Abstract

The results of an investigation of the performance of a time-division-addressed fiber-optic gas-sensor array by means of wavelength modulation of a distributed-feedback (DFB) laser are reported. The system performance is found to be severely limited by the extinction ratio of the optical switch used for pulse amplitude modulation. Formulas that relate the cross-talk level to the extinction ratio of the switch, the modulation parameters of the DFB laser, and the optical path differences among sensing channels are derived. Computer simulation shows that an array of 20 methane gas sensors with a detection sensitivity of 2000 parts in 106 (ppm) (10-cm gas cell) for each sensor may be realized with a commercially available single Mach–Zehnder amplitude modulator (-35-dB extinction ratio). An array of 100 sensors with a 100-ppm detection sensitivity for each sensor may be realized if a double Mach–Zehnder amplitude modulator is used.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Stewart, “Fibre optic sensors,” Sensor Systems for Environmental Monitoring, Vol. 1: Sensor Technologies, M. Campbell, ed. (Chapman & Hall, London, 1997), Chap. 1, pp. 1–40.
    [CrossRef]
  2. K. Chan, H. Ito, H. Inaba, T. Furuya, “10 km-long fiber optic remote sensing of CH4 gas by near infrared absorption,” Appl. Phys. B 38, 11–15 (1985).
    [CrossRef]
  3. J. P. Dakin, C. A. Wade, D. Pinchbeck, J. S. Wykes, “A novel optical fibre methane sensor,” J. Opt. Sensors 2, 261–267 (1987).
  4. K. Uehara, H. Tai, “Remote detection of methane using a 1.66-µm diode laser,” Appl. Opt. 31, 809–814 (1992).
    [CrossRef] [PubMed]
  5. K. Yamamoto, H. Tai, M. Uchida, S. Osawa, K. Uehara, “Long distance simultaneous detection of methane and acetylene by using diode lasers in combination with optical fibers,” Proceedings of Eighth Optical Fiber Sensors Conference, (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 333–336.
    [CrossRef]
  6. V. Weldon, P. Phelan, J. Hegarty, “Methane and carbon dioxide sensing using a DFB laser diode operating at 1.64 µm,” Electron. Lett. 29, 560–561 (1993).
    [CrossRef]
  7. Y. Shimose, T. Okamoto, A. Maruyama, M. Aizawa, H. Nagai, “Remote sensing of methane gas by differential absorption measurement using a wavelength-tunable DFB LD,” IEEE Photon. Technol. Lett. 3, 86–87 (1991).
    [CrossRef]
  8. W. R. Philp, W. Jin, A. Mencaglia, G. Stewart, B. Culshaw, “Interferometric noise in frequency modulated optical gas sensors,” in Proceedings of Twenty-first Australian Conference on Optical Fibre Technology (IREE Society, Milsons Point, Australia, 1986), pp. 185–188.
  9. G. Stewart, A. Mencaglia, W. Philp, W. Jin, “Interferometric signals in fiber optic methane sensors with wavelength modulation of the DBF laser source,” J. Lightwave Technol. 16, 43–53 (1998).
    [CrossRef]
  10. M. A. Morante, G. Stewart, B. Culshaw, J. M. Lpoezhiguera, “New micro-optic cell for optical-fiber gas sensor with interferometric noise-reduction,” Electron. Lett. 33, 1407–1409 (1997).
    [CrossRef]
  11. Brochure of Black Point Combined Cycle Power Station Project (China Light & Power Co., Ltd, Hong Kong, 1997).
  12. A. D. Kersey, A. Dandridge, A. R. Davis, C. K. Kirdendall, M. J. Marrone, D. G. Gross, “64-element time-division multiplexed interferometric sensor array with EDFA telemetry,” in Optical Fiber Communications Conference, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 270–271.
  13. J. L. Brooks, B. Moslehi, B. Y. Kim, H. J. Shaw, “Time-domain addressing of remote fiber optic interferometric sensors arrays,” J. Lightwave Technol. LT-5, 1014–1023 (1987).
    [CrossRef]
  14. W. Jin, Y. Z. Xu, M. S. Demokan, G. Stewart, “Investigation of interferometric noise in fiber-optic gas sensors with use of wavelength modulation spectroscopy,” Appl. Opt. 36, 7239–7246 (1997).
    [CrossRef]
  15. C. K. Kirkendall, A. R. Davis, A. Dandridge, “High extinction ratio optical switch and bias control,” in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 560–563.
  16. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, New York, 1997), pp. 587–596.
  17. S.-C. Huang, W.-W. Lin, M.-H. Chen, “Cross-talk analysis of time-division multiplexing of polarization-insensitive fiber-optic Michelson interferometric sensors with a 3 × 3 directional coupler,” Appl. Opt. 36, 4, 921–933 (1997).
    [CrossRef]
  18. J. C. Cartledge, “Comparison of effective α-parameters for semiconductor Mach–Zehnder optical modulator,” J. Lightwave Technol. 16, 372–378 (1998).
    [CrossRef]
  19. B. Moslehi, “Noise power spectra of optical two-beam interferometers induced by laser phase noise,” J. Lightwave Technol. LT-4, 1704–1710 (1986).
    [CrossRef]

1998 (2)

1997 (3)

M. A. Morante, G. Stewart, B. Culshaw, J. M. Lpoezhiguera, “New micro-optic cell for optical-fiber gas sensor with interferometric noise-reduction,” Electron. Lett. 33, 1407–1409 (1997).
[CrossRef]

W. Jin, Y. Z. Xu, M. S. Demokan, G. Stewart, “Investigation of interferometric noise in fiber-optic gas sensors with use of wavelength modulation spectroscopy,” Appl. Opt. 36, 7239–7246 (1997).
[CrossRef]

S.-C. Huang, W.-W. Lin, M.-H. Chen, “Cross-talk analysis of time-division multiplexing of polarization-insensitive fiber-optic Michelson interferometric sensors with a 3 × 3 directional coupler,” Appl. Opt. 36, 4, 921–933 (1997).
[CrossRef]

1993 (1)

V. Weldon, P. Phelan, J. Hegarty, “Methane and carbon dioxide sensing using a DFB laser diode operating at 1.64 µm,” Electron. Lett. 29, 560–561 (1993).
[CrossRef]

1992 (1)

1991 (1)

Y. Shimose, T. Okamoto, A. Maruyama, M. Aizawa, H. Nagai, “Remote sensing of methane gas by differential absorption measurement using a wavelength-tunable DFB LD,” IEEE Photon. Technol. Lett. 3, 86–87 (1991).
[CrossRef]

1987 (2)

J. P. Dakin, C. A. Wade, D. Pinchbeck, J. S. Wykes, “A novel optical fibre methane sensor,” J. Opt. Sensors 2, 261–267 (1987).

J. L. Brooks, B. Moslehi, B. Y. Kim, H. J. Shaw, “Time-domain addressing of remote fiber optic interferometric sensors arrays,” J. Lightwave Technol. LT-5, 1014–1023 (1987).
[CrossRef]

1986 (1)

B. Moslehi, “Noise power spectra of optical two-beam interferometers induced by laser phase noise,” J. Lightwave Technol. LT-4, 1704–1710 (1986).
[CrossRef]

1985 (1)

K. Chan, H. Ito, H. Inaba, T. Furuya, “10 km-long fiber optic remote sensing of CH4 gas by near infrared absorption,” Appl. Phys. B 38, 11–15 (1985).
[CrossRef]

Aizawa, M.

Y. Shimose, T. Okamoto, A. Maruyama, M. Aizawa, H. Nagai, “Remote sensing of methane gas by differential absorption measurement using a wavelength-tunable DFB LD,” IEEE Photon. Technol. Lett. 3, 86–87 (1991).
[CrossRef]

Brooks, J. L.

J. L. Brooks, B. Moslehi, B. Y. Kim, H. J. Shaw, “Time-domain addressing of remote fiber optic interferometric sensors arrays,” J. Lightwave Technol. LT-5, 1014–1023 (1987).
[CrossRef]

Cartledge, J. C.

Chan, K.

K. Chan, H. Ito, H. Inaba, T. Furuya, “10 km-long fiber optic remote sensing of CH4 gas by near infrared absorption,” Appl. Phys. B 38, 11–15 (1985).
[CrossRef]

Chen, M.-H.

S.-C. Huang, W.-W. Lin, M.-H. Chen, “Cross-talk analysis of time-division multiplexing of polarization-insensitive fiber-optic Michelson interferometric sensors with a 3 × 3 directional coupler,” Appl. Opt. 36, 4, 921–933 (1997).
[CrossRef]

Culshaw, B.

M. A. Morante, G. Stewart, B. Culshaw, J. M. Lpoezhiguera, “New micro-optic cell for optical-fiber gas sensor with interferometric noise-reduction,” Electron. Lett. 33, 1407–1409 (1997).
[CrossRef]

W. R. Philp, W. Jin, A. Mencaglia, G. Stewart, B. Culshaw, “Interferometric noise in frequency modulated optical gas sensors,” in Proceedings of Twenty-first Australian Conference on Optical Fibre Technology (IREE Society, Milsons Point, Australia, 1986), pp. 185–188.

Dakin, J. P.

J. P. Dakin, C. A. Wade, D. Pinchbeck, J. S. Wykes, “A novel optical fibre methane sensor,” J. Opt. Sensors 2, 261–267 (1987).

Dandridge, A.

C. K. Kirkendall, A. R. Davis, A. Dandridge, “High extinction ratio optical switch and bias control,” in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 560–563.

A. D. Kersey, A. Dandridge, A. R. Davis, C. K. Kirdendall, M. J. Marrone, D. G. Gross, “64-element time-division multiplexed interferometric sensor array with EDFA telemetry,” in Optical Fiber Communications Conference, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 270–271.

Davis, A. R.

A. D. Kersey, A. Dandridge, A. R. Davis, C. K. Kirdendall, M. J. Marrone, D. G. Gross, “64-element time-division multiplexed interferometric sensor array with EDFA telemetry,” in Optical Fiber Communications Conference, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 270–271.

C. K. Kirkendall, A. R. Davis, A. Dandridge, “High extinction ratio optical switch and bias control,” in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 560–563.

Demokan, M. S.

Furuya, T.

K. Chan, H. Ito, H. Inaba, T. Furuya, “10 km-long fiber optic remote sensing of CH4 gas by near infrared absorption,” Appl. Phys. B 38, 11–15 (1985).
[CrossRef]

Gross, D. G.

A. D. Kersey, A. Dandridge, A. R. Davis, C. K. Kirdendall, M. J. Marrone, D. G. Gross, “64-element time-division multiplexed interferometric sensor array with EDFA telemetry,” in Optical Fiber Communications Conference, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 270–271.

Hegarty, J.

V. Weldon, P. Phelan, J. Hegarty, “Methane and carbon dioxide sensing using a DFB laser diode operating at 1.64 µm,” Electron. Lett. 29, 560–561 (1993).
[CrossRef]

Huang, S.-C.

S.-C. Huang, W.-W. Lin, M.-H. Chen, “Cross-talk analysis of time-division multiplexing of polarization-insensitive fiber-optic Michelson interferometric sensors with a 3 × 3 directional coupler,” Appl. Opt. 36, 4, 921–933 (1997).
[CrossRef]

Inaba, H.

K. Chan, H. Ito, H. Inaba, T. Furuya, “10 km-long fiber optic remote sensing of CH4 gas by near infrared absorption,” Appl. Phys. B 38, 11–15 (1985).
[CrossRef]

Ito, H.

K. Chan, H. Ito, H. Inaba, T. Furuya, “10 km-long fiber optic remote sensing of CH4 gas by near infrared absorption,” Appl. Phys. B 38, 11–15 (1985).
[CrossRef]

Jin, W.

Kersey, A. D.

A. D. Kersey, A. Dandridge, A. R. Davis, C. K. Kirdendall, M. J. Marrone, D. G. Gross, “64-element time-division multiplexed interferometric sensor array with EDFA telemetry,” in Optical Fiber Communications Conference, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 270–271.

Kim, B. Y.

J. L. Brooks, B. Moslehi, B. Y. Kim, H. J. Shaw, “Time-domain addressing of remote fiber optic interferometric sensors arrays,” J. Lightwave Technol. LT-5, 1014–1023 (1987).
[CrossRef]

Kirdendall, C. K.

A. D. Kersey, A. Dandridge, A. R. Davis, C. K. Kirdendall, M. J. Marrone, D. G. Gross, “64-element time-division multiplexed interferometric sensor array with EDFA telemetry,” in Optical Fiber Communications Conference, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 270–271.

Kirkendall, C. K.

C. K. Kirkendall, A. R. Davis, A. Dandridge, “High extinction ratio optical switch and bias control,” in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 560–563.

Lin, W.-W.

S.-C. Huang, W.-W. Lin, M.-H. Chen, “Cross-talk analysis of time-division multiplexing of polarization-insensitive fiber-optic Michelson interferometric sensors with a 3 × 3 directional coupler,” Appl. Opt. 36, 4, 921–933 (1997).
[CrossRef]

Lpoezhiguera, J. M.

M. A. Morante, G. Stewart, B. Culshaw, J. M. Lpoezhiguera, “New micro-optic cell for optical-fiber gas sensor with interferometric noise-reduction,” Electron. Lett. 33, 1407–1409 (1997).
[CrossRef]

Marrone, M. J.

A. D. Kersey, A. Dandridge, A. R. Davis, C. K. Kirdendall, M. J. Marrone, D. G. Gross, “64-element time-division multiplexed interferometric sensor array with EDFA telemetry,” in Optical Fiber Communications Conference, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 270–271.

Maruyama, A.

Y. Shimose, T. Okamoto, A. Maruyama, M. Aizawa, H. Nagai, “Remote sensing of methane gas by differential absorption measurement using a wavelength-tunable DFB LD,” IEEE Photon. Technol. Lett. 3, 86–87 (1991).
[CrossRef]

Mencaglia, A.

G. Stewart, A. Mencaglia, W. Philp, W. Jin, “Interferometric signals in fiber optic methane sensors with wavelength modulation of the DBF laser source,” J. Lightwave Technol. 16, 43–53 (1998).
[CrossRef]

W. R. Philp, W. Jin, A. Mencaglia, G. Stewart, B. Culshaw, “Interferometric noise in frequency modulated optical gas sensors,” in Proceedings of Twenty-first Australian Conference on Optical Fibre Technology (IREE Society, Milsons Point, Australia, 1986), pp. 185–188.

Morante, M. A.

M. A. Morante, G. Stewart, B. Culshaw, J. M. Lpoezhiguera, “New micro-optic cell for optical-fiber gas sensor with interferometric noise-reduction,” Electron. Lett. 33, 1407–1409 (1997).
[CrossRef]

Moslehi, B.

J. L. Brooks, B. Moslehi, B. Y. Kim, H. J. Shaw, “Time-domain addressing of remote fiber optic interferometric sensors arrays,” J. Lightwave Technol. LT-5, 1014–1023 (1987).
[CrossRef]

B. Moslehi, “Noise power spectra of optical two-beam interferometers induced by laser phase noise,” J. Lightwave Technol. LT-4, 1704–1710 (1986).
[CrossRef]

Nagai, H.

Y. Shimose, T. Okamoto, A. Maruyama, M. Aizawa, H. Nagai, “Remote sensing of methane gas by differential absorption measurement using a wavelength-tunable DFB LD,” IEEE Photon. Technol. Lett. 3, 86–87 (1991).
[CrossRef]

Okamoto, T.

Y. Shimose, T. Okamoto, A. Maruyama, M. Aizawa, H. Nagai, “Remote sensing of methane gas by differential absorption measurement using a wavelength-tunable DFB LD,” IEEE Photon. Technol. Lett. 3, 86–87 (1991).
[CrossRef]

Osawa, S.

K. Yamamoto, H. Tai, M. Uchida, S. Osawa, K. Uehara, “Long distance simultaneous detection of methane and acetylene by using diode lasers in combination with optical fibers,” Proceedings of Eighth Optical Fiber Sensors Conference, (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 333–336.
[CrossRef]

Phelan, P.

V. Weldon, P. Phelan, J. Hegarty, “Methane and carbon dioxide sensing using a DFB laser diode operating at 1.64 µm,” Electron. Lett. 29, 560–561 (1993).
[CrossRef]

Philp, W.

Philp, W. R.

W. R. Philp, W. Jin, A. Mencaglia, G. Stewart, B. Culshaw, “Interferometric noise in frequency modulated optical gas sensors,” in Proceedings of Twenty-first Australian Conference on Optical Fibre Technology (IREE Society, Milsons Point, Australia, 1986), pp. 185–188.

Pinchbeck, D.

J. P. Dakin, C. A. Wade, D. Pinchbeck, J. S. Wykes, “A novel optical fibre methane sensor,” J. Opt. Sensors 2, 261–267 (1987).

Shaw, H. J.

J. L. Brooks, B. Moslehi, B. Y. Kim, H. J. Shaw, “Time-domain addressing of remote fiber optic interferometric sensors arrays,” J. Lightwave Technol. LT-5, 1014–1023 (1987).
[CrossRef]

Shimose, Y.

Y. Shimose, T. Okamoto, A. Maruyama, M. Aizawa, H. Nagai, “Remote sensing of methane gas by differential absorption measurement using a wavelength-tunable DFB LD,” IEEE Photon. Technol. Lett. 3, 86–87 (1991).
[CrossRef]

Stewart, G.

G. Stewart, A. Mencaglia, W. Philp, W. Jin, “Interferometric signals in fiber optic methane sensors with wavelength modulation of the DBF laser source,” J. Lightwave Technol. 16, 43–53 (1998).
[CrossRef]

M. A. Morante, G. Stewart, B. Culshaw, J. M. Lpoezhiguera, “New micro-optic cell for optical-fiber gas sensor with interferometric noise-reduction,” Electron. Lett. 33, 1407–1409 (1997).
[CrossRef]

W. Jin, Y. Z. Xu, M. S. Demokan, G. Stewart, “Investigation of interferometric noise in fiber-optic gas sensors with use of wavelength modulation spectroscopy,” Appl. Opt. 36, 7239–7246 (1997).
[CrossRef]

W. R. Philp, W. Jin, A. Mencaglia, G. Stewart, B. Culshaw, “Interferometric noise in frequency modulated optical gas sensors,” in Proceedings of Twenty-first Australian Conference on Optical Fibre Technology (IREE Society, Milsons Point, Australia, 1986), pp. 185–188.

G. Stewart, “Fibre optic sensors,” Sensor Systems for Environmental Monitoring, Vol. 1: Sensor Technologies, M. Campbell, ed. (Chapman & Hall, London, 1997), Chap. 1, pp. 1–40.
[CrossRef]

Tai, H.

K. Uehara, H. Tai, “Remote detection of methane using a 1.66-µm diode laser,” Appl. Opt. 31, 809–814 (1992).
[CrossRef] [PubMed]

K. Yamamoto, H. Tai, M. Uchida, S. Osawa, K. Uehara, “Long distance simultaneous detection of methane and acetylene by using diode lasers in combination with optical fibers,” Proceedings of Eighth Optical Fiber Sensors Conference, (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 333–336.
[CrossRef]

Uchida, M.

K. Yamamoto, H. Tai, M. Uchida, S. Osawa, K. Uehara, “Long distance simultaneous detection of methane and acetylene by using diode lasers in combination with optical fibers,” Proceedings of Eighth Optical Fiber Sensors Conference, (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 333–336.
[CrossRef]

Uehara, K.

K. Uehara, H. Tai, “Remote detection of methane using a 1.66-µm diode laser,” Appl. Opt. 31, 809–814 (1992).
[CrossRef] [PubMed]

K. Yamamoto, H. Tai, M. Uchida, S. Osawa, K. Uehara, “Long distance simultaneous detection of methane and acetylene by using diode lasers in combination with optical fibers,” Proceedings of Eighth Optical Fiber Sensors Conference, (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 333–336.
[CrossRef]

Wade, C. A.

J. P. Dakin, C. A. Wade, D. Pinchbeck, J. S. Wykes, “A novel optical fibre methane sensor,” J. Opt. Sensors 2, 261–267 (1987).

Weldon, V.

V. Weldon, P. Phelan, J. Hegarty, “Methane and carbon dioxide sensing using a DFB laser diode operating at 1.64 µm,” Electron. Lett. 29, 560–561 (1993).
[CrossRef]

Wykes, J. S.

J. P. Dakin, C. A. Wade, D. Pinchbeck, J. S. Wykes, “A novel optical fibre methane sensor,” J. Opt. Sensors 2, 261–267 (1987).

Xu, Y. Z.

Yamamoto, K.

K. Yamamoto, H. Tai, M. Uchida, S. Osawa, K. Uehara, “Long distance simultaneous detection of methane and acetylene by using diode lasers in combination with optical fibers,” Proceedings of Eighth Optical Fiber Sensors Conference, (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 333–336.
[CrossRef]

Yariv, A.

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, New York, 1997), pp. 587–596.

Appl. Opt. (3)

K. Uehara, H. Tai, “Remote detection of methane using a 1.66-µm diode laser,” Appl. Opt. 31, 809–814 (1992).
[CrossRef] [PubMed]

W. Jin, Y. Z. Xu, M. S. Demokan, G. Stewart, “Investigation of interferometric noise in fiber-optic gas sensors with use of wavelength modulation spectroscopy,” Appl. Opt. 36, 7239–7246 (1997).
[CrossRef]

S.-C. Huang, W.-W. Lin, M.-H. Chen, “Cross-talk analysis of time-division multiplexing of polarization-insensitive fiber-optic Michelson interferometric sensors with a 3 × 3 directional coupler,” Appl. Opt. 36, 4, 921–933 (1997).
[CrossRef]

Appl. Phys. B (1)

K. Chan, H. Ito, H. Inaba, T. Furuya, “10 km-long fiber optic remote sensing of CH4 gas by near infrared absorption,” Appl. Phys. B 38, 11–15 (1985).
[CrossRef]

Electron. Lett. (2)

V. Weldon, P. Phelan, J. Hegarty, “Methane and carbon dioxide sensing using a DFB laser diode operating at 1.64 µm,” Electron. Lett. 29, 560–561 (1993).
[CrossRef]

M. A. Morante, G. Stewart, B. Culshaw, J. M. Lpoezhiguera, “New micro-optic cell for optical-fiber gas sensor with interferometric noise-reduction,” Electron. Lett. 33, 1407–1409 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Shimose, T. Okamoto, A. Maruyama, M. Aizawa, H. Nagai, “Remote sensing of methane gas by differential absorption measurement using a wavelength-tunable DFB LD,” IEEE Photon. Technol. Lett. 3, 86–87 (1991).
[CrossRef]

J. Lightwave Technol. (4)

G. Stewart, A. Mencaglia, W. Philp, W. Jin, “Interferometric signals in fiber optic methane sensors with wavelength modulation of the DBF laser source,” J. Lightwave Technol. 16, 43–53 (1998).
[CrossRef]

J. C. Cartledge, “Comparison of effective α-parameters for semiconductor Mach–Zehnder optical modulator,” J. Lightwave Technol. 16, 372–378 (1998).
[CrossRef]

B. Moslehi, “Noise power spectra of optical two-beam interferometers induced by laser phase noise,” J. Lightwave Technol. LT-4, 1704–1710 (1986).
[CrossRef]

J. L. Brooks, B. Moslehi, B. Y. Kim, H. J. Shaw, “Time-domain addressing of remote fiber optic interferometric sensors arrays,” J. Lightwave Technol. LT-5, 1014–1023 (1987).
[CrossRef]

J. Opt. Sensors (1)

J. P. Dakin, C. A. Wade, D. Pinchbeck, J. S. Wykes, “A novel optical fibre methane sensor,” J. Opt. Sensors 2, 261–267 (1987).

Other (7)

K. Yamamoto, H. Tai, M. Uchida, S. Osawa, K. Uehara, “Long distance simultaneous detection of methane and acetylene by using diode lasers in combination with optical fibers,” Proceedings of Eighth Optical Fiber Sensors Conference, (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 333–336.
[CrossRef]

G. Stewart, “Fibre optic sensors,” Sensor Systems for Environmental Monitoring, Vol. 1: Sensor Technologies, M. Campbell, ed. (Chapman & Hall, London, 1997), Chap. 1, pp. 1–40.
[CrossRef]

W. R. Philp, W. Jin, A. Mencaglia, G. Stewart, B. Culshaw, “Interferometric noise in frequency modulated optical gas sensors,” in Proceedings of Twenty-first Australian Conference on Optical Fibre Technology (IREE Society, Milsons Point, Australia, 1986), pp. 185–188.

Brochure of Black Point Combined Cycle Power Station Project (China Light & Power Co., Ltd, Hong Kong, 1997).

A. D. Kersey, A. Dandridge, A. R. Davis, C. K. Kirdendall, M. J. Marrone, D. G. Gross, “64-element time-division multiplexed interferometric sensor array with EDFA telemetry,” in Optical Fiber Communications Conference, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 270–271.

C. K. Kirkendall, A. R. Davis, A. Dandridge, “High extinction ratio optical switch and bias control,” in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 560–563.

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, New York, 1997), pp. 587–596.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Time-division-multiplexed ladder gas-sensor array. IOC, integrated optic circuit; GRIN, gradient index.

Fig. 2
Fig. 2

Normalized minimum detectable gas concentration {[C 1]min,rms e , calculated from Eq. (24)} versus time-delay difference (ΔT) between sensor channels. f = 10 kHz; upper curve, N = 100; lower curve, N = 20.

Fig. 3
Fig. 3

Normalized minimum detectable gas concentration {[C 1]min,rms e , calculated from Eq. (25)} versus time-delay difference (ΔT) between sensor channels. f = 10 kHz; upper curve, N = 100; lower curve, N = 20.

Fig. 4
Fig. 4

Normalized minimum detectable gas concentration {[C 1]min,rms e , calculated from relation (27)} versus time-delay difference (ΔT) between sensor channels. f = 10 kHz; for N = 20 or N = 100, the results are the same.

Fig. 5
Fig. 5

Normalized minimum detectable gas concentration limited by the second-order interferometric effect {[C 1]min,rms/(α e )2, calculated from Eq. (28)} versus time-delay difference (ΔT) between sensor channels. f = 10 kHz; upper curve, N = 100; lower curve, N = 20.

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

ΔTTp,  τNΔT,
kj=1N-j+1,
in,rms=2qRBαl2P0N2Tpτ1/2,
i2ω,rms=2Rkα0CL αl2P0N2Tpτ,
α0CLB=NkqR1αl2P0τTp1/2.
α0CLB=1kqRN3αl2P01/2.
Et=P01+η sin ωt1/2×expj2πνL0t+νLm0t sin ωudu,
Et=P01+η sin ωt1/2 expj2πνL0t+νLm0t sin ωudu×1for mτtmτ+Tp, switch onαe expjϕfor mτ+Tptm+1τ, switch off,
E0t=i=1N Ei0t,
Ei0t=αlNP01+η sin ωt-iΔT1/2exp-ανL0+ νLm sin ωt-iΔTCiL×expj2πνL0t-iΔT+νLm0t-iΔT sin ωuduexpjφit×1for mτ+iΔTtmτ+iΔT+Tpαe expjϕfor mτ+iΔT+Tptm+lτ+iΔT,
η sin ωt-iΔTη sin ωt,  ανL0+νLm sin ωt-iΔTανL0+νLm sin ωt.
Ii0t=|Ei0t|2=αl2N2 P01+η sin ωt×exp-2ανL0+νLm sin ωtCiL.
Iinct=j=l,jiN |Ej0t|2αe2αl2N2 P01+η sin ωt×j=l,jiN exp-2ανL0+νLm sin ωtCjL.
Ico,1t2αeαl2N2 P01+η sin ωtj=1,jiN exp-ανL0+νLm sin ωtCi+CjL×cos2πνL0i-jΔT+ϕ+2πνLmt-iΔTt-jΔT sin ωudu2αeαl2N2 P01+η sin ωtj=1,jiN exp-ανL0+νLm sin ωtCi+CjL×cosϕi,j+ϕ+ζi,j sin ωt,
ζi,j=4πνLmω sinωi-jΔT2,
ϕi,j=2πνL0i-jΔT+φit-φjt.
Ico,2±2αe2αl2N2 P01+η sin ωtm=1,miNk>m,kiN×exp-ανL0+νLm sin ωtCm+CkL×cos2πνL0m-kΔT+φmt-φkt+2πνLmt-mΔTt-kΔT sin ωudu2αe2αl2N2 P0m=1,miNk>m,kiN cosϕm,k+ζm,k sin ωt.
I2ω=2kα0CL αl2P0N2.
I2ω,inc=2kα0j=1,jiN CjLαe2αl2N2 P0.
I2ω,co,1=2αeαl2N2 P0j=1,jiN2 cosϕi,j+ϕJ2ζi,jsin 2ωt+η sinϕi,j+ϕJ1ζi,j-J3ζi,jcos 2ωt-2kα0Ci+CjLJ0ζi,j-J4ζi,jcosϕi,j+ϕsin 2ωt,
I2ω,co,2=4αe2αl2N2×P0m=1,miNk>m,kiN cos ϕm,kJ2(ζm,k)cos 2ωt.
Cimin=αe2j=1,ji Cjαe2N-1Cmax,
α0CiLmin=2αekj=1,jiN J2ζi,jcosϕi,j+ϕ.
α0CiLmin,rms=2αekj=1,jiN J22ζi,j1/2.
α0CiLmin,rms=2αeη2kj=1,jiNJ1ζi,j-J3ζi,j21/2.
Cimin=2αej=1,jiNJ0ζi,j-J4ζi,j×cosϕi,j+ϕCi+Cj.
Cimin,rms=2αej=1,jiNJ0ζi,j-J4ζi,j2Cj2 121/22αeCmaxj=1,jiNJ0ζi,j-J4ζi,j21/2.
α0CiLmin,rms=2αe2km=1,miNk>m,kiN J22ζm,k1/2.

Metrics