## Abstract

We have developed a compact dispersion-free TG
(transient-grating) FROG (frequency-resolved optical gating) by
utilizing a mask that separates the input beam into three distinct
beams focused into fused silica to create the FROG signal. Two of
the beams are reflected off the same set of mirrors to ensure identical
optical paths, eliminating the difficulty in establishing zero time
delay between the beams. In addition, the use of only reflective
optics avoids material dispersion in the FROG except for the mixing
crystal. This TG FROG is capable of operating with an intensity of
1 × 10^{11} W/cm^{2} and has resolutions less
than 0.5 and 1.3 fs for 25- and 10-fs input pulses,
respectively.

© 1999 Optical Society of America

Full Article |

PDF Article
### Equations (5)

Equations on this page are rendered with MathJax. Learn more.

(1)
$${t}_{\mathrm{measured}}=\sqrt{{{t}_{\mathrm{actual}}}^{2}+{{t}_{\mathrm{blur}}}^{2}}.$$
(2)
$${I}_{\mathrm{choice}\_1}\left(\mathrm{\omega},\mathrm{\tau}\right)\propto {\left|{\int}_{-\infty}^{\infty}{E}_{1}\left(t\right){E}_{2}*\left(t-\mathrm{\tau}\right){E}_{3}\left(t\right)exp\left(i\mathrm{\omega}t\right)\mathrm{d}t\right|}^{2},$$
(3)
$${I}_{\mathrm{choice}\_2}\left(\mathrm{\omega},\mathrm{\tau}\right)\propto {\left|{\int}_{-\infty}^{\infty}{E}_{1}\left(t-\mathrm{\tau}\right){E}_{2}*\left(t\right){E}_{3}\left(t\right)exp\left(i\mathrm{\omega}t\right)\mathrm{d}t\right|}^{2}={\left|{\int}_{-\infty}^{\infty}{E}_{1}\left(t-\mathrm{\tau}\right)|{E}_{2}\left(t\right){|}^{2}exp\left(i\mathrm{\omega}t\right)\mathrm{d}t\right|}^{2},$$
(4)
$$\frac{\mathrm{d}\mathrm{\omega}}{\mathrm{\Delta}\mathrm{\omega}}=\frac{\mathrm{d}t}{\mathrm{\Delta}t},$$
(5)
$$\mathrm{d}\mathrm{\omega}=\sqrt{\frac{\mathrm{\Delta}\mathrm{\omega}}{N\mathrm{\Delta}t}},\mathrm{d}t=\sqrt{\frac{\mathrm{\Delta}t}{N\mathrm{\Delta}\mathrm{\omega}}}.$$