Abstract

The true image area that can be used for recording microscopic objects in hybrid holographic microscopy can be increased by elimination of the conjugate image and the zero-order image. We therefore added two shutters and one phase modulator to the electro-optical holographic recording system so that we could change the recording parameters and evaluate four methods of eliminating the conjugate image and the zero-order image. We found that the methods that use only the phase modulator require the recording of fewer holograms than do the methods that use the shutters and also provide reconstructed images that are less noisy.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948); Proc. R. Soc. London Ser. A 197, 454–487 (1949).
  2. E. Leith, J. Upatnieks, “Microscopy by wavefront reconstruction,” J. Opt. Soc. Am. 55, 569–570 (1965).
    [CrossRef]
  3. E. Leith, J. Upatnieks, “Hologram microscopy and lens aberration compensation by the use of holograms,” J. Opt. Soc. Am. 55, 595 (1965) (abstract).
  4. Y. Takaki, H. Ohzu, “Fast numerical reconstruction technique for high-resolution hybrid holographic microscopy,” Appl. Opt. 38, 2204–2211 (1999).
    [CrossRef]
  5. L. Onural, P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124–1132 (1987).
    [CrossRef]
  6. T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338–1344 (1995).
    [CrossRef]
  7. T.-C. Poon, M. H. Wu, K. Shinoda, Y. Suzuki, “Optical scanning holography,” Proc. IEEE 84, 753–764 (1996).
    [CrossRef]
  8. B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, M. H. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 22, 1506–1508 (1997).
    [CrossRef]
  9. I. Yamaguchi, T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
    [CrossRef] [PubMed]
  10. T. H. Barnes, K. Matsumoto, T. Eiju, K. Matsuda, N. Ooyama, “Phase only liquid crystal light modulator and its application in the Fourier plane of optical correlation systems,” in Optical Pattern Recognition II, H. Caulfield, ed., SPIE1134, 204–208 (1989).
  11. J. Amako, T. Sonehara, “Kinoform using an electrically controlled liquid-crystal spatial light modulator,” Appl. Opt. 30, 4622–4628 (1991).
    [CrossRef] [PubMed]

1999

1997

1996

T.-C. Poon, M. H. Wu, K. Shinoda, Y. Suzuki, “Optical scanning holography,” Proc. IEEE 84, 753–764 (1996).
[CrossRef]

1995

T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338–1344 (1995).
[CrossRef]

1991

1987

L. Onural, P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124–1132 (1987).
[CrossRef]

1965

E. Leith, J. Upatnieks, “Hologram microscopy and lens aberration compensation by the use of holograms,” J. Opt. Soc. Am. 55, 595 (1965) (abstract).

E. Leith, J. Upatnieks, “Microscopy by wavefront reconstruction,” J. Opt. Soc. Am. 55, 569–570 (1965).
[CrossRef]

1948

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948); Proc. R. Soc. London Ser. A 197, 454–487 (1949).

Amako, J.

Barnes, T. H.

T. H. Barnes, K. Matsumoto, T. Eiju, K. Matsuda, N. Ooyama, “Phase only liquid crystal light modulator and its application in the Fourier plane of optical correlation systems,” in Optical Pattern Recognition II, H. Caulfield, ed., SPIE1134, 204–208 (1989).

Doh, K. B.

T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338–1344 (1995).
[CrossRef]

Eiju, T.

T. H. Barnes, K. Matsumoto, T. Eiju, K. Matsuda, N. Ooyama, “Phase only liquid crystal light modulator and its application in the Fourier plane of optical correlation systems,” in Optical Pattern Recognition II, H. Caulfield, ed., SPIE1134, 204–208 (1989).

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948); Proc. R. Soc. London Ser. A 197, 454–487 (1949).

Indebetouw, G.

Leith, E.

E. Leith, J. Upatnieks, “Microscopy by wavefront reconstruction,” J. Opt. Soc. Am. 55, 569–570 (1965).
[CrossRef]

E. Leith, J. Upatnieks, “Hologram microscopy and lens aberration compensation by the use of holograms,” J. Opt. Soc. Am. 55, 595 (1965) (abstract).

Matsuda, K.

T. H. Barnes, K. Matsumoto, T. Eiju, K. Matsuda, N. Ooyama, “Phase only liquid crystal light modulator and its application in the Fourier plane of optical correlation systems,” in Optical Pattern Recognition II, H. Caulfield, ed., SPIE1134, 204–208 (1989).

Matsumoto, K.

T. H. Barnes, K. Matsumoto, T. Eiju, K. Matsuda, N. Ooyama, “Phase only liquid crystal light modulator and its application in the Fourier plane of optical correlation systems,” in Optical Pattern Recognition II, H. Caulfield, ed., SPIE1134, 204–208 (1989).

Ohzu, H.

Onural, L.

L. Onural, P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124–1132 (1987).
[CrossRef]

Ooyama, N.

T. H. Barnes, K. Matsumoto, T. Eiju, K. Matsuda, N. Ooyama, “Phase only liquid crystal light modulator and its application in the Fourier plane of optical correlation systems,” in Optical Pattern Recognition II, H. Caulfield, ed., SPIE1134, 204–208 (1989).

Poon, T.-C.

B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, M. H. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 22, 1506–1508 (1997).
[CrossRef]

T.-C. Poon, M. H. Wu, K. Shinoda, Y. Suzuki, “Optical scanning holography,” Proc. IEEE 84, 753–764 (1996).
[CrossRef]

T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338–1344 (1995).
[CrossRef]

Schilling, B. W.

B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, M. H. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 22, 1506–1508 (1997).
[CrossRef]

T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338–1344 (1995).
[CrossRef]

Scott, P. D.

L. Onural, P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124–1132 (1987).
[CrossRef]

Shinoda, K.

B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, M. H. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 22, 1506–1508 (1997).
[CrossRef]

T.-C. Poon, M. H. Wu, K. Shinoda, Y. Suzuki, “Optical scanning holography,” Proc. IEEE 84, 753–764 (1996).
[CrossRef]

T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338–1344 (1995).
[CrossRef]

Sonehara, T.

Storrie, B.

Suzuki, Y.

B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, M. H. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 22, 1506–1508 (1997).
[CrossRef]

T.-C. Poon, M. H. Wu, K. Shinoda, Y. Suzuki, “Optical scanning holography,” Proc. IEEE 84, 753–764 (1996).
[CrossRef]

T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338–1344 (1995).
[CrossRef]

Takaki, Y.

Upatnieks, J.

E. Leith, J. Upatnieks, “Microscopy by wavefront reconstruction,” J. Opt. Soc. Am. 55, 569–570 (1965).
[CrossRef]

E. Leith, J. Upatnieks, “Hologram microscopy and lens aberration compensation by the use of holograms,” J. Opt. Soc. Am. 55, 595 (1965) (abstract).

Wu, M. H.

B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, M. H. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 22, 1506–1508 (1997).
[CrossRef]

T.-C. Poon, M. H. Wu, K. Shinoda, Y. Suzuki, “Optical scanning holography,” Proc. IEEE 84, 753–764 (1996).
[CrossRef]

T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338–1344 (1995).
[CrossRef]

Yamaguchi, I.

Zhang, T.

Appl. Opt.

J. Opt. Soc. Am.

E. Leith, J. Upatnieks, “Microscopy by wavefront reconstruction,” J. Opt. Soc. Am. 55, 569–570 (1965).
[CrossRef]

E. Leith, J. Upatnieks, “Hologram microscopy and lens aberration compensation by the use of holograms,” J. Opt. Soc. Am. 55, 595 (1965) (abstract).

Nature

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948); Proc. R. Soc. London Ser. A 197, 454–487 (1949).

Opt. Eng.

L. Onural, P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124–1132 (1987).
[CrossRef]

T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338–1344 (1995).
[CrossRef]

Opt. Lett.

Proc. IEEE

T.-C. Poon, M. H. Wu, K. Shinoda, Y. Suzuki, “Optical scanning holography,” Proc. IEEE 84, 753–764 (1996).
[CrossRef]

Other

T. H. Barnes, K. Matsumoto, T. Eiju, K. Matsuda, N. Ooyama, “Phase only liquid crystal light modulator and its application in the Fourier plane of optical correlation systems,” in Optical Pattern Recognition II, H. Caulfield, ed., SPIE1134, 204–208 (1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Numerical reconstruction obtained in the off-axis hybrid holographic microscopy. The true, zero-order, and conjugate images appear on the right-hand side, at the center, and on the left-hand side, respectively. The objects recorded were latex particles 1 µm in diameter.

Fig. 2
Fig. 2

Electro-optical recording system for the hybrid holographic microscopy that can eliminate the conjugate image and the zero-order image from the reconstruction.

Fig. 3
Fig. 3

Arrangement of the object beam and the reference beam on the focal plane of the objective lens: (a) elimination of the zero-order image, (b) elimination of the conjugate image and the zero-order image.

Fig. 4
Fig. 4

Reconstructed images from which the zero-order image was eliminated by use of (a) method A or (b) method B.

Fig. 5
Fig. 5

Reconstructed images from which both the conjugate image and the zero-order image were eliminated by use of (a) method C or (b) method D.

Fig. 6
Fig. 6

Magnified true images reconstructed with methods A–D: (a)–(d) intensity distributions, (e)–(h) corresponding phase distributions. Each image is 50 µm square.

Fig. 7
Fig. 7

Noise distributions contained in the reconstructed images obtained by computer simulations: (a), (b), (c), and (d) are the noise intensity distributions corresponding to methods A, B, C, and D, respectively.

Tables (2)

Tables Icon

Table 1 Theoretical Standard Deviations of the Noises after Use of Elimination Methods

Tables Icon

Table 2 Standard Deviations (Computer Simulation Results) of the Noises after the Elimination Methods and in the Reconstruction

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

I=|O|2+|R|2+OR*+O*R,
Io=|O|2,
Ir=|R|2.
I-Io-Ir=OR*+O*R.
Ipθ=|O|2+|R|2+expiθOR*+exp-iθO*R.
I-Ipθ=1-expiθOR*+1-exp-iθO*R.
I-Ipπ/2=OR*+O*R.
I-Io-Ir-expiθIpθ-Io-Ir=1-expi2θOR*.
Ipθ1=|O|2+|R|2+expiθ1OR*+exp-iθ1O*R,
Ipθ2=|O|2+|R|2+expiθ2OR*+exp-iθ2O*R.
expiθ1Ipθ1-exp-iθ2Ipθ2+expiθ1+exp-iθ2I=expiθ1-1/exp-iθ1-1]-expiθ2-1/exp-iθ2-1OR*,
nx, y=i cinix, y,
σ=i|ci|2σi21/2.
σ=i|ci|2σ01/2.
OR*=1/2I-i/2Ipπ/2-exp-iπ/4/2Io-exp-iπ/4/2Ir.
OR*=1/3I-expiπ/3/3Ip2π/3-exp-iπ/3/3Ip-2π/3.

Metrics