Abstract

When the integrated differential absorption lidar (DIAL) technique is used to perform concentration measurements over long distances, the alignment between on and off laser beams becomes important. Here, through analysis of alignment error and of the corresponding differential geometric form factor, the effect of misalignment between off and on lines on performance of integrated concentration measurements by a coaxial DIAL system is considered.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Krieger, Malabar, Fla.).
  2. T. Halldórsson, J. Langerholc, “Geometrical form factors for the lidar function,” Appl. Opt. 17, 240–244 (1978).
    [CrossRef] [PubMed]
  3. J. Harms, W. Lahmann, C. Weitkamp, “Geometrical compression of lidar return signals,” Appl. Opt. 17, 1131–1135 (1978).
    [CrossRef] [PubMed]
  4. J. Harms, “Lidar return signals for coaxial and noncoaxial systems with central obstruction,” Appl. Opt. 18, 1559–1566 (1979).
    [CrossRef] [PubMed]
  5. G. H. Mount, J. W. Harder, “The measurement of tropospheric trace gases by long-path absorption: OH and ancillary gases,” in Proceedings of the International School of Physics “Enrico Fermi,” by G. Fiocco, G. Visconti, eds. (IOS, Press, Ohmsha, Ltd., Tokyo, Japan, 1995), Course CXXIV, “Diagnostic tools in atmospheric physics.”
  6. K. A. Fredriksson, B. Galle, K. Nyström, S. Svanberg, “Mobile lidar system for Environmental probing,” Appl. Opt. 20, 4181–4189 (1981).
    [CrossRef] [PubMed]
  7. N. Menyuk, D. K. Killinger, W. E. DeFeo, “Laser remote sensing of hydrazine, MMH, and UDMH using a differential-absorption CO2 lidar,” Appl. Opt. 21, 2275–2286 (1982).
    [CrossRef] [PubMed]
  8. E. V. Browell, A. F. Carter, S. T. Shipley, R. J. Allen, C. F. Butler, M. N. Mayo, J. H. Siviter, W. M. Hall, “NASA multipurpose airborne DIAL system and measurements of ozone and aerosol profiles,” Appl. Opt. 22, 522–534 (1983).
    [CrossRef] [PubMed]
  9. A. L. Egeback, K. A. Fredriksson, H. M. Hertz, “DIAL techniques for the control of sulfur dioxide emissions,” Appl. Opt. 23, 722–729 (1984).
    [CrossRef] [PubMed]
  10. H. Edner, K. Fredriksson, A. Sunesson, S. Svanberg, L. Unéus, W. Wendt, “Mobile remote sensing system for atmospheric monitoring,” Appl. Opt. 26, 4330–4338 (1987).
    [CrossRef] [PubMed]
  11. I. S. McDermid, S. M. Godin, L. O. Lindqvist, “Ground-based laser DIAL system for long-term measurements of stratospheric ozone,” Appl. Opt. 29, 3603–3612 (1990).
    [CrossRef] [PubMed]
  12. C. Bellecci, G. Caputi, F. De Donato, P. Gaudio, M. Valentini, “CO2 lidar–DIAL for monitoring atmospheric pollutants at the University of Calabria,” Nuovo Cimento C 18, 463–472 (1995).
    [CrossRef]

1995 (1)

C. Bellecci, G. Caputi, F. De Donato, P. Gaudio, M. Valentini, “CO2 lidar–DIAL for monitoring atmospheric pollutants at the University of Calabria,” Nuovo Cimento C 18, 463–472 (1995).
[CrossRef]

1990 (1)

1987 (1)

1984 (1)

1983 (1)

1982 (1)

1981 (1)

1979 (1)

1978 (2)

Allen, R. J.

Bellecci, C.

C. Bellecci, G. Caputi, F. De Donato, P. Gaudio, M. Valentini, “CO2 lidar–DIAL for monitoring atmospheric pollutants at the University of Calabria,” Nuovo Cimento C 18, 463–472 (1995).
[CrossRef]

Browell, E. V.

Butler, C. F.

Caputi, G.

C. Bellecci, G. Caputi, F. De Donato, P. Gaudio, M. Valentini, “CO2 lidar–DIAL for monitoring atmospheric pollutants at the University of Calabria,” Nuovo Cimento C 18, 463–472 (1995).
[CrossRef]

Carter, A. F.

De Donato, F.

C. Bellecci, G. Caputi, F. De Donato, P. Gaudio, M. Valentini, “CO2 lidar–DIAL for monitoring atmospheric pollutants at the University of Calabria,” Nuovo Cimento C 18, 463–472 (1995).
[CrossRef]

DeFeo, W. E.

Edner, H.

Egeback, A. L.

Fredriksson, K.

Fredriksson, K. A.

Galle, B.

Gaudio, P.

C. Bellecci, G. Caputi, F. De Donato, P. Gaudio, M. Valentini, “CO2 lidar–DIAL for monitoring atmospheric pollutants at the University of Calabria,” Nuovo Cimento C 18, 463–472 (1995).
[CrossRef]

Godin, S. M.

Hall, W. M.

Halldórsson, T.

Harder, J. W.

G. H. Mount, J. W. Harder, “The measurement of tropospheric trace gases by long-path absorption: OH and ancillary gases,” in Proceedings of the International School of Physics “Enrico Fermi,” by G. Fiocco, G. Visconti, eds. (IOS, Press, Ohmsha, Ltd., Tokyo, Japan, 1995), Course CXXIV, “Diagnostic tools in atmospheric physics.”

Harms, J.

Hertz, H. M.

Killinger, D. K.

Lahmann, W.

Langerholc, J.

Lindqvist, L. O.

Mayo, M. N.

McDermid, I. S.

Menyuk, N.

Mount, G. H.

G. H. Mount, J. W. Harder, “The measurement of tropospheric trace gases by long-path absorption: OH and ancillary gases,” in Proceedings of the International School of Physics “Enrico Fermi,” by G. Fiocco, G. Visconti, eds. (IOS, Press, Ohmsha, Ltd., Tokyo, Japan, 1995), Course CXXIV, “Diagnostic tools in atmospheric physics.”

Nyström, K.

Shipley, S. T.

Siviter, J. H.

Sunesson, A.

Svanberg, S.

Unéus, L.

Valentini, M.

C. Bellecci, G. Caputi, F. De Donato, P. Gaudio, M. Valentini, “CO2 lidar–DIAL for monitoring atmospheric pollutants at the University of Calabria,” Nuovo Cimento C 18, 463–472 (1995).
[CrossRef]

Weitkamp, C.

Wendt, W.

Appl. Opt. (9)

T. Halldórsson, J. Langerholc, “Geometrical form factors for the lidar function,” Appl. Opt. 17, 240–244 (1978).
[CrossRef] [PubMed]

J. Harms, W. Lahmann, C. Weitkamp, “Geometrical compression of lidar return signals,” Appl. Opt. 17, 1131–1135 (1978).
[CrossRef] [PubMed]

J. Harms, “Lidar return signals for coaxial and noncoaxial systems with central obstruction,” Appl. Opt. 18, 1559–1566 (1979).
[CrossRef] [PubMed]

K. A. Fredriksson, B. Galle, K. Nyström, S. Svanberg, “Mobile lidar system for Environmental probing,” Appl. Opt. 20, 4181–4189 (1981).
[CrossRef] [PubMed]

N. Menyuk, D. K. Killinger, W. E. DeFeo, “Laser remote sensing of hydrazine, MMH, and UDMH using a differential-absorption CO2 lidar,” Appl. Opt. 21, 2275–2286 (1982).
[CrossRef] [PubMed]

E. V. Browell, A. F. Carter, S. T. Shipley, R. J. Allen, C. F. Butler, M. N. Mayo, J. H. Siviter, W. M. Hall, “NASA multipurpose airborne DIAL system and measurements of ozone and aerosol profiles,” Appl. Opt. 22, 522–534 (1983).
[CrossRef] [PubMed]

A. L. Egeback, K. A. Fredriksson, H. M. Hertz, “DIAL techniques for the control of sulfur dioxide emissions,” Appl. Opt. 23, 722–729 (1984).
[CrossRef] [PubMed]

I. S. McDermid, S. M. Godin, L. O. Lindqvist, “Ground-based laser DIAL system for long-term measurements of stratospheric ozone,” Appl. Opt. 29, 3603–3612 (1990).
[CrossRef] [PubMed]

H. Edner, K. Fredriksson, A. Sunesson, S. Svanberg, L. Unéus, W. Wendt, “Mobile remote sensing system for atmospheric monitoring,” Appl. Opt. 26, 4330–4338 (1987).
[CrossRef] [PubMed]

Nuovo Cimento C (1)

C. Bellecci, G. Caputi, F. De Donato, P. Gaudio, M. Valentini, “CO2 lidar–DIAL for monitoring atmospheric pollutants at the University of Calabria,” Nuovo Cimento C 18, 463–472 (1995).
[CrossRef]

Other (2)

R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Krieger, Malabar, Fla.).

G. H. Mount, J. W. Harder, “The measurement of tropospheric trace gases by long-path absorption: OH and ancillary gases,” in Proceedings of the International School of Physics “Enrico Fermi,” by G. Fiocco, G. Visconti, eds. (IOS, Press, Ohmsha, Ltd., Tokyo, Japan, 1995), Course CXXIV, “Diagnostic tools in atmospheric physics.”

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Polar-coordinate system for calculating the geometrical form factor. Abbreviations are defined in text.

Fig. 2
Fig. 2

Schematic of a simple system that comprises two diaphragms for the alignment of a laser beam (solid curve) with the telescope axis (dotted curve).

Fig. 3
Fig. 3

Schematic of a micrometer that varies the inclination of a diffraction grating to change the wavelength.

Fig. 4
Fig. 4

Geometrical form factors that correspond to three laser beams: The upper curve, the middle curve, and lower curve, respectively, relate to 0-mrad (on line), 0.1-mrad (off line), and 1 mrad (off line) alignment errors with respect to the telescope axis.

Tables (1)

Tables Icon

Table 1 A priori Absolute Errors in Concentration Measurements for Water Vapor [Lines 10R18 (off)–10R20 (on)], Ozone [Lines 9P24 (off)–9P14 (on)], Measured by the Integrated DIAL Techniquea

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

ξR1πW2R  ΦR, rFR, rdAR, r,
ξR1πW2R  Φra,rbR, r, ψFR, r, ψrdrdψ,
Φra,rbR, r=0 if r>rTR, Φra,rbR, r1 if rrTR,
rTR=r0+ϕR,
ξR=1πW2R0rTR Φra,rbR, r02π FR, r, ψdψrdr.
FR, r, ψ=FR, r=exp-r2W2R,
WR=W02+ϑ2R21/2,
ξR=2W2R0rTR Φra,rbR, rexp-r2W2Rrdr.
FR, r, ψ=exp-r2+d2R-2rdRcos ψW2R,
dR=|d0-R tan δ|,
ξR=1πW2R0rTR Φra,rbR, r×exp-r2+d2RW2R×02πexp2rdRcos ψW2Rdψrdr.
02πexpx cos ψdψ=2πI0x,
ξR=2W2R0rTR Φra,rbR, r×exp-r2+d2RW2RI02rdRW2Rrdr.
Φra,rbR, r=Ara, rc; rf-Ara, rb; rfπrc2,
C=12ΔαRTlnPoffRTPonRT+lnξonRTξoffRT+lnζonζoff+lnρonρoff+2 0RTk˜offR-k˜onRdR,
ζonζoff,  ρonρoff,  k˜onRk˜offR.
C=12ΔαRTlnPoffRTPonRT+lnξonRTξoffRT.
ξonRTξoffRT,
C=12ΔαRTlnPoffRTPonRT,
ξonRT=ξoffRT+ΔξRT,
C=12ΔαRTlnPoffRTPonRT+ΔCall,
ΔCall=12ΔαRTln1+ΔξRTξoffRT.
ΔCallC=ln1+ΔξRTξoffRTlnPoffRTPonRT.
δ=arctanz/h,
δ=arctansL-arctans-ΔsL.
δ=Δs/L,
δ=arctan12-arctan12-ΔsL.

Metrics