Abstract

A fiber-optic sensor based on surface-plasmon resonance for the determination of the refractive index is used for measuring the degree of salinity of water. The transducing element consists of a multilayer structure deposited on a side-polished monomode optical fiber. Measuring the attenuation of the power transmitted by the fiber shows that a linear relation with the refractive index of the outer medium of the structure is obtained. The system is characterized by use of a varying refractive index obtained with a mixture of water and ethylene glycol. Experimental results show that the sensor can be used as a salinity-degree measurement device with environmental applications.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Dankin, Optical Fiber Sensors (Artech House, Norwood, Mass., 1989).
  2. S.-M. Tseng, C.-L. Chen, “Side-polished fibers,” Appl. Opt. 31, 3438–3447 (1992).
    [CrossRef] [PubMed]
  3. R. Alonso, F. Villuendas, J. Tornos, J. Pelayo, “New ‘in-line’ optical-fibre sensor based on surface plasmon excitation,” Sens. Actuators A 37–38, 187–192 (1993).
    [CrossRef]
  4. D. Marcuse, “Investigation of coupling between a fiber and an infinite slab,” J. Lightwave Technol. 7, 122–130 (1989).
    [CrossRef]
  5. A. Tz. Andreev, K. Panajotov, “Distributed single-mode fiber to single-mode planar waveguide coupler,” J. Lightwave Technol. 11, 1985–1989 (1993).
    [CrossRef]
  6. R. Alonso, “Estudio teórico y experimental de dispositivos ópticos basados en el acoplamiento entre el modo guiado por una fibra óptica y estructuras multicapa incluyendo medios metálicos,” Ph.D. dissertation (Universidad de Zaragoza, Spain, 1995).
  7. K. S. Shifrin, Physical Optics of Ocean Water (American Institute of Physics, New York, 1988).
  8. X. Quan, E. S. Fry, “Empirical equation for the index of refraction of seawater,” Appl. Opt. 34, 3477–3480 (1995).
    [CrossRef] [PubMed]

1995 (1)

1993 (2)

R. Alonso, F. Villuendas, J. Tornos, J. Pelayo, “New ‘in-line’ optical-fibre sensor based on surface plasmon excitation,” Sens. Actuators A 37–38, 187–192 (1993).
[CrossRef]

A. Tz. Andreev, K. Panajotov, “Distributed single-mode fiber to single-mode planar waveguide coupler,” J. Lightwave Technol. 11, 1985–1989 (1993).
[CrossRef]

1992 (1)

1989 (1)

D. Marcuse, “Investigation of coupling between a fiber and an infinite slab,” J. Lightwave Technol. 7, 122–130 (1989).
[CrossRef]

Alonso, R.

R. Alonso, F. Villuendas, J. Tornos, J. Pelayo, “New ‘in-line’ optical-fibre sensor based on surface plasmon excitation,” Sens. Actuators A 37–38, 187–192 (1993).
[CrossRef]

R. Alonso, “Estudio teórico y experimental de dispositivos ópticos basados en el acoplamiento entre el modo guiado por una fibra óptica y estructuras multicapa incluyendo medios metálicos,” Ph.D. dissertation (Universidad de Zaragoza, Spain, 1995).

Andreev, A. Tz.

A. Tz. Andreev, K. Panajotov, “Distributed single-mode fiber to single-mode planar waveguide coupler,” J. Lightwave Technol. 11, 1985–1989 (1993).
[CrossRef]

Chen, C.-L.

Dankin, J.

J. Dankin, Optical Fiber Sensors (Artech House, Norwood, Mass., 1989).

Fry, E. S.

Marcuse, D.

D. Marcuse, “Investigation of coupling between a fiber and an infinite slab,” J. Lightwave Technol. 7, 122–130 (1989).
[CrossRef]

Panajotov, K.

A. Tz. Andreev, K. Panajotov, “Distributed single-mode fiber to single-mode planar waveguide coupler,” J. Lightwave Technol. 11, 1985–1989 (1993).
[CrossRef]

Pelayo, J.

R. Alonso, F. Villuendas, J. Tornos, J. Pelayo, “New ‘in-line’ optical-fibre sensor based on surface plasmon excitation,” Sens. Actuators A 37–38, 187–192 (1993).
[CrossRef]

Quan, X.

Shifrin, K. S.

K. S. Shifrin, Physical Optics of Ocean Water (American Institute of Physics, New York, 1988).

Tornos, J.

R. Alonso, F. Villuendas, J. Tornos, J. Pelayo, “New ‘in-line’ optical-fibre sensor based on surface plasmon excitation,” Sens. Actuators A 37–38, 187–192 (1993).
[CrossRef]

Tseng, S.-M.

Villuendas, F.

R. Alonso, F. Villuendas, J. Tornos, J. Pelayo, “New ‘in-line’ optical-fibre sensor based on surface plasmon excitation,” Sens. Actuators A 37–38, 187–192 (1993).
[CrossRef]

Appl. Opt. (2)

J. Lightwave Technol. (2)

D. Marcuse, “Investigation of coupling between a fiber and an infinite slab,” J. Lightwave Technol. 7, 122–130 (1989).
[CrossRef]

A. Tz. Andreev, K. Panajotov, “Distributed single-mode fiber to single-mode planar waveguide coupler,” J. Lightwave Technol. 11, 1985–1989 (1993).
[CrossRef]

Sens. Actuators A (1)

R. Alonso, F. Villuendas, J. Tornos, J. Pelayo, “New ‘in-line’ optical-fibre sensor based on surface plasmon excitation,” Sens. Actuators A 37–38, 187–192 (1993).
[CrossRef]

Other (3)

R. Alonso, “Estudio teórico y experimental de dispositivos ópticos basados en el acoplamiento entre el modo guiado por una fibra óptica y estructuras multicapa incluyendo medios metálicos,” Ph.D. dissertation (Universidad de Zaragoza, Spain, 1995).

K. S. Shifrin, Physical Optics of Ocean Water (American Institute of Physics, New York, 1988).

J. Dankin, Optical Fiber Sensors (Artech House, Norwood, Mass., 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the sensing device. A fiber is polished, and a multilayer structure is deposited near the core.

Fig. 2
Fig. 2

Experimental setup. PC, polarization controller; TE, transducing element.

Fig. 3
Fig. 3

Characterization of the sensor. The normalized-output transmitted power is plotted versus the refractive index of a mixture of water and ethylene glycol.

Fig. 4
Fig. 4

Detail of the curve of Fig. 3 showing the linear behavior of the sensor within the range of refractive indices of interest for salinity measurements.

Fig. 5
Fig. 5

Experimental results obtained for the degree of salinity. The temperature correction, as explained in the text, was performed. The reference temperature is 25 °C. A linear regression curve was added.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

nT=nH2OT+0.111 VethVtot,
nS, T, λ=1.31405+1.779×10-4-1.05×10-6T+1.6×10-8T2S-2.02×10-6T2+15.868+0.01155S-0.00423Tλ-4382λ2+1.1455×106λ3,

Metrics