Abstract

In the past decade imaging spectrometers for observation of the Earth were developed to use the complete information of a spectrum as a major tool in the study of physical and biological processes of the Earth. Instead of a few relatively broad spectral bands (line detector), this imager concept provides for the detection of many contiguous narrow spectral bands by applying the technology of matrix detectors. The change from one-dimensional to two-dimensional solid-state imagers makes it necessary to carry out the specific signal-to-noise ratio (SNR) analysis of such detectors. A simulation of maximum and minimum radiances for typical spectral signatures of the Earth (water, vegetation) and the verification of these radiances with modular optoelectronic scanner data provide the means for calculation of electrons generated at the matrix detector. For a hypothetical sensor, water-minimum and vegetation-maximum signals are calculated, and the degradation of the SNR caused by image smear of two-dimensional solid-state imagers is demonstrated.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. Nieke, H. Schwarzer, A. Neumann, G. Zimmermann, “Imaging spaceborne and airborne sensor systems in the beginning of the next century,” in Sensors, Systems, and Next-Generation Satellites, H. Fujisada, ed., Proc. SPIE3221, 581–592 (1997).
    [CrossRef]
  2. G. Zimmermann, A. Neumann, “Imaging spectrometer for ocean remote sensing,” in Proceedings of the International Symposium of the International Academy of Astronautics (IAA), H. P. Röser, R. Sandau, A. Valenzuela, eds. (Walter de Gruyter, Berlin, 1996), pp. 119–122.
  3. C. Hofmann, Die optische Abbildung (Geest & Portig, Leipzig, Germany, 1980), Chap. 3, p. 113.

Hofmann, C.

C. Hofmann, Die optische Abbildung (Geest & Portig, Leipzig, Germany, 1980), Chap. 3, p. 113.

Neumann, A.

J. Nieke, H. Schwarzer, A. Neumann, G. Zimmermann, “Imaging spaceborne and airborne sensor systems in the beginning of the next century,” in Sensors, Systems, and Next-Generation Satellites, H. Fujisada, ed., Proc. SPIE3221, 581–592 (1997).
[CrossRef]

G. Zimmermann, A. Neumann, “Imaging spectrometer for ocean remote sensing,” in Proceedings of the International Symposium of the International Academy of Astronautics (IAA), H. P. Röser, R. Sandau, A. Valenzuela, eds. (Walter de Gruyter, Berlin, 1996), pp. 119–122.

Nieke, J.

J. Nieke, H. Schwarzer, A. Neumann, G. Zimmermann, “Imaging spaceborne and airborne sensor systems in the beginning of the next century,” in Sensors, Systems, and Next-Generation Satellites, H. Fujisada, ed., Proc. SPIE3221, 581–592 (1997).
[CrossRef]

Schwarzer, H.

J. Nieke, H. Schwarzer, A. Neumann, G. Zimmermann, “Imaging spaceborne and airborne sensor systems in the beginning of the next century,” in Sensors, Systems, and Next-Generation Satellites, H. Fujisada, ed., Proc. SPIE3221, 581–592 (1997).
[CrossRef]

Zimmermann, G.

J. Nieke, H. Schwarzer, A. Neumann, G. Zimmermann, “Imaging spaceborne and airborne sensor systems in the beginning of the next century,” in Sensors, Systems, and Next-Generation Satellites, H. Fujisada, ed., Proc. SPIE3221, 581–592 (1997).
[CrossRef]

G. Zimmermann, A. Neumann, “Imaging spectrometer for ocean remote sensing,” in Proceedings of the International Symposium of the International Academy of Astronautics (IAA), H. P. Röser, R. Sandau, A. Valenzuela, eds. (Walter de Gruyter, Berlin, 1996), pp. 119–122.

Other (3)

J. Nieke, H. Schwarzer, A. Neumann, G. Zimmermann, “Imaging spaceborne and airborne sensor systems in the beginning of the next century,” in Sensors, Systems, and Next-Generation Satellites, H. Fujisada, ed., Proc. SPIE3221, 581–592 (1997).
[CrossRef]

G. Zimmermann, A. Neumann, “Imaging spectrometer for ocean remote sensing,” in Proceedings of the International Symposium of the International Academy of Astronautics (IAA), H. P. Röser, R. Sandau, A. Valenzuela, eds. (Walter de Gruyter, Berlin, 1996), pp. 119–122.

C. Hofmann, Die optische Abbildung (Geest & Portig, Leipzig, Germany, 1980), Chap. 3, p. 113.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

TOA radiances for spectral signatures of water and vegetation.

Fig. 2
Fig. 2

Timing for a frame transfer CCD.

Fig. 3
Fig. 3

Number of generated electrons (TOA signal).

Fig. 4
Fig. 4

Optical transmission, quantum efficiency, and grating efficiency for a pushbroom imaging spectrometer.

Fig. 5
Fig. 5

Reduction of SNR as a result of image smear.

Tables (1)

Tables Icon

Table 1 Comparison of Sensor Parameters

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Ssmeari=TtransTintk=i+1n Sk+k=1i-1 Sk,
Edetectorλ=π4 LTOAλTgratingλTobjectiveλF#2,
STOAλ=EdetectorλQEdetectorλAdetectorTintdλhc/λ,
signalnoise=STOAλiNphotonλi2+Nsensor2+Nsmearλk21/2.
Nsensor=Namplifier2+Nquantization2+Ndark21/2,

Metrics