Abstract

The Fresnel diffraction integral is used directly to describe the thermal lens (TL) effect with a mode-mismatched collinear configuration. The TL amplitudes obtained with Gaussian, Airy, and top-hat beam excitations are computed and compared. Numerical results for beam geometries optimized for both near- and far-field detection schemes are presented, and the analytical results developed by Bialkowski and Chartier [Appl. Opt. 36, 6711 (1997)] for a Gaussian beam TL effect are summarized in simplified form. Both the numerical and the analytical results demonstrate that, under a beam geometry optimized for either near- or far-field detection, the Gaussian beam TL experiment has approximately the same maximum signal amplitude as does the photothermal-interference scheme. A comparison between the optimum near- and far-field detection beam geometries indicates that a practical mode-mismatched TL instrument should be based on the far-field detection geometry. The computation results further demonstrate that the optimum beam geometry and the TL amplitude depend largely on the excitation-beam profile. The top-hat beam TL experiment is approximately twice as sensitive as the Gaussian beam TL scheme.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
    [CrossRef]
  2. R. D. Snook, R. D. Lowe, “Thermal lens spectrometry: a review,” Analyst 120, 2051–2068 (1995).
    [CrossRef]
  3. M. Franko, C. D. Tran, “Analytical thermal lens instrumentation,” Rev. Sci. Instrum. 67, 1–18 (1996).
    [CrossRef]
  4. S. E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis (Wiley, New York, 1996).
  5. T. Berthoud, N. Delorme, P. Mauchien, “Beam geometry optimization in dual-beam thermal lensing spectrometry,” Anal. Chem. 57, 1216–1219 (1985).
    [CrossRef]
  6. J. Shen, M. L. Baesso, R. D. Snook, “Three-dimensional model for cw laser-induced mode-mismatched dual-beam thermal lens spectrometry and time-resolved measurements of thin film samples,” J. Appl. Phys. 75, 3738–3748 (1994).
    [CrossRef]
  7. M. L. Baesso, A. C. Bento, A. A. Andrade, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, S. Gama, “Absolute thermal lens method to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B 57, 10,545–10,549 (1998).
    [CrossRef]
  8. R. Brennetot, J. Georges, “Pulsed-laser mode-mismatched dual-beam thermal lens spectrometry: comparison of the time-dependent and maximum signals with theoretical predictions,” Spectrochim. Acta A 54, 111–122 (1998).
    [CrossRef]
  9. J. F. Power, “Pulsed mode thermal lens effect detection in the near field via thermally induced probe beam spatial phase modulation: a theory,” Appl. Opt. 29, 52–63 (1990).
    [CrossRef] [PubMed]
  10. J. Shen, R. D. Lowe, R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165, 385–396 (1992).
    [CrossRef]
  11. S. E. Bialkowski, A. Chartier, “Diffraction effects in single- and two-laser photothermal lens spectroscopy,” Appl. Opt. 36, 6711–6721 (1997).
    [CrossRef]
  12. B.-C. Li, S.-Y. Zhang, J.-W. Fang, X.-J. Shui, “Pulsed laser induced mode-mismatched crossed-beam thermal lens measurements,” Rev. Sci. Instrum. 68, 2741–2749 (1997).
    [CrossRef]
  13. W. Zhao, P. Palffy-Muhoray, “Z-scan technique using top-hat beams,” Appl. Phys. Lett. 63, 1613–1615 (1993).
    [CrossRef]
  14. T. Shimada, N. A. Kurnit, M. Sheik-Bahae, “Measurement of nonlinear index by a relay-imaged top-hat Z-scan technique,” in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 52–60 (1996).
  15. A. Chartier, S. E. Bialkowski, “Photothermal lens spectroscopy of homogeneous fluids with incoherent white-light excitation using a cylindrical sample cell,” Opt. Eng. 36, 303–311 (1997).
    [CrossRef]
  16. A. J. Twarowski, D. S. Kliger, “Multiphoton absorption spectra using thermal blooming: I. Theory,” Chem. Phys. 20, 253–258 (1977).
    [CrossRef]
  17. H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Clarendon, Oxford, UK, 1992).
  18. B. Li, Y. Deng, J. Cheng, “Sensitive photothermal interferometric detection method for characterization of transparent plate samples,” Rev. Sci. Instrum. 67, 3649–3657 (1996).
    [CrossRef]
  19. P. K. Kuo, M. Munidasa, “Single-beam interferometry of a thermal bump,” Appl. Opt. 29, 5326–5331 (1990).
    [CrossRef] [PubMed]
  20. J. Shen, A. J. Soroka, R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry based on probe beam profile image detection,” J. Appl. Phys. 78, 700–708 (1995).
    [CrossRef]
  21. Y. S. Lu, P. K. Kuo, L. D. Favro, R. L. Thomas, Z. L. Wu, S. T. Gu, “Diffraction patterns of a surface thermal lens,” Progr. Natural Sci. 6, S202–S205 (1996).

1998

M. L. Baesso, A. C. Bento, A. A. Andrade, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, S. Gama, “Absolute thermal lens method to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B 57, 10,545–10,549 (1998).
[CrossRef]

R. Brennetot, J. Georges, “Pulsed-laser mode-mismatched dual-beam thermal lens spectrometry: comparison of the time-dependent and maximum signals with theoretical predictions,” Spectrochim. Acta A 54, 111–122 (1998).
[CrossRef]

1997

S. E. Bialkowski, A. Chartier, “Diffraction effects in single- and two-laser photothermal lens spectroscopy,” Appl. Opt. 36, 6711–6721 (1997).
[CrossRef]

B.-C. Li, S.-Y. Zhang, J.-W. Fang, X.-J. Shui, “Pulsed laser induced mode-mismatched crossed-beam thermal lens measurements,” Rev. Sci. Instrum. 68, 2741–2749 (1997).
[CrossRef]

A. Chartier, S. E. Bialkowski, “Photothermal lens spectroscopy of homogeneous fluids with incoherent white-light excitation using a cylindrical sample cell,” Opt. Eng. 36, 303–311 (1997).
[CrossRef]

1996

B. Li, Y. Deng, J. Cheng, “Sensitive photothermal interferometric detection method for characterization of transparent plate samples,” Rev. Sci. Instrum. 67, 3649–3657 (1996).
[CrossRef]

Y. S. Lu, P. K. Kuo, L. D. Favro, R. L. Thomas, Z. L. Wu, S. T. Gu, “Diffraction patterns of a surface thermal lens,” Progr. Natural Sci. 6, S202–S205 (1996).

M. Franko, C. D. Tran, “Analytical thermal lens instrumentation,” Rev. Sci. Instrum. 67, 1–18 (1996).
[CrossRef]

1995

R. D. Snook, R. D. Lowe, “Thermal lens spectrometry: a review,” Analyst 120, 2051–2068 (1995).
[CrossRef]

J. Shen, A. J. Soroka, R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry based on probe beam profile image detection,” J. Appl. Phys. 78, 700–708 (1995).
[CrossRef]

1994

J. Shen, M. L. Baesso, R. D. Snook, “Three-dimensional model for cw laser-induced mode-mismatched dual-beam thermal lens spectrometry and time-resolved measurements of thin film samples,” J. Appl. Phys. 75, 3738–3748 (1994).
[CrossRef]

1993

W. Zhao, P. Palffy-Muhoray, “Z-scan technique using top-hat beams,” Appl. Phys. Lett. 63, 1613–1615 (1993).
[CrossRef]

1992

J. Shen, R. D. Lowe, R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165, 385–396 (1992).
[CrossRef]

1990

1985

T. Berthoud, N. Delorme, P. Mauchien, “Beam geometry optimization in dual-beam thermal lensing spectrometry,” Anal. Chem. 57, 1216–1219 (1985).
[CrossRef]

1977

A. J. Twarowski, D. S. Kliger, “Multiphoton absorption spectra using thermal blooming: I. Theory,” Chem. Phys. 20, 253–258 (1977).
[CrossRef]

1965

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[CrossRef]

Andrade, A. A.

M. L. Baesso, A. C. Bento, A. A. Andrade, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, S. Gama, “Absolute thermal lens method to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B 57, 10,545–10,549 (1998).
[CrossRef]

Baesso, M. L.

M. L. Baesso, A. C. Bento, A. A. Andrade, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, S. Gama, “Absolute thermal lens method to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B 57, 10,545–10,549 (1998).
[CrossRef]

J. Shen, M. L. Baesso, R. D. Snook, “Three-dimensional model for cw laser-induced mode-mismatched dual-beam thermal lens spectrometry and time-resolved measurements of thin film samples,” J. Appl. Phys. 75, 3738–3748 (1994).
[CrossRef]

Bento, A. C.

M. L. Baesso, A. C. Bento, A. A. Andrade, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, S. Gama, “Absolute thermal lens method to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B 57, 10,545–10,549 (1998).
[CrossRef]

Berthoud, T.

T. Berthoud, N. Delorme, P. Mauchien, “Beam geometry optimization in dual-beam thermal lensing spectrometry,” Anal. Chem. 57, 1216–1219 (1985).
[CrossRef]

Bialkowski, S. E.

S. E. Bialkowski, A. Chartier, “Diffraction effects in single- and two-laser photothermal lens spectroscopy,” Appl. Opt. 36, 6711–6721 (1997).
[CrossRef]

A. Chartier, S. E. Bialkowski, “Photothermal lens spectroscopy of homogeneous fluids with incoherent white-light excitation using a cylindrical sample cell,” Opt. Eng. 36, 303–311 (1997).
[CrossRef]

S. E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis (Wiley, New York, 1996).

Brennetot, R.

R. Brennetot, J. Georges, “Pulsed-laser mode-mismatched dual-beam thermal lens spectrometry: comparison of the time-dependent and maximum signals with theoretical predictions,” Spectrochim. Acta A 54, 111–122 (1998).
[CrossRef]

Carslaw, H. S.

H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Clarendon, Oxford, UK, 1992).

Catunda, T.

M. L. Baesso, A. C. Bento, A. A. Andrade, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, S. Gama, “Absolute thermal lens method to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B 57, 10,545–10,549 (1998).
[CrossRef]

Chartier, A.

S. E. Bialkowski, A. Chartier, “Diffraction effects in single- and two-laser photothermal lens spectroscopy,” Appl. Opt. 36, 6711–6721 (1997).
[CrossRef]

A. Chartier, S. E. Bialkowski, “Photothermal lens spectroscopy of homogeneous fluids with incoherent white-light excitation using a cylindrical sample cell,” Opt. Eng. 36, 303–311 (1997).
[CrossRef]

Cheng, J.

B. Li, Y. Deng, J. Cheng, “Sensitive photothermal interferometric detection method for characterization of transparent plate samples,” Rev. Sci. Instrum. 67, 3649–3657 (1996).
[CrossRef]

Delorme, N.

T. Berthoud, N. Delorme, P. Mauchien, “Beam geometry optimization in dual-beam thermal lensing spectrometry,” Anal. Chem. 57, 1216–1219 (1985).
[CrossRef]

Deng, Y.

B. Li, Y. Deng, J. Cheng, “Sensitive photothermal interferometric detection method for characterization of transparent plate samples,” Rev. Sci. Instrum. 67, 3649–3657 (1996).
[CrossRef]

Fang, J.-W.

B.-C. Li, S.-Y. Zhang, J.-W. Fang, X.-J. Shui, “Pulsed laser induced mode-mismatched crossed-beam thermal lens measurements,” Rev. Sci. Instrum. 68, 2741–2749 (1997).
[CrossRef]

Favro, L. D.

Y. S. Lu, P. K. Kuo, L. D. Favro, R. L. Thomas, Z. L. Wu, S. T. Gu, “Diffraction patterns of a surface thermal lens,” Progr. Natural Sci. 6, S202–S205 (1996).

Franko, M.

M. Franko, C. D. Tran, “Analytical thermal lens instrumentation,” Rev. Sci. Instrum. 67, 1–18 (1996).
[CrossRef]

Gama, S.

M. L. Baesso, A. C. Bento, A. A. Andrade, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, S. Gama, “Absolute thermal lens method to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B 57, 10,545–10,549 (1998).
[CrossRef]

Georges, J.

R. Brennetot, J. Georges, “Pulsed-laser mode-mismatched dual-beam thermal lens spectrometry: comparison of the time-dependent and maximum signals with theoretical predictions,” Spectrochim. Acta A 54, 111–122 (1998).
[CrossRef]

Gordon, J. P.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[CrossRef]

Gu, S. T.

Y. S. Lu, P. K. Kuo, L. D. Favro, R. L. Thomas, Z. L. Wu, S. T. Gu, “Diffraction patterns of a surface thermal lens,” Progr. Natural Sci. 6, S202–S205 (1996).

Jaeger, J. C.

H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Clarendon, Oxford, UK, 1992).

Kliger, D. S.

A. J. Twarowski, D. S. Kliger, “Multiphoton absorption spectra using thermal blooming: I. Theory,” Chem. Phys. 20, 253–258 (1977).
[CrossRef]

Kuo, P. K.

Y. S. Lu, P. K. Kuo, L. D. Favro, R. L. Thomas, Z. L. Wu, S. T. Gu, “Diffraction patterns of a surface thermal lens,” Progr. Natural Sci. 6, S202–S205 (1996).

P. K. Kuo, M. Munidasa, “Single-beam interferometry of a thermal bump,” Appl. Opt. 29, 5326–5331 (1990).
[CrossRef] [PubMed]

Kurnit, N. A.

T. Shimada, N. A. Kurnit, M. Sheik-Bahae, “Measurement of nonlinear index by a relay-imaged top-hat Z-scan technique,” in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 52–60 (1996).

Leite, R. C. C.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[CrossRef]

Li, B.

B. Li, Y. Deng, J. Cheng, “Sensitive photothermal interferometric detection method for characterization of transparent plate samples,” Rev. Sci. Instrum. 67, 3649–3657 (1996).
[CrossRef]

Li, B.-C.

B.-C. Li, S.-Y. Zhang, J.-W. Fang, X.-J. Shui, “Pulsed laser induced mode-mismatched crossed-beam thermal lens measurements,” Rev. Sci. Instrum. 68, 2741–2749 (1997).
[CrossRef]

Lowe, R. D.

R. D. Snook, R. D. Lowe, “Thermal lens spectrometry: a review,” Analyst 120, 2051–2068 (1995).
[CrossRef]

J. Shen, R. D. Lowe, R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165, 385–396 (1992).
[CrossRef]

Lu, Y. S.

Y. S. Lu, P. K. Kuo, L. D. Favro, R. L. Thomas, Z. L. Wu, S. T. Gu, “Diffraction patterns of a surface thermal lens,” Progr. Natural Sci. 6, S202–S205 (1996).

Mauchien, P.

T. Berthoud, N. Delorme, P. Mauchien, “Beam geometry optimization in dual-beam thermal lensing spectrometry,” Anal. Chem. 57, 1216–1219 (1985).
[CrossRef]

Moore, R. S.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[CrossRef]

Munidasa, M.

Nunes, L. A. O.

M. L. Baesso, A. C. Bento, A. A. Andrade, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, S. Gama, “Absolute thermal lens method to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B 57, 10,545–10,549 (1998).
[CrossRef]

Palffy-Muhoray, P.

W. Zhao, P. Palffy-Muhoray, “Z-scan technique using top-hat beams,” Appl. Phys. Lett. 63, 1613–1615 (1993).
[CrossRef]

Pecoraro, E.

M. L. Baesso, A. C. Bento, A. A. Andrade, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, S. Gama, “Absolute thermal lens method to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B 57, 10,545–10,549 (1998).
[CrossRef]

Porto, S. P. S.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[CrossRef]

Power, J. F.

Sampaio, J. A.

M. L. Baesso, A. C. Bento, A. A. Andrade, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, S. Gama, “Absolute thermal lens method to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B 57, 10,545–10,549 (1998).
[CrossRef]

Sheik-Bahae, M.

T. Shimada, N. A. Kurnit, M. Sheik-Bahae, “Measurement of nonlinear index by a relay-imaged top-hat Z-scan technique,” in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 52–60 (1996).

Shen, J.

J. Shen, A. J. Soroka, R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry based on probe beam profile image detection,” J. Appl. Phys. 78, 700–708 (1995).
[CrossRef]

J. Shen, M. L. Baesso, R. D. Snook, “Three-dimensional model for cw laser-induced mode-mismatched dual-beam thermal lens spectrometry and time-resolved measurements of thin film samples,” J. Appl. Phys. 75, 3738–3748 (1994).
[CrossRef]

J. Shen, R. D. Lowe, R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165, 385–396 (1992).
[CrossRef]

Shimada, T.

T. Shimada, N. A. Kurnit, M. Sheik-Bahae, “Measurement of nonlinear index by a relay-imaged top-hat Z-scan technique,” in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 52–60 (1996).

Shui, X.-J.

B.-C. Li, S.-Y. Zhang, J.-W. Fang, X.-J. Shui, “Pulsed laser induced mode-mismatched crossed-beam thermal lens measurements,” Rev. Sci. Instrum. 68, 2741–2749 (1997).
[CrossRef]

Snook, R. D.

J. Shen, A. J. Soroka, R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry based on probe beam profile image detection,” J. Appl. Phys. 78, 700–708 (1995).
[CrossRef]

R. D. Snook, R. D. Lowe, “Thermal lens spectrometry: a review,” Analyst 120, 2051–2068 (1995).
[CrossRef]

J. Shen, M. L. Baesso, R. D. Snook, “Three-dimensional model for cw laser-induced mode-mismatched dual-beam thermal lens spectrometry and time-resolved measurements of thin film samples,” J. Appl. Phys. 75, 3738–3748 (1994).
[CrossRef]

J. Shen, R. D. Lowe, R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165, 385–396 (1992).
[CrossRef]

Soroka, A. J.

J. Shen, A. J. Soroka, R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry based on probe beam profile image detection,” J. Appl. Phys. 78, 700–708 (1995).
[CrossRef]

Thomas, R. L.

Y. S. Lu, P. K. Kuo, L. D. Favro, R. L. Thomas, Z. L. Wu, S. T. Gu, “Diffraction patterns of a surface thermal lens,” Progr. Natural Sci. 6, S202–S205 (1996).

Tran, C. D.

M. Franko, C. D. Tran, “Analytical thermal lens instrumentation,” Rev. Sci. Instrum. 67, 1–18 (1996).
[CrossRef]

Twarowski, A. J.

A. J. Twarowski, D. S. Kliger, “Multiphoton absorption spectra using thermal blooming: I. Theory,” Chem. Phys. 20, 253–258 (1977).
[CrossRef]

Whinnery, J. R.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[CrossRef]

Wu, Z. L.

Y. S. Lu, P. K. Kuo, L. D. Favro, R. L. Thomas, Z. L. Wu, S. T. Gu, “Diffraction patterns of a surface thermal lens,” Progr. Natural Sci. 6, S202–S205 (1996).

Zhang, S.-Y.

B.-C. Li, S.-Y. Zhang, J.-W. Fang, X.-J. Shui, “Pulsed laser induced mode-mismatched crossed-beam thermal lens measurements,” Rev. Sci. Instrum. 68, 2741–2749 (1997).
[CrossRef]

Zhao, W.

W. Zhao, P. Palffy-Muhoray, “Z-scan technique using top-hat beams,” Appl. Phys. Lett. 63, 1613–1615 (1993).
[CrossRef]

Anal. Chem.

T. Berthoud, N. Delorme, P. Mauchien, “Beam geometry optimization in dual-beam thermal lensing spectrometry,” Anal. Chem. 57, 1216–1219 (1985).
[CrossRef]

Analyst

R. D. Snook, R. D. Lowe, “Thermal lens spectrometry: a review,” Analyst 120, 2051–2068 (1995).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

W. Zhao, P. Palffy-Muhoray, “Z-scan technique using top-hat beams,” Appl. Phys. Lett. 63, 1613–1615 (1993).
[CrossRef]

Chem. Phys.

A. J. Twarowski, D. S. Kliger, “Multiphoton absorption spectra using thermal blooming: I. Theory,” Chem. Phys. 20, 253–258 (1977).
[CrossRef]

J. Shen, R. D. Lowe, R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165, 385–396 (1992).
[CrossRef]

J. Appl. Phys.

J. Shen, M. L. Baesso, R. D. Snook, “Three-dimensional model for cw laser-induced mode-mismatched dual-beam thermal lens spectrometry and time-resolved measurements of thin film samples,” J. Appl. Phys. 75, 3738–3748 (1994).
[CrossRef]

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[CrossRef]

J. Shen, A. J. Soroka, R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry based on probe beam profile image detection,” J. Appl. Phys. 78, 700–708 (1995).
[CrossRef]

Opt. Eng.

A. Chartier, S. E. Bialkowski, “Photothermal lens spectroscopy of homogeneous fluids with incoherent white-light excitation using a cylindrical sample cell,” Opt. Eng. 36, 303–311 (1997).
[CrossRef]

Phys. Rev. B

M. L. Baesso, A. C. Bento, A. A. Andrade, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, S. Gama, “Absolute thermal lens method to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B 57, 10,545–10,549 (1998).
[CrossRef]

Progr. Natural Sci.

Y. S. Lu, P. K. Kuo, L. D. Favro, R. L. Thomas, Z. L. Wu, S. T. Gu, “Diffraction patterns of a surface thermal lens,” Progr. Natural Sci. 6, S202–S205 (1996).

Rev. Sci. Instrum.

B. Li, Y. Deng, J. Cheng, “Sensitive photothermal interferometric detection method for characterization of transparent plate samples,” Rev. Sci. Instrum. 67, 3649–3657 (1996).
[CrossRef]

M. Franko, C. D. Tran, “Analytical thermal lens instrumentation,” Rev. Sci. Instrum. 67, 1–18 (1996).
[CrossRef]

B.-C. Li, S.-Y. Zhang, J.-W. Fang, X.-J. Shui, “Pulsed laser induced mode-mismatched crossed-beam thermal lens measurements,” Rev. Sci. Instrum. 68, 2741–2749 (1997).
[CrossRef]

Spectrochim. Acta A

R. Brennetot, J. Georges, “Pulsed-laser mode-mismatched dual-beam thermal lens spectrometry: comparison of the time-dependent and maximum signals with theoretical predictions,” Spectrochim. Acta A 54, 111–122 (1998).
[CrossRef]

Other

S. E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis (Wiley, New York, 1996).

T. Shimada, N. A. Kurnit, M. Sheik-Bahae, “Measurement of nonlinear index by a relay-imaged top-hat Z-scan technique,” in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 52–60 (1996).

H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Clarendon, Oxford, UK, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of a mode-mismatched collinear TL arrangement.

Fig. 2
Fig. 2

Temperature rise inside the sample as obtained with a Gaussian, an Airy, or a top-hat beam excitation as a function of time for (a) 0 ms, (b) 10 ms, (c) 1 s after excitation.

Fig. 3
Fig. 3

Relative intensity change caused by a TL element with a Gaussian, an Airy, or a top-hat profile in the beam geometry optimized for the near-field detection scheme with a distance z 1 from the sample plane. The parameters assumed are ω0 = 500 µm, z 0 = 2z c , and (a) z 1 = 3 cm, (b) z 1 = 50 cm, (c) z 1 = 10 m. ω2 is the radius of the unperturbed probe beam in the detection plane.

Fig. 4
Fig. 4

Relative intensity change caused by a TL element with a Gaussian, an Airy, or a top-hat profile in the beam geometry optimized for the far-field detection scheme with a distance z 1 from the sample plane. The parameters assumed are ω0 = 20 µm, z 0 = 20z c , and (a) z 1 = 3 cm, (b) z 1 = 50 cm, (c) z 1 = 10 m.

Fig. 5
Fig. 5

TL amplitude as a function of the detection distance for (a) the near-field and (b) the far-field detection beam geometries. z c ′ is a parameter defined as z c ′ = πa 2/λ.

Fig. 6
Fig. 6

TL amplitude plotted against the distance from the probe-beam waist to the sample plane for (a) the near-field and (b) the far-field detection beam geometries.

Fig. 7
Fig. 7

TL amplitude plotted against ratio of the probe-beam to the excitation-beam radius for (a) the near-field and (b) the far-field detection beam geometries.

Fig. 8
Fig. 8

Temporal profiles of the TL signals with a Gaussian, an Airy, or a top-hat beam excitation for the far-field detection beam geometry.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

U2r2, z0+z1=j2πλz1exp-jkz1+r222z1×0 U1r1, z1J0k r1r2z1×exp-jk r122z1r1dr1,
U1r1, z0=U1r1, z0exp-jΔϕr1,
U1r1, z0=2πU0ω0ω1exp-jkz0-jk2q1 r12,
ΔTr1, t=T0a2a2+4kthtexp-r12/a2+4ktht, T0=αE0πa2ρC,
ΔTr1, t=T00exp-kthδ2t/a2J0δr1/aJ1δdδ,
ΔTr1, t=T04π302πexp-kthδ2t/a12×θ-0.5 sin2θJ0δr1/a1δdδ,
Δϕr1, t=2π/λdn/dTΔTr1, tl=Δϕ0ΔTr1, t/T0,
Ir2, z0+z1=|U2r2, z0+z1|2.
S=It=0-It=It=.
z0opt=±2m+12m zc,
Smax=Δϕ02m+1.
dopt=m2m+1 zce,
zce=πω0e2λ,
Smax=2m2m+1 Δϕ0.
dopt=12zce,
Smax=Δϕ0.

Metrics