration. The graph on the right shows detected signals for I elec equal to 30, 62, and 85 A when the Si membrane was allocated at D = 3 mm from the power line.

Fig. 3
Fig. 3

Response of the current probe measured for various distance separations (D) between the power line and the Si membrane. Relation between number of fringes and intensity is linear. The slopes of these lines are 0.17, 0.12, 0.11, 0.09, and 0.08 (fringes/A) for distances D = 5, 7, 9, 11, and 13 (mm), respectively.

Fig. 4
Fig. 4

Relation between slopes of response of the sensor (fringes versus intensity) against distance D. Data were taken five times; points show arithmetic mean value of experimental data, and vertical error bars show standard deviation. The polynomial fit shows a D -2 dependence, as could be expected from Eq. (8).

Fig. 5
Fig. 5

Frequency response of the Si membrane. Ordinates axis shows displacement of the membrane, d described by ϕ = (4π/λ)nd, where ϕ is the phase of the detected signal I det. Measurement was made by counting interference fringes (1 fringe corresponds to π/2 rad).

Fig. 6
Fig. 6

Setup of the WLI system. Sensing interferometer is a LFFP microcavity, and the receiving interferometer is a Michelson bulk configuration.

Fig. 7
Fig. 7

(a) Typical sensor output for several intensity currents (I elec) when D ∼ 2.5 mm. When I elec was 26, 51, 75, and 118 A, V rms was 20.1, 41.8, 60.4, and 90.9 mV, respectively. (b) V rms against I elec for various distances D. These curves show a cosine dependency. (c) Inverse cosine demodulation of the V rms of Fig. 7(b). The lines represented are the linear fits.

Fig. 8
Fig. 8

V rms against D when the current intensity I elec was ∼19.9 A. Notice that a linear dependency has been achieved.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

F=MVmH,
H=Bμ=Ielec2πDuˆθ.
H=Ielec2πD2uˆr.
|F|=KΔl,
Ielec=2πD2KMVmΔl.
Idet=I01+V cos ϕ,
ϕt=ϕd+ϕs cos2πfst.
ϕs=2πnλ 2,  Δl=2nMVmKD2λ Ielec,

Metrics