Abstract

A technique is proposed for the extraction of precise values of field-dependent absorption coefficient α and refractive index n from photocurrent and transmittance measurements of optical modulator structures. The technique uses approximate results of α and n extracted from a simplified device as the initial input into an iterative procedure that utilizes the consistency between α and n to obtain successively better estimates of these parameters. The technique was applied to results that were measured experimentally, and we verified the accuracy by using synthetic data. Errors caused by measurement inaccuracy are also investigated. It is shown that the absorption coefficient has a modest sensitivity whereas the refractive index is insensitive to these errors.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Yan, R. J. Simes, L. A. Coldren, “Analysis and design of surface-normal Fabry–Perot electrooptic modulators,” IEEE J. Quantum Electron. 25, 2272–2280 (1989).
    [CrossRef]
  2. K. K. Law, J. L. Merz, L. A. Coldren, “Superlattice surface-normal asymmetric Fabry–Perot reflection modulators: optical modulation and switching,” IEEE J. Quantum Electron. 29, 727–740 (1993).
    [CrossRef]
  3. J. Maserjian, P. O. Andersson, B. R. Hancock, J. M. Iannelli, S. T. Eng, F. J. Grunthaner, K.-K. Law, P. O. Holtz, R. J. Simes, L. A. Coldren, A. C. Gossard, J. L. Merz, “Optically addressed spatial light modulators by MBE-grown nipi MQW structures,” Appl. Opt. 28, 4801–4807 (1989).
    [CrossRef] [PubMed]
  4. O. S. Heavens, Optical Properties of Thin Solid Films (Dover, New York, 1991).
  5. D. S. Gerber, G. N. Maracas, “A simple method for extraction of multiple quantum well absorption coefficient from reflectance and transmittance measurements,” IEEE J. Quantum Electron. 29, 2589–2595 (1993).
    [CrossRef]
  6. J. F. Siliquini, M. G. Xu, G. A. Umana Membreno, J. M. Dell, “Methods of measuring the electric-field-dependent absorption coefficient in quantum confined structures,” in Proceedings of the Conference on Optoelectronic and Microelectronic Materials and Devices (IEEE, New York, 1997), pp. 293–296.
  7. B. Pezeshki, S. M. Lord, T. B. Boykin, J. S. Harris, “GaAs/AlAs quantum wells for electroabsorption modulators,” Appl. Phys. Lett. 60, 2779–2781 (1992).
    [CrossRef]
  8. P. J. Stevens, M. Whitehead, G. Parry, K. Woodbridge, “Computer modeling of the electric field dependent absorption spectrum of multiple quantum well material,” IEEE J. Quantum Electron. 24, 2007–2015 (1988).
    [CrossRef]
  9. E. Yablonovitch, T. Gmitter, J. P. Harbison, R. Bhat, “Extreme selectivity in the lift-off epitaxial GaAs films,” Appl. Phys. Lett. 51, 2222–2224 (1987).
    [CrossRef]
  10. E. Yablonovitch, E. Kapon, T. J. Gmitter, C. P. Yun, R. Bhat, “Double heterostructure GaAs/AlGaAs thin film diode lasers on glass substrates,” IEEE Photon. Technol. Lett. 1, 41–42 (1989).
    [CrossRef]
  11. E. Yablonovitch, K. Kash, T. J. Gmitter, L. T. Florez, J. P. Harbison, E. Colas, “Regrowth of GaAs quantum wells on GaAs liftoff films ‘Van Der Waals bonded’ to silicon substrates,” Electron. Lett. 25, 171–172 (1989).
    [CrossRef]
  12. E. Yablonovitch, D. M. Hwang, T. J. Gmitter, L. T. Florez, J. P. Harbison, “Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56, 2419–2421 (1990).
    [CrossRef]
  13. G. W. Yoffe, J. M. Dell, “Multiple quantum well reflection modulator using a lifted-off GaAs/AlGaAs film bonded to gold on silicon,” Electron. Lett. 27, 557–558 (1991).
    [CrossRef]
  14. D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265–275 (1984).
    [CrossRef]
  15. F. Stern, “Dispersion of the index of refraction near the absorption edge of semiconductors,” Phys. Rev. A 133, 1653–1664 (1964).
    [CrossRef]
  16. J. S. Weiner, D. A. B. Miller, D. S. Chemla, “Quadratic electro-optic effect due to the quantum-confined Stark effect in quantum wells,” Appl. Phys. Lett. 50, 842–844 (1987).
    [CrossRef]
  17. G. D. Boyd, G. Livescu, “Electro-absorption and refraction in Fabry–Perot quantum well modulators: a general discussion,” Opt. Quantum Electron. 24, S147–S165 (1992).
    [CrossRef]
  18. J. M. Dell, M. J. Joyce, B. F. Usher, G. W. Yoffe, P. C. Kemeny, “Unusually strong excitonic absorption in molecular-beam-epitaxy-grown, chemically lifted GaAs thin film,” Phys. Rev. B 42, 9496–9500 (1990).
    [CrossRef]

1993 (2)

D. S. Gerber, G. N. Maracas, “A simple method for extraction of multiple quantum well absorption coefficient from reflectance and transmittance measurements,” IEEE J. Quantum Electron. 29, 2589–2595 (1993).
[CrossRef]

K. K. Law, J. L. Merz, L. A. Coldren, “Superlattice surface-normal asymmetric Fabry–Perot reflection modulators: optical modulation and switching,” IEEE J. Quantum Electron. 29, 727–740 (1993).
[CrossRef]

1992 (2)

B. Pezeshki, S. M. Lord, T. B. Boykin, J. S. Harris, “GaAs/AlAs quantum wells for electroabsorption modulators,” Appl. Phys. Lett. 60, 2779–2781 (1992).
[CrossRef]

G. D. Boyd, G. Livescu, “Electro-absorption and refraction in Fabry–Perot quantum well modulators: a general discussion,” Opt. Quantum Electron. 24, S147–S165 (1992).
[CrossRef]

1991 (1)

G. W. Yoffe, J. M. Dell, “Multiple quantum well reflection modulator using a lifted-off GaAs/AlGaAs film bonded to gold on silicon,” Electron. Lett. 27, 557–558 (1991).
[CrossRef]

1990 (2)

E. Yablonovitch, D. M. Hwang, T. J. Gmitter, L. T. Florez, J. P. Harbison, “Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56, 2419–2421 (1990).
[CrossRef]

J. M. Dell, M. J. Joyce, B. F. Usher, G. W. Yoffe, P. C. Kemeny, “Unusually strong excitonic absorption in molecular-beam-epitaxy-grown, chemically lifted GaAs thin film,” Phys. Rev. B 42, 9496–9500 (1990).
[CrossRef]

1989 (4)

R. H. Yan, R. J. Simes, L. A. Coldren, “Analysis and design of surface-normal Fabry–Perot electrooptic modulators,” IEEE J. Quantum Electron. 25, 2272–2280 (1989).
[CrossRef]

J. Maserjian, P. O. Andersson, B. R. Hancock, J. M. Iannelli, S. T. Eng, F. J. Grunthaner, K.-K. Law, P. O. Holtz, R. J. Simes, L. A. Coldren, A. C. Gossard, J. L. Merz, “Optically addressed spatial light modulators by MBE-grown nipi MQW structures,” Appl. Opt. 28, 4801–4807 (1989).
[CrossRef] [PubMed]

E. Yablonovitch, E. Kapon, T. J. Gmitter, C. P. Yun, R. Bhat, “Double heterostructure GaAs/AlGaAs thin film diode lasers on glass substrates,” IEEE Photon. Technol. Lett. 1, 41–42 (1989).
[CrossRef]

E. Yablonovitch, K. Kash, T. J. Gmitter, L. T. Florez, J. P. Harbison, E. Colas, “Regrowth of GaAs quantum wells on GaAs liftoff films ‘Van Der Waals bonded’ to silicon substrates,” Electron. Lett. 25, 171–172 (1989).
[CrossRef]

1988 (1)

P. J. Stevens, M. Whitehead, G. Parry, K. Woodbridge, “Computer modeling of the electric field dependent absorption spectrum of multiple quantum well material,” IEEE J. Quantum Electron. 24, 2007–2015 (1988).
[CrossRef]

1987 (2)

E. Yablonovitch, T. Gmitter, J. P. Harbison, R. Bhat, “Extreme selectivity in the lift-off epitaxial GaAs films,” Appl. Phys. Lett. 51, 2222–2224 (1987).
[CrossRef]

J. S. Weiner, D. A. B. Miller, D. S. Chemla, “Quadratic electro-optic effect due to the quantum-confined Stark effect in quantum wells,” Appl. Phys. Lett. 50, 842–844 (1987).
[CrossRef]

1984 (1)

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265–275 (1984).
[CrossRef]

1964 (1)

F. Stern, “Dispersion of the index of refraction near the absorption edge of semiconductors,” Phys. Rev. A 133, 1653–1664 (1964).
[CrossRef]

Andersson, P. O.

Bhat, R.

E. Yablonovitch, E. Kapon, T. J. Gmitter, C. P. Yun, R. Bhat, “Double heterostructure GaAs/AlGaAs thin film diode lasers on glass substrates,” IEEE Photon. Technol. Lett. 1, 41–42 (1989).
[CrossRef]

E. Yablonovitch, T. Gmitter, J. P. Harbison, R. Bhat, “Extreme selectivity in the lift-off epitaxial GaAs films,” Appl. Phys. Lett. 51, 2222–2224 (1987).
[CrossRef]

Boyd, G. D.

G. D. Boyd, G. Livescu, “Electro-absorption and refraction in Fabry–Perot quantum well modulators: a general discussion,” Opt. Quantum Electron. 24, S147–S165 (1992).
[CrossRef]

Boykin, T. B.

B. Pezeshki, S. M. Lord, T. B. Boykin, J. S. Harris, “GaAs/AlAs quantum wells for electroabsorption modulators,” Appl. Phys. Lett. 60, 2779–2781 (1992).
[CrossRef]

Chemla, D. S.

J. S. Weiner, D. A. B. Miller, D. S. Chemla, “Quadratic electro-optic effect due to the quantum-confined Stark effect in quantum wells,” Appl. Phys. Lett. 50, 842–844 (1987).
[CrossRef]

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265–275 (1984).
[CrossRef]

Colas, E.

E. Yablonovitch, K. Kash, T. J. Gmitter, L. T. Florez, J. P. Harbison, E. Colas, “Regrowth of GaAs quantum wells on GaAs liftoff films ‘Van Der Waals bonded’ to silicon substrates,” Electron. Lett. 25, 171–172 (1989).
[CrossRef]

Coldren, L. A.

K. K. Law, J. L. Merz, L. A. Coldren, “Superlattice surface-normal asymmetric Fabry–Perot reflection modulators: optical modulation and switching,” IEEE J. Quantum Electron. 29, 727–740 (1993).
[CrossRef]

R. H. Yan, R. J. Simes, L. A. Coldren, “Analysis and design of surface-normal Fabry–Perot electrooptic modulators,” IEEE J. Quantum Electron. 25, 2272–2280 (1989).
[CrossRef]

J. Maserjian, P. O. Andersson, B. R. Hancock, J. M. Iannelli, S. T. Eng, F. J. Grunthaner, K.-K. Law, P. O. Holtz, R. J. Simes, L. A. Coldren, A. C. Gossard, J. L. Merz, “Optically addressed spatial light modulators by MBE-grown nipi MQW structures,” Appl. Opt. 28, 4801–4807 (1989).
[CrossRef] [PubMed]

Dell, J. M.

G. W. Yoffe, J. M. Dell, “Multiple quantum well reflection modulator using a lifted-off GaAs/AlGaAs film bonded to gold on silicon,” Electron. Lett. 27, 557–558 (1991).
[CrossRef]

J. M. Dell, M. J. Joyce, B. F. Usher, G. W. Yoffe, P. C. Kemeny, “Unusually strong excitonic absorption in molecular-beam-epitaxy-grown, chemically lifted GaAs thin film,” Phys. Rev. B 42, 9496–9500 (1990).
[CrossRef]

J. F. Siliquini, M. G. Xu, G. A. Umana Membreno, J. M. Dell, “Methods of measuring the electric-field-dependent absorption coefficient in quantum confined structures,” in Proceedings of the Conference on Optoelectronic and Microelectronic Materials and Devices (IEEE, New York, 1997), pp. 293–296.

Eng, S. T.

Florez, L. T.

E. Yablonovitch, D. M. Hwang, T. J. Gmitter, L. T. Florez, J. P. Harbison, “Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56, 2419–2421 (1990).
[CrossRef]

E. Yablonovitch, K. Kash, T. J. Gmitter, L. T. Florez, J. P. Harbison, E. Colas, “Regrowth of GaAs quantum wells on GaAs liftoff films ‘Van Der Waals bonded’ to silicon substrates,” Electron. Lett. 25, 171–172 (1989).
[CrossRef]

Gerber, D. S.

D. S. Gerber, G. N. Maracas, “A simple method for extraction of multiple quantum well absorption coefficient from reflectance and transmittance measurements,” IEEE J. Quantum Electron. 29, 2589–2595 (1993).
[CrossRef]

Gmitter, T.

E. Yablonovitch, T. Gmitter, J. P. Harbison, R. Bhat, “Extreme selectivity in the lift-off epitaxial GaAs films,” Appl. Phys. Lett. 51, 2222–2224 (1987).
[CrossRef]

Gmitter, T. J.

E. Yablonovitch, D. M. Hwang, T. J. Gmitter, L. T. Florez, J. P. Harbison, “Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56, 2419–2421 (1990).
[CrossRef]

E. Yablonovitch, K. Kash, T. J. Gmitter, L. T. Florez, J. P. Harbison, E. Colas, “Regrowth of GaAs quantum wells on GaAs liftoff films ‘Van Der Waals bonded’ to silicon substrates,” Electron. Lett. 25, 171–172 (1989).
[CrossRef]

E. Yablonovitch, E. Kapon, T. J. Gmitter, C. P. Yun, R. Bhat, “Double heterostructure GaAs/AlGaAs thin film diode lasers on glass substrates,” IEEE Photon. Technol. Lett. 1, 41–42 (1989).
[CrossRef]

Gossard, A. C.

J. Maserjian, P. O. Andersson, B. R. Hancock, J. M. Iannelli, S. T. Eng, F. J. Grunthaner, K.-K. Law, P. O. Holtz, R. J. Simes, L. A. Coldren, A. C. Gossard, J. L. Merz, “Optically addressed spatial light modulators by MBE-grown nipi MQW structures,” Appl. Opt. 28, 4801–4807 (1989).
[CrossRef] [PubMed]

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265–275 (1984).
[CrossRef]

Grunthaner, F. J.

Hancock, B. R.

Harbison, J. P.

E. Yablonovitch, D. M. Hwang, T. J. Gmitter, L. T. Florez, J. P. Harbison, “Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56, 2419–2421 (1990).
[CrossRef]

E. Yablonovitch, K. Kash, T. J. Gmitter, L. T. Florez, J. P. Harbison, E. Colas, “Regrowth of GaAs quantum wells on GaAs liftoff films ‘Van Der Waals bonded’ to silicon substrates,” Electron. Lett. 25, 171–172 (1989).
[CrossRef]

E. Yablonovitch, T. Gmitter, J. P. Harbison, R. Bhat, “Extreme selectivity in the lift-off epitaxial GaAs films,” Appl. Phys. Lett. 51, 2222–2224 (1987).
[CrossRef]

Harris, J. S.

B. Pezeshki, S. M. Lord, T. B. Boykin, J. S. Harris, “GaAs/AlAs quantum wells for electroabsorption modulators,” Appl. Phys. Lett. 60, 2779–2781 (1992).
[CrossRef]

Heavens, O. S.

O. S. Heavens, Optical Properties of Thin Solid Films (Dover, New York, 1991).

Holtz, P. O.

Hwang, D. M.

E. Yablonovitch, D. M. Hwang, T. J. Gmitter, L. T. Florez, J. P. Harbison, “Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56, 2419–2421 (1990).
[CrossRef]

Iannelli, J. M.

Joyce, M. J.

J. M. Dell, M. J. Joyce, B. F. Usher, G. W. Yoffe, P. C. Kemeny, “Unusually strong excitonic absorption in molecular-beam-epitaxy-grown, chemically lifted GaAs thin film,” Phys. Rev. B 42, 9496–9500 (1990).
[CrossRef]

Kapon, E.

E. Yablonovitch, E. Kapon, T. J. Gmitter, C. P. Yun, R. Bhat, “Double heterostructure GaAs/AlGaAs thin film diode lasers on glass substrates,” IEEE Photon. Technol. Lett. 1, 41–42 (1989).
[CrossRef]

Kash, K.

E. Yablonovitch, K. Kash, T. J. Gmitter, L. T. Florez, J. P. Harbison, E. Colas, “Regrowth of GaAs quantum wells on GaAs liftoff films ‘Van Der Waals bonded’ to silicon substrates,” Electron. Lett. 25, 171–172 (1989).
[CrossRef]

Kemeny, P. C.

J. M. Dell, M. J. Joyce, B. F. Usher, G. W. Yoffe, P. C. Kemeny, “Unusually strong excitonic absorption in molecular-beam-epitaxy-grown, chemically lifted GaAs thin film,” Phys. Rev. B 42, 9496–9500 (1990).
[CrossRef]

Law, K. K.

K. K. Law, J. L. Merz, L. A. Coldren, “Superlattice surface-normal asymmetric Fabry–Perot reflection modulators: optical modulation and switching,” IEEE J. Quantum Electron. 29, 727–740 (1993).
[CrossRef]

Law, K.-K.

Livescu, G.

G. D. Boyd, G. Livescu, “Electro-absorption and refraction in Fabry–Perot quantum well modulators: a general discussion,” Opt. Quantum Electron. 24, S147–S165 (1992).
[CrossRef]

Lord, S. M.

B. Pezeshki, S. M. Lord, T. B. Boykin, J. S. Harris, “GaAs/AlAs quantum wells for electroabsorption modulators,” Appl. Phys. Lett. 60, 2779–2781 (1992).
[CrossRef]

Maracas, G. N.

D. S. Gerber, G. N. Maracas, “A simple method for extraction of multiple quantum well absorption coefficient from reflectance and transmittance measurements,” IEEE J. Quantum Electron. 29, 2589–2595 (1993).
[CrossRef]

Maserjian, J.

Merz, J. L.

Miller, D. A. B.

J. S. Weiner, D. A. B. Miller, D. S. Chemla, “Quadratic electro-optic effect due to the quantum-confined Stark effect in quantum wells,” Appl. Phys. Lett. 50, 842–844 (1987).
[CrossRef]

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265–275 (1984).
[CrossRef]

Parry, G.

P. J. Stevens, M. Whitehead, G. Parry, K. Woodbridge, “Computer modeling of the electric field dependent absorption spectrum of multiple quantum well material,” IEEE J. Quantum Electron. 24, 2007–2015 (1988).
[CrossRef]

Pezeshki, B.

B. Pezeshki, S. M. Lord, T. B. Boykin, J. S. Harris, “GaAs/AlAs quantum wells for electroabsorption modulators,” Appl. Phys. Lett. 60, 2779–2781 (1992).
[CrossRef]

Siliquini, J. F.

J. F. Siliquini, M. G. Xu, G. A. Umana Membreno, J. M. Dell, “Methods of measuring the electric-field-dependent absorption coefficient in quantum confined structures,” in Proceedings of the Conference on Optoelectronic and Microelectronic Materials and Devices (IEEE, New York, 1997), pp. 293–296.

Simes, R. J.

Smith, P. W.

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265–275 (1984).
[CrossRef]

Stern, F.

F. Stern, “Dispersion of the index of refraction near the absorption edge of semiconductors,” Phys. Rev. A 133, 1653–1664 (1964).
[CrossRef]

Stevens, P. J.

P. J. Stevens, M. Whitehead, G. Parry, K. Woodbridge, “Computer modeling of the electric field dependent absorption spectrum of multiple quantum well material,” IEEE J. Quantum Electron. 24, 2007–2015 (1988).
[CrossRef]

Umana Membreno, G. A.

J. F. Siliquini, M. G. Xu, G. A. Umana Membreno, J. M. Dell, “Methods of measuring the electric-field-dependent absorption coefficient in quantum confined structures,” in Proceedings of the Conference on Optoelectronic and Microelectronic Materials and Devices (IEEE, New York, 1997), pp. 293–296.

Usher, B. F.

J. M. Dell, M. J. Joyce, B. F. Usher, G. W. Yoffe, P. C. Kemeny, “Unusually strong excitonic absorption in molecular-beam-epitaxy-grown, chemically lifted GaAs thin film,” Phys. Rev. B 42, 9496–9500 (1990).
[CrossRef]

Weiner, J. S.

J. S. Weiner, D. A. B. Miller, D. S. Chemla, “Quadratic electro-optic effect due to the quantum-confined Stark effect in quantum wells,” Appl. Phys. Lett. 50, 842–844 (1987).
[CrossRef]

Whitehead, M.

P. J. Stevens, M. Whitehead, G. Parry, K. Woodbridge, “Computer modeling of the electric field dependent absorption spectrum of multiple quantum well material,” IEEE J. Quantum Electron. 24, 2007–2015 (1988).
[CrossRef]

Wiegmann, W.

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265–275 (1984).
[CrossRef]

Woodbridge, K.

P. J. Stevens, M. Whitehead, G. Parry, K. Woodbridge, “Computer modeling of the electric field dependent absorption spectrum of multiple quantum well material,” IEEE J. Quantum Electron. 24, 2007–2015 (1988).
[CrossRef]

Xu, M. G.

J. F. Siliquini, M. G. Xu, G. A. Umana Membreno, J. M. Dell, “Methods of measuring the electric-field-dependent absorption coefficient in quantum confined structures,” in Proceedings of the Conference on Optoelectronic and Microelectronic Materials and Devices (IEEE, New York, 1997), pp. 293–296.

Yablonovitch, E.

E. Yablonovitch, D. M. Hwang, T. J. Gmitter, L. T. Florez, J. P. Harbison, “Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56, 2419–2421 (1990).
[CrossRef]

E. Yablonovitch, K. Kash, T. J. Gmitter, L. T. Florez, J. P. Harbison, E. Colas, “Regrowth of GaAs quantum wells on GaAs liftoff films ‘Van Der Waals bonded’ to silicon substrates,” Electron. Lett. 25, 171–172 (1989).
[CrossRef]

E. Yablonovitch, E. Kapon, T. J. Gmitter, C. P. Yun, R. Bhat, “Double heterostructure GaAs/AlGaAs thin film diode lasers on glass substrates,” IEEE Photon. Technol. Lett. 1, 41–42 (1989).
[CrossRef]

E. Yablonovitch, T. Gmitter, J. P. Harbison, R. Bhat, “Extreme selectivity in the lift-off epitaxial GaAs films,” Appl. Phys. Lett. 51, 2222–2224 (1987).
[CrossRef]

Yan, R. H.

R. H. Yan, R. J. Simes, L. A. Coldren, “Analysis and design of surface-normal Fabry–Perot electrooptic modulators,” IEEE J. Quantum Electron. 25, 2272–2280 (1989).
[CrossRef]

Yoffe, G. W.

G. W. Yoffe, J. M. Dell, “Multiple quantum well reflection modulator using a lifted-off GaAs/AlGaAs film bonded to gold on silicon,” Electron. Lett. 27, 557–558 (1991).
[CrossRef]

J. M. Dell, M. J. Joyce, B. F. Usher, G. W. Yoffe, P. C. Kemeny, “Unusually strong excitonic absorption in molecular-beam-epitaxy-grown, chemically lifted GaAs thin film,” Phys. Rev. B 42, 9496–9500 (1990).
[CrossRef]

Yun, C. P.

E. Yablonovitch, E. Kapon, T. J. Gmitter, C. P. Yun, R. Bhat, “Double heterostructure GaAs/AlGaAs thin film diode lasers on glass substrates,” IEEE Photon. Technol. Lett. 1, 41–42 (1989).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

B. Pezeshki, S. M. Lord, T. B. Boykin, J. S. Harris, “GaAs/AlAs quantum wells for electroabsorption modulators,” Appl. Phys. Lett. 60, 2779–2781 (1992).
[CrossRef]

E. Yablonovitch, D. M. Hwang, T. J. Gmitter, L. T. Florez, J. P. Harbison, “Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56, 2419–2421 (1990).
[CrossRef]

E. Yablonovitch, T. Gmitter, J. P. Harbison, R. Bhat, “Extreme selectivity in the lift-off epitaxial GaAs films,” Appl. Phys. Lett. 51, 2222–2224 (1987).
[CrossRef]

J. S. Weiner, D. A. B. Miller, D. S. Chemla, “Quadratic electro-optic effect due to the quantum-confined Stark effect in quantum wells,” Appl. Phys. Lett. 50, 842–844 (1987).
[CrossRef]

Electron. Lett. (2)

G. W. Yoffe, J. M. Dell, “Multiple quantum well reflection modulator using a lifted-off GaAs/AlGaAs film bonded to gold on silicon,” Electron. Lett. 27, 557–558 (1991).
[CrossRef]

E. Yablonovitch, K. Kash, T. J. Gmitter, L. T. Florez, J. P. Harbison, E. Colas, “Regrowth of GaAs quantum wells on GaAs liftoff films ‘Van Der Waals bonded’ to silicon substrates,” Electron. Lett. 25, 171–172 (1989).
[CrossRef]

IEEE J. Quantum Electron. (5)

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265–275 (1984).
[CrossRef]

P. J. Stevens, M. Whitehead, G. Parry, K. Woodbridge, “Computer modeling of the electric field dependent absorption spectrum of multiple quantum well material,” IEEE J. Quantum Electron. 24, 2007–2015 (1988).
[CrossRef]

D. S. Gerber, G. N. Maracas, “A simple method for extraction of multiple quantum well absorption coefficient from reflectance and transmittance measurements,” IEEE J. Quantum Electron. 29, 2589–2595 (1993).
[CrossRef]

R. H. Yan, R. J. Simes, L. A. Coldren, “Analysis and design of surface-normal Fabry–Perot electrooptic modulators,” IEEE J. Quantum Electron. 25, 2272–2280 (1989).
[CrossRef]

K. K. Law, J. L. Merz, L. A. Coldren, “Superlattice surface-normal asymmetric Fabry–Perot reflection modulators: optical modulation and switching,” IEEE J. Quantum Electron. 29, 727–740 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

E. Yablonovitch, E. Kapon, T. J. Gmitter, C. P. Yun, R. Bhat, “Double heterostructure GaAs/AlGaAs thin film diode lasers on glass substrates,” IEEE Photon. Technol. Lett. 1, 41–42 (1989).
[CrossRef]

Opt. Quantum Electron. (1)

G. D. Boyd, G. Livescu, “Electro-absorption and refraction in Fabry–Perot quantum well modulators: a general discussion,” Opt. Quantum Electron. 24, S147–S165 (1992).
[CrossRef]

Phys. Rev. A (1)

F. Stern, “Dispersion of the index of refraction near the absorption edge of semiconductors,” Phys. Rev. A 133, 1653–1664 (1964).
[CrossRef]

Phys. Rev. B (1)

J. M. Dell, M. J. Joyce, B. F. Usher, G. W. Yoffe, P. C. Kemeny, “Unusually strong excitonic absorption in molecular-beam-epitaxy-grown, chemically lifted GaAs thin film,” Phys. Rev. B 42, 9496–9500 (1990).
[CrossRef]

Other (2)

O. S. Heavens, Optical Properties of Thin Solid Films (Dover, New York, 1991).

J. F. Siliquini, M. G. Xu, G. A. Umana Membreno, J. M. Dell, “Methods of measuring the electric-field-dependent absorption coefficient in quantum confined structures,” in Proceedings of the Conference on Optoelectronic and Microelectronic Materials and Devices (IEEE, New York, 1997), pp. 293–296.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the approximate three-layer structure.

Fig. 2
Fig. 2

Measured absorption coefficients and refractive index as a function of wavelength at different biases by TI measurement: solid curves, approximate results; dashed curves, optimal results; (a) absorption coefficient for the whole structure; (b) absorption coefficient for the well-part-only of the structure; dotted curve, GaAs; (c) measured refractive index for the whole structure; dotted curve: GaAs; (d) calculated wavelength-dependent model error that is due to assumptions.

Fig. 3
Fig. 3

Flow chart of the computer-aided error analysis and error elimination procedure. K-K relation refers to the Kramers–Kronig relation.

Fig. 4
Fig. 4

Verification of the reliability of the treatment to extract the absorption coefficient and the refractive index: circles, original data; dashed curves, approximate results; solid curves, extracted optimal results; (a) absorption coefficient; (b) refractive index.

Fig. 5
Fig. 5

Sensitivity of α and n that is due to ±4% measurement deviation. The solid curve referring to the left-hand axis is the extracted optimal value. The dashed curves referring to the left-hand axis are the fluctuation limit envelopes. The solid curves referring to the right-hand axis are the relative percentage of the limit error. (a) Absorption coefficient and (b) refractive index.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

R=R1-R2 exp-αd2+4R1R2 exp-αdsin2 δ1-R1R2 exp-αd2+4R1R2 exp-αdsin2 δ,
T=1-R11-R2exp-αd1-R1R2 exp-αd2+4R1R2 exp-αdsin2 δ,
A=1-R11-R2 exp-2αd-1-R2exp-αd1-R1R2 exp-αd2+4R1R2 exp-αdsin2 δ,
Iph=ηVλehc PoA=IPo,
α=-1dln×-B+11-R2+[B+121-R22+4R2]1/22R2,
B=AT=hcIηVλT.
nλ, E-1=λ22π2P 0αλ, Edλλ2-λ2,

Metrics