Abstract

The influence of daylight and noise current on cloud and aerosol observations by realistic spaceborne lidar was examined by computer simulations. The reflected solar radiations, which contaminate the daytime return signals of lidar operations, were strictly and explicitly estimated by accurate radiative transfer calculations. It was found that the model multilayer cirrus clouds and the boundary layer aerosols could be observed during the daytime and the nighttime with only a few laser shots. However, high background noise and noise current make it difficult to observe volcanic aerosols in middle and upper atmospheric layers. Optimal combinations of the laser power and receiver field of view are proposed to compensate for the negative influence that is due to these noises. For the computer simulations, we used a realistic set of lidar parameters similar to the Experimental Lidar in-Space Equipment of the National Space Development Agency of Japan.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. T. Wetherald, S. Manabe, “Cloud feedback processes in a general circulation model,” J. Atmos. Sci. 45, 1397–1415 (1988).
    [Crossref]
  2. J. A. Coakley, R. L. Bernstein, P. A. Durkee, “Effect of ship-stack effluents on cloud reflectivity,” Science 237, 1020–1022 (1987).
    [Crossref] [PubMed]
  3. S. Twomey, M. Piepgrass, T. L. Wolfe, “An assessment of the impact of pollution on global cloud albedo,” Tellus 36, 356–366 (1984).
    [Crossref]
  4. Q. Han, W. B. Rossow, A. A. Lacis, “Near-global survey of effective droplet radii in liquid water clouds using ISCCP data,” J. Climate 7, 465–497 (1994).
    [Crossref]
  5. T. Y. Nakajima, T. Nakajima, “Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX region,” J. Atmos. Sci. 52, 4043–4059 (1995).
    [Crossref]
  6. T. Y. Nakajima, T. Nakajima, M. Nakajima, H. Fukushima, M. Kuji, A. Uchiyama, M. Kishino, “Optimization of the Advanced Earth Observing Satellite Global Imager channels by use of radiative transfer calculations,” Appl. Opt. 37, 3149–3163 (1998).
    [Crossref]
  7. M. D. King, Y. J. Kaufman, W. P. Manzel, D. Tanré, “Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sensing 30, 2–27 (1992).
    [Crossref]
  8. T. Nagai, O. Uchino, T. Fujimoto, Y. Sai, K. Tamashiro, R. Nomura, T. Sunagawa, “Lidar observation of the stratospheric aerosol layer over Okinawa, Japan, after the Mt. Pinatubo Volcanic Eruption,” J. Meteorol. Soc. Jpn. 71, 749–754 (1993).
  9. T. Takamura, Y. Sasano, T. Hayasaka, “Tropospheric aerosol optical properties derived from lidar, sun photometer, and optical particle counter measurements,” Appl. Opt. 33, 7132–7140 (1994).
    [Crossref] [PubMed]
  10. S. P. Palm, S. H. Melfi, D. L. Carter, “New airborne scanning lidar system: applications for atmospheric remote sensing,” Appl. Opt. 33, 5674–5681 (1994).
    [Crossref] [PubMed]
  11. R. T. Menzies, D. M. Tratt, “Airborne CO2 coherent lidar for measurements of atmospheric aerosol and cloud backscatter,” Appl. Opt. 33, 5698–5711 (1994).
    [Crossref] [PubMed]
  12. J. D. Spinhirne, S. Chudamani, J. L. Bufton, “Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 µm by airborne hard-target-calibrated Nd:YAG/methane Raman lidar,” Appl. Opt. 36, 3475–3490 (1997).
    [Crossref] [PubMed]
  13. M. P. McCormick, “Spaceborne lidar,” Rev. Laser Eng. 23, 175–193 (1995).
    [Crossref]
  14. Y. Y. Gu, C. S. Gardner, M. C. Kelley, “Validation of the Lidar-in-Space Technology Experiment: stratospheric temperature and aerosol measurements,” Appl. Opt. 36, 5148–5157 (1997).
    [Crossref] [PubMed]
  15. P. B. Russel, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, “Orbiting lidar simulations. 1: Aerosol and cloud measurements by an independent wavelength technique,” Appl. Opt. 21, 1541–1553 (1982).
    [Crossref]
  16. J. R. Biard, W. N. Shaunfield, “A model of the avalanche photodiode,” IEEE Trans. Electron Devices 14, 233–238 (1967).
    [Crossref]
  17. H. Melchoir, M. Fisher, F. Arams, “Photo-detectors for optical communications systems,” Proc. IEEE 58, 1466–1486 (1970).
    [Crossref]
  18. P. P. Webb, R. J. McIntyre, J. Conradi, “Properties of avalanche photo-diodes,” RCA Rev. 35, 234–278 (1974).
  19. F. X. Kneizys, E. P. Shettle, L. W. Arbeu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtran-7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).
  20. T. Nakajima, M. Tanaka, “Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation,” J. Quant. Spectrosc. Radiat. Transfer 40, 51–69 (1988).
    [Crossref]
  21. K. Kawamoto, “On the global distribution of the water cloud microphysics derived from AVHRR remote sensing,” Ph.D. dissertation University of Tokyo, Tokyo, Japan, 1999).
  22. T. Y. Nakajima, T. Nakajima, A. A. Kokhanovsky, “Radiation transfer calculations with phase functions of irregular ice particles obtained by geometric-optics approximation,” in European Symposium on Aerospace Remote Sensing, J. Haigh, R. Saunders, C. Oliver, eds. (Institution of Electrical Engineers, London, 1997).
  23. A. A. Kokhanovsky, T. Y. Nakajima, “The dependence of phase functions of large transparent particles on their refractive index and shape,” J. Phys. D 31, 1329–1335 (1998).
    [Crossref]
  24. Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
    [Crossref]
  25. J. D. Spinhirne, “Lidar clear atmosphere multiple scattering dependence on receiver range,” Appl. Opt. 21, 2467–2468 (1982).
    [Crossref] [PubMed]
  26. J. Fischer, H. Grassl, “Detection of cloud-top height from backscattered radiances within the oxygen A band. Part 1: Theoretical study,” J. Appl. Meteorol. 30, 1245–1259 (1991).
    [Crossref]
  27. J. Fischer, W. Cordes, A. Schimits-Peiffer, W. Renger, P. Moerl, “Detection of cloud-top height from backscattered radiances within the oxygen A band. Part 2: measurements,” J. Appl. Meteorol. 30, 1260–1267 (1991).
    [Crossref]

1998 (2)

1997 (2)

1995 (2)

M. P. McCormick, “Spaceborne lidar,” Rev. Laser Eng. 23, 175–193 (1995).
[Crossref]

T. Y. Nakajima, T. Nakajima, “Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX region,” J. Atmos. Sci. 52, 4043–4059 (1995).
[Crossref]

1994 (4)

1993 (1)

T. Nagai, O. Uchino, T. Fujimoto, Y. Sai, K. Tamashiro, R. Nomura, T. Sunagawa, “Lidar observation of the stratospheric aerosol layer over Okinawa, Japan, after the Mt. Pinatubo Volcanic Eruption,” J. Meteorol. Soc. Jpn. 71, 749–754 (1993).

1992 (1)

M. D. King, Y. J. Kaufman, W. P. Manzel, D. Tanré, “Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sensing 30, 2–27 (1992).
[Crossref]

1991 (2)

J. Fischer, H. Grassl, “Detection of cloud-top height from backscattered radiances within the oxygen A band. Part 1: Theoretical study,” J. Appl. Meteorol. 30, 1245–1259 (1991).
[Crossref]

J. Fischer, W. Cordes, A. Schimits-Peiffer, W. Renger, P. Moerl, “Detection of cloud-top height from backscattered radiances within the oxygen A band. Part 2: measurements,” J. Appl. Meteorol. 30, 1260–1267 (1991).
[Crossref]

1989 (1)

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
[Crossref]

1988 (2)

R. T. Wetherald, S. Manabe, “Cloud feedback processes in a general circulation model,” J. Atmos. Sci. 45, 1397–1415 (1988).
[Crossref]

T. Nakajima, M. Tanaka, “Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation,” J. Quant. Spectrosc. Radiat. Transfer 40, 51–69 (1988).
[Crossref]

1987 (1)

J. A. Coakley, R. L. Bernstein, P. A. Durkee, “Effect of ship-stack effluents on cloud reflectivity,” Science 237, 1020–1022 (1987).
[Crossref] [PubMed]

1984 (1)

S. Twomey, M. Piepgrass, T. L. Wolfe, “An assessment of the impact of pollution on global cloud albedo,” Tellus 36, 356–366 (1984).
[Crossref]

1982 (2)

1974 (1)

P. P. Webb, R. J. McIntyre, J. Conradi, “Properties of avalanche photo-diodes,” RCA Rev. 35, 234–278 (1974).

1970 (1)

H. Melchoir, M. Fisher, F. Arams, “Photo-detectors for optical communications systems,” Proc. IEEE 58, 1466–1486 (1970).
[Crossref]

1967 (1)

J. R. Biard, W. N. Shaunfield, “A model of the avalanche photodiode,” IEEE Trans. Electron Devices 14, 233–238 (1967).
[Crossref]

Anderson, G. P.

F. X. Kneizys, E. P. Shettle, L. W. Arbeu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtran-7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Arams, F.

H. Melchoir, M. Fisher, F. Arams, “Photo-detectors for optical communications systems,” Proc. IEEE 58, 1466–1486 (1970).
[Crossref]

Arbeu, L. W.

F. X. Kneizys, E. P. Shettle, L. W. Arbeu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtran-7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Bernstein, R. L.

J. A. Coakley, R. L. Bernstein, P. A. Durkee, “Effect of ship-stack effluents on cloud reflectivity,” Science 237, 1020–1022 (1987).
[Crossref] [PubMed]

Biard, J. R.

J. R. Biard, W. N. Shaunfield, “A model of the avalanche photodiode,” IEEE Trans. Electron Devices 14, 233–238 (1967).
[Crossref]

Bufton, J. L.

Carter, D. L.

Chetwynd, J. H.

F. X. Kneizys, E. P. Shettle, L. W. Arbeu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtran-7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Chudamani, S.

Clough, S. A.

F. X. Kneizys, E. P. Shettle, L. W. Arbeu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtran-7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Coakley, J. A.

J. A. Coakley, R. L. Bernstein, P. A. Durkee, “Effect of ship-stack effluents on cloud reflectivity,” Science 237, 1020–1022 (1987).
[Crossref] [PubMed]

Conradi, J.

P. P. Webb, R. J. McIntyre, J. Conradi, “Properties of avalanche photo-diodes,” RCA Rev. 35, 234–278 (1974).

Cordes, W.

J. Fischer, W. Cordes, A. Schimits-Peiffer, W. Renger, P. Moerl, “Detection of cloud-top height from backscattered radiances within the oxygen A band. Part 2: measurements,” J. Appl. Meteorol. 30, 1260–1267 (1991).
[Crossref]

Durkee, P. A.

J. A. Coakley, R. L. Bernstein, P. A. Durkee, “Effect of ship-stack effluents on cloud reflectivity,” Science 237, 1020–1022 (1987).
[Crossref] [PubMed]

Fischer, J.

J. Fischer, H. Grassl, “Detection of cloud-top height from backscattered radiances within the oxygen A band. Part 1: Theoretical study,” J. Appl. Meteorol. 30, 1245–1259 (1991).
[Crossref]

J. Fischer, W. Cordes, A. Schimits-Peiffer, W. Renger, P. Moerl, “Detection of cloud-top height from backscattered radiances within the oxygen A band. Part 2: measurements,” J. Appl. Meteorol. 30, 1260–1267 (1991).
[Crossref]

Fisher, M.

H. Melchoir, M. Fisher, F. Arams, “Photo-detectors for optical communications systems,” Proc. IEEE 58, 1466–1486 (1970).
[Crossref]

Fujimoto, T.

T. Nagai, O. Uchino, T. Fujimoto, Y. Sai, K. Tamashiro, R. Nomura, T. Sunagawa, “Lidar observation of the stratospheric aerosol layer over Okinawa, Japan, after the Mt. Pinatubo Volcanic Eruption,” J. Meteorol. Soc. Jpn. 71, 749–754 (1993).

Fukushima, H.

Gallery, W. O.

F. X. Kneizys, E. P. Shettle, L. W. Arbeu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtran-7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Gardner, C. S.

Grams, G. W.

Grassl, H.

J. Fischer, H. Grassl, “Detection of cloud-top height from backscattered radiances within the oxygen A band. Part 1: Theoretical study,” J. Appl. Meteorol. 30, 1245–1259 (1991).
[Crossref]

Gu, Y. Y.

Han, Q.

Q. Han, W. B. Rossow, A. A. Lacis, “Near-global survey of effective droplet radii in liquid water clouds using ISCCP data,” J. Climate 7, 465–497 (1994).
[Crossref]

Hayasaka, T.

Kaufman, Y. J.

M. D. King, Y. J. Kaufman, W. P. Manzel, D. Tanré, “Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sensing 30, 2–27 (1992).
[Crossref]

Kawamoto, K.

K. Kawamoto, “On the global distribution of the water cloud microphysics derived from AVHRR remote sensing,” Ph.D. dissertation University of Tokyo, Tokyo, Japan, 1999).

Kelley, M. C.

King, M. D.

M. D. King, Y. J. Kaufman, W. P. Manzel, D. Tanré, “Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sensing 30, 2–27 (1992).
[Crossref]

Kishino, M.

Kneizys, F. X.

F. X. Kneizys, E. P. Shettle, L. W. Arbeu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtran-7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Kokhanovsky, A. A.

A. A. Kokhanovsky, T. Y. Nakajima, “The dependence of phase functions of large transparent particles on their refractive index and shape,” J. Phys. D 31, 1329–1335 (1998).
[Crossref]

T. Y. Nakajima, T. Nakajima, A. A. Kokhanovsky, “Radiation transfer calculations with phase functions of irregular ice particles obtained by geometric-optics approximation,” in European Symposium on Aerospace Remote Sensing, J. Haigh, R. Saunders, C. Oliver, eds. (Institution of Electrical Engineers, London, 1997).

Kuji, M.

Lacis, A. A.

Q. Han, W. B. Rossow, A. A. Lacis, “Near-global survey of effective droplet radii in liquid water clouds using ISCCP data,” J. Climate 7, 465–497 (1994).
[Crossref]

Liou, K. N.

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
[Crossref]

Livingston, J. M.

Manabe, S.

R. T. Wetherald, S. Manabe, “Cloud feedback processes in a general circulation model,” J. Atmos. Sci. 45, 1397–1415 (1988).
[Crossref]

Manzel, W. P.

M. D. King, Y. J. Kaufman, W. P. Manzel, D. Tanré, “Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sensing 30, 2–27 (1992).
[Crossref]

McCormick, M. P.

M. P. McCormick, “Spaceborne lidar,” Rev. Laser Eng. 23, 175–193 (1995).
[Crossref]

McIntyre, R. J.

P. P. Webb, R. J. McIntyre, J. Conradi, “Properties of avalanche photo-diodes,” RCA Rev. 35, 234–278 (1974).

Melchoir, H.

H. Melchoir, M. Fisher, F. Arams, “Photo-detectors for optical communications systems,” Proc. IEEE 58, 1466–1486 (1970).
[Crossref]

Melfi, S. H.

Menzies, R. T.

Moerl, P.

J. Fischer, W. Cordes, A. Schimits-Peiffer, W. Renger, P. Moerl, “Detection of cloud-top height from backscattered radiances within the oxygen A band. Part 2: measurements,” J. Appl. Meteorol. 30, 1260–1267 (1991).
[Crossref]

Morley, B. M.

Nagai, T.

T. Nagai, O. Uchino, T. Fujimoto, Y. Sai, K. Tamashiro, R. Nomura, T. Sunagawa, “Lidar observation of the stratospheric aerosol layer over Okinawa, Japan, after the Mt. Pinatubo Volcanic Eruption,” J. Meteorol. Soc. Jpn. 71, 749–754 (1993).

Nakajima, M.

Nakajima, T.

T. Y. Nakajima, T. Nakajima, M. Nakajima, H. Fukushima, M. Kuji, A. Uchiyama, M. Kishino, “Optimization of the Advanced Earth Observing Satellite Global Imager channels by use of radiative transfer calculations,” Appl. Opt. 37, 3149–3163 (1998).
[Crossref]

T. Y. Nakajima, T. Nakajima, “Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX region,” J. Atmos. Sci. 52, 4043–4059 (1995).
[Crossref]

T. Nakajima, M. Tanaka, “Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation,” J. Quant. Spectrosc. Radiat. Transfer 40, 51–69 (1988).
[Crossref]

T. Y. Nakajima, T. Nakajima, A. A. Kokhanovsky, “Radiation transfer calculations with phase functions of irregular ice particles obtained by geometric-optics approximation,” in European Symposium on Aerospace Remote Sensing, J. Haigh, R. Saunders, C. Oliver, eds. (Institution of Electrical Engineers, London, 1997).

Nakajima, T. Y.

A. A. Kokhanovsky, T. Y. Nakajima, “The dependence of phase functions of large transparent particles on their refractive index and shape,” J. Phys. D 31, 1329–1335 (1998).
[Crossref]

T. Y. Nakajima, T. Nakajima, M. Nakajima, H. Fukushima, M. Kuji, A. Uchiyama, M. Kishino, “Optimization of the Advanced Earth Observing Satellite Global Imager channels by use of radiative transfer calculations,” Appl. Opt. 37, 3149–3163 (1998).
[Crossref]

T. Y. Nakajima, T. Nakajima, “Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX region,” J. Atmos. Sci. 52, 4043–4059 (1995).
[Crossref]

T. Y. Nakajima, T. Nakajima, A. A. Kokhanovsky, “Radiation transfer calculations with phase functions of irregular ice particles obtained by geometric-optics approximation,” in European Symposium on Aerospace Remote Sensing, J. Haigh, R. Saunders, C. Oliver, eds. (Institution of Electrical Engineers, London, 1997).

Nomura, R.

T. Nagai, O. Uchino, T. Fujimoto, Y. Sai, K. Tamashiro, R. Nomura, T. Sunagawa, “Lidar observation of the stratospheric aerosol layer over Okinawa, Japan, after the Mt. Pinatubo Volcanic Eruption,” J. Meteorol. Soc. Jpn. 71, 749–754 (1993).

Palm, S. P.

Patterson, E. M.

Piepgrass, M.

S. Twomey, M. Piepgrass, T. L. Wolfe, “An assessment of the impact of pollution on global cloud albedo,” Tellus 36, 356–366 (1984).
[Crossref]

Renger, W.

J. Fischer, W. Cordes, A. Schimits-Peiffer, W. Renger, P. Moerl, “Detection of cloud-top height from backscattered radiances within the oxygen A band. Part 2: measurements,” J. Appl. Meteorol. 30, 1260–1267 (1991).
[Crossref]

Rossow, W. B.

Q. Han, W. B. Rossow, A. A. Lacis, “Near-global survey of effective droplet radii in liquid water clouds using ISCCP data,” J. Climate 7, 465–497 (1994).
[Crossref]

Russel, P. B.

Sai, Y.

T. Nagai, O. Uchino, T. Fujimoto, Y. Sai, K. Tamashiro, R. Nomura, T. Sunagawa, “Lidar observation of the stratospheric aerosol layer over Okinawa, Japan, after the Mt. Pinatubo Volcanic Eruption,” J. Meteorol. Soc. Jpn. 71, 749–754 (1993).

Sasano, Y.

Schimits-Peiffer, A.

J. Fischer, W. Cordes, A. Schimits-Peiffer, W. Renger, P. Moerl, “Detection of cloud-top height from backscattered radiances within the oxygen A band. Part 2: measurements,” J. Appl. Meteorol. 30, 1260–1267 (1991).
[Crossref]

Selby, J. E. A.

F. X. Kneizys, E. P. Shettle, L. W. Arbeu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtran-7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Shaunfield, W. N.

J. R. Biard, W. N. Shaunfield, “A model of the avalanche photodiode,” IEEE Trans. Electron Devices 14, 233–238 (1967).
[Crossref]

Shettle, E. P.

F. X. Kneizys, E. P. Shettle, L. W. Arbeu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtran-7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Spinhirne, J. D.

Sunagawa, T.

T. Nagai, O. Uchino, T. Fujimoto, Y. Sai, K. Tamashiro, R. Nomura, T. Sunagawa, “Lidar observation of the stratospheric aerosol layer over Okinawa, Japan, after the Mt. Pinatubo Volcanic Eruption,” J. Meteorol. Soc. Jpn. 71, 749–754 (1993).

Takamura, T.

Takano, Y.

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
[Crossref]

Tamashiro, K.

T. Nagai, O. Uchino, T. Fujimoto, Y. Sai, K. Tamashiro, R. Nomura, T. Sunagawa, “Lidar observation of the stratospheric aerosol layer over Okinawa, Japan, after the Mt. Pinatubo Volcanic Eruption,” J. Meteorol. Soc. Jpn. 71, 749–754 (1993).

Tanaka, M.

T. Nakajima, M. Tanaka, “Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation,” J. Quant. Spectrosc. Radiat. Transfer 40, 51–69 (1988).
[Crossref]

Tanré, D.

M. D. King, Y. J. Kaufman, W. P. Manzel, D. Tanré, “Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sensing 30, 2–27 (1992).
[Crossref]

Tratt, D. M.

Twomey, S.

S. Twomey, M. Piepgrass, T. L. Wolfe, “An assessment of the impact of pollution on global cloud albedo,” Tellus 36, 356–366 (1984).
[Crossref]

Uchino, O.

T. Nagai, O. Uchino, T. Fujimoto, Y. Sai, K. Tamashiro, R. Nomura, T. Sunagawa, “Lidar observation of the stratospheric aerosol layer over Okinawa, Japan, after the Mt. Pinatubo Volcanic Eruption,” J. Meteorol. Soc. Jpn. 71, 749–754 (1993).

Uchiyama, A.

Webb, P. P.

P. P. Webb, R. J. McIntyre, J. Conradi, “Properties of avalanche photo-diodes,” RCA Rev. 35, 234–278 (1974).

Wetherald, R. T.

R. T. Wetherald, S. Manabe, “Cloud feedback processes in a general circulation model,” J. Atmos. Sci. 45, 1397–1415 (1988).
[Crossref]

Wolfe, T. L.

S. Twomey, M. Piepgrass, T. L. Wolfe, “An assessment of the impact of pollution on global cloud albedo,” Tellus 36, 356–366 (1984).
[Crossref]

Appl. Opt. (8)

T. Takamura, Y. Sasano, T. Hayasaka, “Tropospheric aerosol optical properties derived from lidar, sun photometer, and optical particle counter measurements,” Appl. Opt. 33, 7132–7140 (1994).
[Crossref] [PubMed]

S. P. Palm, S. H. Melfi, D. L. Carter, “New airborne scanning lidar system: applications for atmospheric remote sensing,” Appl. Opt. 33, 5674–5681 (1994).
[Crossref] [PubMed]

R. T. Menzies, D. M. Tratt, “Airborne CO2 coherent lidar for measurements of atmospheric aerosol and cloud backscatter,” Appl. Opt. 33, 5698–5711 (1994).
[Crossref] [PubMed]

J. D. Spinhirne, S. Chudamani, J. L. Bufton, “Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 µm by airborne hard-target-calibrated Nd:YAG/methane Raman lidar,” Appl. Opt. 36, 3475–3490 (1997).
[Crossref] [PubMed]

Y. Y. Gu, C. S. Gardner, M. C. Kelley, “Validation of the Lidar-in-Space Technology Experiment: stratospheric temperature and aerosol measurements,” Appl. Opt. 36, 5148–5157 (1997).
[Crossref] [PubMed]

P. B. Russel, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, “Orbiting lidar simulations. 1: Aerosol and cloud measurements by an independent wavelength technique,” Appl. Opt. 21, 1541–1553 (1982).
[Crossref]

T. Y. Nakajima, T. Nakajima, M. Nakajima, H. Fukushima, M. Kuji, A. Uchiyama, M. Kishino, “Optimization of the Advanced Earth Observing Satellite Global Imager channels by use of radiative transfer calculations,” Appl. Opt. 37, 3149–3163 (1998).
[Crossref]

J. D. Spinhirne, “Lidar clear atmosphere multiple scattering dependence on receiver range,” Appl. Opt. 21, 2467–2468 (1982).
[Crossref] [PubMed]

IEEE Trans. Electron Devices (1)

J. R. Biard, W. N. Shaunfield, “A model of the avalanche photodiode,” IEEE Trans. Electron Devices 14, 233–238 (1967).
[Crossref]

IEEE Trans. Geosci. Remote Sensing (1)

M. D. King, Y. J. Kaufman, W. P. Manzel, D. Tanré, “Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sensing 30, 2–27 (1992).
[Crossref]

J. Appl. Meteorol. (2)

J. Fischer, H. Grassl, “Detection of cloud-top height from backscattered radiances within the oxygen A band. Part 1: Theoretical study,” J. Appl. Meteorol. 30, 1245–1259 (1991).
[Crossref]

J. Fischer, W. Cordes, A. Schimits-Peiffer, W. Renger, P. Moerl, “Detection of cloud-top height from backscattered radiances within the oxygen A band. Part 2: measurements,” J. Appl. Meteorol. 30, 1260–1267 (1991).
[Crossref]

J. Atmos. Sci. (3)

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
[Crossref]

R. T. Wetherald, S. Manabe, “Cloud feedback processes in a general circulation model,” J. Atmos. Sci. 45, 1397–1415 (1988).
[Crossref]

T. Y. Nakajima, T. Nakajima, “Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX region,” J. Atmos. Sci. 52, 4043–4059 (1995).
[Crossref]

J. Climate (1)

Q. Han, W. B. Rossow, A. A. Lacis, “Near-global survey of effective droplet radii in liquid water clouds using ISCCP data,” J. Climate 7, 465–497 (1994).
[Crossref]

J. Meteorol. Soc. Jpn. (1)

T. Nagai, O. Uchino, T. Fujimoto, Y. Sai, K. Tamashiro, R. Nomura, T. Sunagawa, “Lidar observation of the stratospheric aerosol layer over Okinawa, Japan, after the Mt. Pinatubo Volcanic Eruption,” J. Meteorol. Soc. Jpn. 71, 749–754 (1993).

J. Phys. D (1)

A. A. Kokhanovsky, T. Y. Nakajima, “The dependence of phase functions of large transparent particles on their refractive index and shape,” J. Phys. D 31, 1329–1335 (1998).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

T. Nakajima, M. Tanaka, “Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation,” J. Quant. Spectrosc. Radiat. Transfer 40, 51–69 (1988).
[Crossref]

Proc. IEEE (1)

H. Melchoir, M. Fisher, F. Arams, “Photo-detectors for optical communications systems,” Proc. IEEE 58, 1466–1486 (1970).
[Crossref]

RCA Rev. (1)

P. P. Webb, R. J. McIntyre, J. Conradi, “Properties of avalanche photo-diodes,” RCA Rev. 35, 234–278 (1974).

Rev. Laser Eng. (1)

M. P. McCormick, “Spaceborne lidar,” Rev. Laser Eng. 23, 175–193 (1995).
[Crossref]

Science (1)

J. A. Coakley, R. L. Bernstein, P. A. Durkee, “Effect of ship-stack effluents on cloud reflectivity,” Science 237, 1020–1022 (1987).
[Crossref] [PubMed]

Tellus (1)

S. Twomey, M. Piepgrass, T. L. Wolfe, “An assessment of the impact of pollution on global cloud albedo,” Tellus 36, 356–366 (1984).
[Crossref]

Other (3)

F. X. Kneizys, E. P. Shettle, L. W. Arbeu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtran-7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

K. Kawamoto, “On the global distribution of the water cloud microphysics derived from AVHRR remote sensing,” Ph.D. dissertation University of Tokyo, Tokyo, Japan, 1999).

T. Y. Nakajima, T. Nakajima, A. A. Kokhanovsky, “Radiation transfer calculations with phase functions of irregular ice particles obtained by geometric-optics approximation,” in European Symposium on Aerospace Remote Sensing, J. Haigh, R. Saunders, C. Oliver, eds. (Institution of Electrical Engineers, London, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Simulated reflected solar radiance (watts per square meter per steradians per micrometers) of the cirrus cloud observations, at 1053-nm wavelength, as functions of optical thickness of the marine stratocumulus cloud (τ c ) and solar zenith angles (θ0). An accurate and efficient radiative transfer20 based on the discrete ordinates method was used to calculate reflected solar radiance.

Fig. 2
Fig. 2

Backscatter of molecules, volcanic aerosols, maritime and urban aerosols, and cirrus clouds.

Fig. 3
Fig. 3

(a) Simulated SNR and (b) the number of laser shots required to obtain a >10 SNR as functions of altitude and solar zenith angle, of cirrus clouds observed under the worst condition of τ c = 64. The number of shots and the gate are, respectively, n = 100 and ΔZ = 100 m.

Fig. 4
Fig. 4

Same as Fig. 3 but under average conditions of τ c = 7.

Fig. 5
Fig. 5

(a) Simulated SNR and (b) the number of laser shots required to obtain a >10 SNR for the urban boundary aerosol model with a Lambertian surface albedo of 0.2. The number of shots and the gate are, respectively, n = 2000 and ΔZ = 1.0 km.

Fig. 6
Fig. 6

Same as Fig. 5 but for the maritime boundary aerosol model with 5-m/s wind velocity 10 m above sea level.

Fig. 7
Fig. 7

(a) Simulated SNR and (b) the number of laser shots required to obtain a >10 SNR for volcanic aerosol observations over a Lambertian surface. The number of shots and the gate are, respectively, n = 2000 and ΔZ = 1.0 km.

Fig. 8
Fig. 8

Same as Fig. 7 except over the ocean surface.

Fig. 9
Fig. 9

Same as Fig. 7 except under the virtual condition of N d = 0.

Fig. 10
Fig. 10

Combinations of laser power (p) and the field of view of the receiver (ϕ R ) to compensate for the influence of the number of equivalent noise dark photons (N d = 0, 8, 16, 24, 32, 40, 48, and 56) at θ0 = 30 (curves L 0L 7) and both θ0 = 30 and 90 deg (points P 0P 7). Other lidar parameters are summarized in Table 1. The p and ϕ R curves that ensure eye safety with a telescope having diameters D of 7, 70, 140, 280, and 560 mm at the ground are also plotted.

Tables (4)

Tables Icon

Table 1 Lidar Parameters of the ELISE (Channel 1) and the Corresponding Parameters

Tables Icon

Table 2 Atmospheric Models and Parametersa

Tables Icon

Table 3 Combination of the Atmospheric Modelsa

Tables Icon

Table 4 Laser Power and Field of View of the Receiver for Points P 0 P 7 in Fig. 10

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

NR=nEQEOArβRΔZR2exp-2 0R αrdrN0,
Nb=nEQEOLsArϕR2π4 ΔλΔth cλ, Δt=2ΔZ/c,
SNR=nNsNs+Nm+NbF+Nd21/2,
Nd=InΔt/Mq,
F=M0.2.
SNR=nNsNs+Nm+Nb+Nd21/2.
SNR  number of shots × vertical resolution1/2,
horizontal resolution km  7.5 km/s × number of shotslaser repetition Hz.
re0 r3nrdr0 r2nrdr,
nr=N2πσexp-ln r-ln r022σ2,
pJ×0.9πR tanϕTmrad2×100025×10-2J/m27 mmD mm2,
ϕR=ϕT+0.05 mrad.

Metrics