Abstract

A fiber-optic sensor based on surface-plasmon resonance for the determination of the refractive index is used for measuring the degree of salinity of water. The transducing element consists of a multilayer structure deposited on a side-polished monomode optical fiber. Measuring the attenuation of the power transmitted by the fiber shows that a linear relation with the refractive index of the outer medium of the structure is obtained. The system is characterized by use of a varying refractive index obtained with a mixture of water and ethylene glycol. Experimental results show that the sensor can be used as a salinity-degree measurement device with environmental applications.

© 1999 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Refractive indices of common solvents and solutions at 1550  nm

John E. Saunders, Connor Sanders, Hao Chen, and Hans-Peter Loock
Appl. Opt. 55(4) 947-953 (2016)

Sensing properties of asymmetric double-layer-covered tapered fibers

Francisco-Javier Bueno, Oscar Esteban, Natalia Díaz-Herrera, María-Cruz Navarrete, and Agustín González-Cano
Appl. Opt. 43(8) 1615-1620 (2004)

Surface plasmon resonance sensors based on uniform-waist tapered fibers in a reflective configuration

Óscar Esteban, Natalia Díaz-Herrera, María-Cruz Navarrete, and Agustín González-Cano
Appl. Opt. 45(28) 7294-7298 (2006)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription