Abstract

A time-domain description of second-harmonic generation and steady-state spatial hole burning is used to model the performance of multimode intracavity-doubled lasers, avoiding some of the approximations implicit in rate equation models. Stable operation is predicted at the points of maximum power extraction, corresponding to passively locked FM laser operation, where the lack of amplitude modulation minimizes the nonlinear output coupling and the longitudinal-mode structure minimizes spatial hole burning. The laser intensity spectrum, predicted by this passive FM laser model, closely matches reported experimental results.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tsunekane, N. Taguchi, H. Inaba, “Elimination of chaos in a multilongitudinal-mode, diode-pumped 6-W continuous wave, intracavity-doubled Nd:YAG laser,” Opt. Lett. 22, 1000–1002 (1997).
    [Crossref] [PubMed]
  2. V. Magni, G. Cerullo, S. DeSilvestri, O. Svelto, L. J. Qian, M. Daniailov, “Intracavity frequency doubling of a cw high-power TEM00 Nd:YLF laser,” Opt. Lett. 18, 2111–2113 (1993).
    [Crossref]
  3. W. L. Nighan, J. Cole, “>6 W of stable 532 nm TEM00 output at 30% efficiency from an intracavity-doubled, diode-pumped multiaxial mode Nd:YVO4 laser,” in Advanced Solid State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), postdeadline paper 4.
  4. T. Baer, “Large-amplitude fluctuations due to longitudinal mode coupling in diode-pumped intracavity-doubled Nd:YAG lasers,” J. Opt. Soc. Am. B 3, 1175–1180 (1986).
    [Crossref]
  5. G. E. James, E. M. Harrell, C. Bracikowski, K. Wiesenfeld, R. Roy, “Elimination of chaos in an intracavity-doubled Nd:YAG laser,” Opt. Lett. 15, 1141–1143 (1990).
    [Crossref] [PubMed]
  6. D. W. Anthon, D. L. Sipes, T. J. Pier, M. R. Ressl, “Intracavity doubling of cw diode-pumped Nd:YAG lasers with KTP,” IEEE J. Quantum Electron. 28, 1148–1157 (1992).
    [Crossref]
  7. J. Maeda, T. Numata, S. Kogosi, “Amplitude squeezing from singly resonant frequency-doubling laser,” IEEE J. Quantum Electron. 33, 1057–1067 (1997).
    [Crossref]
  8. A. Siegman, Lasers (University Science, Mill Valley Calif., 1986).
  9. K. A. Stankov, V. P. Tzolov, M. G. Mirkov, “Frequency-domain analysis of the mode-locking process in a laser with a second-harmonic nonlinear mirror,” Opt. Lett. 16, 639–641 (1991).
    [Crossref] [PubMed]
  10. G. Arfken, Mathematical Methods for Physicists (Academic, New York, 1985).
  11. A. Yariv, Quantum Electronics (Wiley, New York, 1975).
  12. N. Bloembergen, Nonlinear Optics (Benjamin, Reading, Mass., 1965).
  13. M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, Reading, Mass., 1974).

1997 (2)

M. Tsunekane, N. Taguchi, H. Inaba, “Elimination of chaos in a multilongitudinal-mode, diode-pumped 6-W continuous wave, intracavity-doubled Nd:YAG laser,” Opt. Lett. 22, 1000–1002 (1997).
[Crossref] [PubMed]

J. Maeda, T. Numata, S. Kogosi, “Amplitude squeezing from singly resonant frequency-doubling laser,” IEEE J. Quantum Electron. 33, 1057–1067 (1997).
[Crossref]

1993 (1)

1992 (1)

D. W. Anthon, D. L. Sipes, T. J. Pier, M. R. Ressl, “Intracavity doubling of cw diode-pumped Nd:YAG lasers with KTP,” IEEE J. Quantum Electron. 28, 1148–1157 (1992).
[Crossref]

1991 (1)

1990 (1)

1986 (1)

Anthon, D. W.

D. W. Anthon, D. L. Sipes, T. J. Pier, M. R. Ressl, “Intracavity doubling of cw diode-pumped Nd:YAG lasers with KTP,” IEEE J. Quantum Electron. 28, 1148–1157 (1992).
[Crossref]

Arfken, G.

G. Arfken, Mathematical Methods for Physicists (Academic, New York, 1985).

Baer, T.

Bloembergen, N.

N. Bloembergen, Nonlinear Optics (Benjamin, Reading, Mass., 1965).

Bracikowski, C.

Cerullo, G.

Cole, J.

W. L. Nighan, J. Cole, “>6 W of stable 532 nm TEM00 output at 30% efficiency from an intracavity-doubled, diode-pumped multiaxial mode Nd:YVO4 laser,” in Advanced Solid State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), postdeadline paper 4.

Daniailov, M.

DeSilvestri, S.

Harrell, E. M.

Inaba, H.

James, G. E.

Kogosi, S.

J. Maeda, T. Numata, S. Kogosi, “Amplitude squeezing from singly resonant frequency-doubling laser,” IEEE J. Quantum Electron. 33, 1057–1067 (1997).
[Crossref]

Lamb, W. E.

M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, Reading, Mass., 1974).

Maeda, J.

J. Maeda, T. Numata, S. Kogosi, “Amplitude squeezing from singly resonant frequency-doubling laser,” IEEE J. Quantum Electron. 33, 1057–1067 (1997).
[Crossref]

Magni, V.

Mirkov, M. G.

Nighan, W. L.

W. L. Nighan, J. Cole, “>6 W of stable 532 nm TEM00 output at 30% efficiency from an intracavity-doubled, diode-pumped multiaxial mode Nd:YVO4 laser,” in Advanced Solid State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), postdeadline paper 4.

Numata, T.

J. Maeda, T. Numata, S. Kogosi, “Amplitude squeezing from singly resonant frequency-doubling laser,” IEEE J. Quantum Electron. 33, 1057–1067 (1997).
[Crossref]

Pier, T. J.

D. W. Anthon, D. L. Sipes, T. J. Pier, M. R. Ressl, “Intracavity doubling of cw diode-pumped Nd:YAG lasers with KTP,” IEEE J. Quantum Electron. 28, 1148–1157 (1992).
[Crossref]

Qian, L. J.

Ressl, M. R.

D. W. Anthon, D. L. Sipes, T. J. Pier, M. R. Ressl, “Intracavity doubling of cw diode-pumped Nd:YAG lasers with KTP,” IEEE J. Quantum Electron. 28, 1148–1157 (1992).
[Crossref]

Roy, R.

Sargent, M.

M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, Reading, Mass., 1974).

Scully, M. O.

M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, Reading, Mass., 1974).

Siegman, A.

A. Siegman, Lasers (University Science, Mill Valley Calif., 1986).

Sipes, D. L.

D. W. Anthon, D. L. Sipes, T. J. Pier, M. R. Ressl, “Intracavity doubling of cw diode-pumped Nd:YAG lasers with KTP,” IEEE J. Quantum Electron. 28, 1148–1157 (1992).
[Crossref]

Stankov, K. A.

Svelto, O.

Taguchi, N.

Tsunekane, M.

Tzolov, V. P.

Wiesenfeld, K.

Yariv, A.

A. Yariv, Quantum Electronics (Wiley, New York, 1975).

IEEE J. Quantum Electron. (2)

D. W. Anthon, D. L. Sipes, T. J. Pier, M. R. Ressl, “Intracavity doubling of cw diode-pumped Nd:YAG lasers with KTP,” IEEE J. Quantum Electron. 28, 1148–1157 (1992).
[Crossref]

J. Maeda, T. Numata, S. Kogosi, “Amplitude squeezing from singly resonant frequency-doubling laser,” IEEE J. Quantum Electron. 33, 1057–1067 (1997).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Lett. (4)

Other (6)

G. Arfken, Mathematical Methods for Physicists (Academic, New York, 1985).

A. Yariv, Quantum Electronics (Wiley, New York, 1975).

N. Bloembergen, Nonlinear Optics (Benjamin, Reading, Mass., 1965).

M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, Reading, Mass., 1974).

W. L. Nighan, J. Cole, “>6 W of stable 532 nm TEM00 output at 30% efficiency from an intracavity-doubled, diode-pumped multiaxial mode Nd:YVO4 laser,” in Advanced Solid State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), postdeadline paper 4.

A. Siegman, Lasers (University Science, Mill Valley Calif., 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Measured intensity spectra from Ref. 1 compared with calculated spectra. To facilitate visual comparison, the calculated spectra were convolved with Lorentzians to match the experimental spectral resolution.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Atexpiω0t+c.c.=m=1 Am expimπct/L+c.c.,
|At|2=m=1 |Am|2,
m=1 Am expimπct/L=q0m=1 Jm-m0uexpimπct/L.
At2=1/deffm=1 Hm expimπct/L,
m=1 |Hm|2=deff2|At|4.
m=1 Hm expimπct/L=deffq02m=1 jm-2m02u×expimπct/L.
|Am|2=|Jm-m0u|2j=1 |Aj|2,
|Hm|2=|Jm-2m02u|2j=1 |Hj|2.
1/deff2m=1 |Hm|2=j=1 |Aj|22+j=1|Aj|22-j=1|Aj|4+m=1j,kajkm cosθjkm,
Iz=|At-z/cexpiωt-z/c+At+z/cexp[iωt+z/c|2.
Iz=2qt2+2 sin2ωz/cqt-z/cqt+z/c×sinϕt-z/c-ϕt+z/c+2 cos2ωz/c×qt-z/cqt+z/c×cosϕt-z/c-ϕt+z/c,
Iz=2q021+cos2ωz/cJ02u sinπz/L.
u=u0/2 sinπz0/L.

Metrics