A. H. Hielscher, R. E. Alcouffe, R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues,” Phys. Med. Biol. 43, 1285–1302 (1998).

[CrossRef]
[PubMed]

A. Singh, K. P. Gopinathan, “Confocal microscopy—a powerful technique for biological research,” Curr. Sci. 74, 841–851 (1998).

C. G. A. Hoelen, F. F. M. Demul, R. Pongers, A. Dekker, “Three-dimensional photoacoustic imaging of blood vessels in tissue,” Opt. Lett. 23, 648–650 (1998).

[CrossRef]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).

[CrossRef]
[PubMed]

A. Sassaroli, C. Blumetti, F. Martelli, L. Alianelli, D. Contini, A. Ismaelli, G. Zaccanti, “Monte Carlo procedure for investigating light propagation and imaging of highly scattering media,” Appl. Opt. 37, 7392–7400 (1997).

[CrossRef]

M. Schweiger, S. R. Arridge, “The finite-element method for the propagation of light in scattering media—frequency domain case,” Med. Phys. 24, 895–902 (1997).

[CrossRef]
[PubMed]

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “CONV—convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comp. Meth. Prog. Biomed. 54, 141–150 (1997).

[CrossRef]

C. Sturesson, S. Andersson-Engels, “Mathematical modeling of dynamic cooling and pre-heating, used to increase the depth of selective damage to blood vessels in laser treatment of port wine stains,” Phys. Med. Biol. 41, 413–428 (1996).

[CrossRef]
[PubMed]

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “MCML—Monte Carlo modeling of photon transport in multi-layered tissues,” Comp. Meth. Prog. Biomed. 47, 131–146 (1995). The MCML/CONV software package may be downloaded from URL: http://people.tamu.edu/~lwang .

[CrossRef]

L. T. Perelman, J. Wu, I. Itzkan, M. S. Feld, “Photon migration in turbid media using path integrals,” Phys. Rev. Lett. 72, 1341–1344 (1994).

[CrossRef]
[PubMed]

A. H. Gandjbakhche, G. H. Weiss, R. F. Bonner, R. Nossal, “Photon path-length distributions for transmission through optically turbid slabs,” Phys. Rev. E 48, 810–818 (1993).

[CrossRef]

S. T. Flock, B. C. Wilson, D. R. Wyman, M. S. Patterson, “Monte-Carlo modeling of light-propagation in highly scattering tissues I: model predictions and comparison with diffusion-theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).

[CrossRef]
[PubMed]

B. C. Wilson, G. A. Adam, “Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1983).

[CrossRef]
[PubMed]

B. C. Wilson, G. A. Adam, “Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1983).

[CrossRef]
[PubMed]

A. H. Hielscher, R. E. Alcouffe, R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues,” Phys. Med. Biol. 43, 1285–1302 (1998).

[CrossRef]
[PubMed]

C. Sturesson, S. Andersson-Engels, “Mathematical modeling of dynamic cooling and pre-heating, used to increase the depth of selective damage to blood vessels in laser treatment of port wine stains,” Phys. Med. Biol. 41, 413–428 (1996).

[CrossRef]
[PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).

[CrossRef]
[PubMed]

M. Schweiger, S. R. Arridge, “The finite-element method for the propagation of light in scattering media—frequency domain case,” Med. Phys. 24, 895–902 (1997).

[CrossRef]
[PubMed]

A. H. Hielscher, R. E. Alcouffe, R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues,” Phys. Med. Biol. 43, 1285–1302 (1998).

[CrossRef]
[PubMed]

A. H. Gandjbakhche, G. H. Weiss, R. F. Bonner, R. Nossal, “Photon path-length distributions for transmission through optically turbid slabs,” Phys. Rev. E 48, 810–818 (1993).

[CrossRef]

L. T. Perelman, J. Wu, I. Itzkan, M. S. Feld, “Photon migration in turbid media using path integrals,” Phys. Rev. Lett. 72, 1341–1344 (1994).

[CrossRef]
[PubMed]

S. T. Flock, B. C. Wilson, D. R. Wyman, M. S. Patterson, “Monte-Carlo modeling of light-propagation in highly scattering tissues I: model predictions and comparison with diffusion-theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).

[CrossRef]
[PubMed]

A. H. Gandjbakhche, G. H. Weiss, R. F. Bonner, R. Nossal, “Photon path-length distributions for transmission through optically turbid slabs,” Phys. Rev. E 48, 810–818 (1993).

[CrossRef]

A. Singh, K. P. Gopinathan, “Confocal microscopy—a powerful technique for biological research,” Curr. Sci. 74, 841–851 (1998).

A. H. Hielscher, R. E. Alcouffe, R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues,” Phys. Med. Biol. 43, 1285–1302 (1998).

[CrossRef]
[PubMed]

L. T. Perelman, J. Wu, I. Itzkan, M. S. Feld, “Photon migration in turbid media using path integrals,” Phys. Rev. Lett. 72, 1341–1344 (1994).

[CrossRef]
[PubMed]

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “CONV—convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comp. Meth. Prog. Biomed. 54, 141–150 (1997).

[CrossRef]

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “MCML—Monte Carlo modeling of photon transport in multi-layered tissues,” Comp. Meth. Prog. Biomed. 47, 131–146 (1995). The MCML/CONV software package may be downloaded from URL: http://people.tamu.edu/~lwang .

[CrossRef]

S. A. Prahl, M. Keijzer, S. L. Jacques, A. J. Welch, “A Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, G. J. Muller, D. H. Sliney, eds. Vol. IS5 of SPIE Institute Series (SPIE, Bellingham, Wash., 1989), pp. 102–111.

S. L. Jacques, L.-H. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical Thermal Response of Laser Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds., (Plenum, New York, 1995), pp. 73–100.

[CrossRef]

S. A. Prahl, M. Keijzer, S. L. Jacques, A. J. Welch, “A Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, G. J. Muller, D. H. Sliney, eds. Vol. IS5 of SPIE Institute Series (SPIE, Bellingham, Wash., 1989), pp. 102–111.

I. Lux, L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations (CRC Press, Boca Raton, Fla., 1991).

I. Lux, L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations (CRC Press, Boca Raton, Fla., 1991).

A. H. Gandjbakhche, G. H. Weiss, R. F. Bonner, R. Nossal, “Photon path-length distributions for transmission through optically turbid slabs,” Phys. Rev. E 48, 810–818 (1993).

[CrossRef]

S. T. Flock, B. C. Wilson, D. R. Wyman, M. S. Patterson, “Monte-Carlo modeling of light-propagation in highly scattering tissues I: model predictions and comparison with diffusion-theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).

[CrossRef]
[PubMed]

L. T. Perelman, J. Wu, I. Itzkan, M. S. Feld, “Photon migration in turbid media using path integrals,” Phys. Rev. Lett. 72, 1341–1344 (1994).

[CrossRef]
[PubMed]

S. A. Prahl, M. Keijzer, S. L. Jacques, A. J. Welch, “A Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, G. J. Muller, D. H. Sliney, eds. Vol. IS5 of SPIE Institute Series (SPIE, Bellingham, Wash., 1989), pp. 102–111.

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).

[CrossRef]
[PubMed]

M. Schweiger, S. R. Arridge, “The finite-element method for the propagation of light in scattering media—frequency domain case,” Med. Phys. 24, 895–902 (1997).

[CrossRef]
[PubMed]

A. Singh, K. P. Gopinathan, “Confocal microscopy—a powerful technique for biological research,” Curr. Sci. 74, 841–851 (1998).

C. Sturesson, S. Andersson-Engels, “Mathematical modeling of dynamic cooling and pre-heating, used to increase the depth of selective damage to blood vessels in laser treatment of port wine stains,” Phys. Med. Biol. 41, 413–428 (1996).

[CrossRef]
[PubMed]

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “CONV—convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comp. Meth. Prog. Biomed. 54, 141–150 (1997).

[CrossRef]

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “MCML—Monte Carlo modeling of photon transport in multi-layered tissues,” Comp. Meth. Prog. Biomed. 47, 131–146 (1995). The MCML/CONV software package may be downloaded from URL: http://people.tamu.edu/~lwang .

[CrossRef]

S. L. Jacques, L.-H. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical Thermal Response of Laser Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds., (Plenum, New York, 1995), pp. 73–100.

[CrossRef]

A. H. Gandjbakhche, G. H. Weiss, R. F. Bonner, R. Nossal, “Photon path-length distributions for transmission through optically turbid slabs,” Phys. Rev. E 48, 810–818 (1993).

[CrossRef]

S. A. Prahl, M. Keijzer, S. L. Jacques, A. J. Welch, “A Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, G. J. Muller, D. H. Sliney, eds. Vol. IS5 of SPIE Institute Series (SPIE, Bellingham, Wash., 1989), pp. 102–111.

S. T. Flock, B. C. Wilson, D. R. Wyman, M. S. Patterson, “Monte-Carlo modeling of light-propagation in highly scattering tissues I: model predictions and comparison with diffusion-theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).

[CrossRef]
[PubMed]

B. C. Wilson, G. A. Adam, “Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1983).

[CrossRef]
[PubMed]

L. T. Perelman, J. Wu, I. Itzkan, M. S. Feld, “Photon migration in turbid media using path integrals,” Phys. Rev. Lett. 72, 1341–1344 (1994).

[CrossRef]
[PubMed]

S. T. Flock, B. C. Wilson, D. R. Wyman, M. S. Patterson, “Monte-Carlo modeling of light-propagation in highly scattering tissues I: model predictions and comparison with diffusion-theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).

[CrossRef]
[PubMed]

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “CONV—convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comp. Meth. Prog. Biomed. 54, 141–150 (1997).

[CrossRef]

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “MCML—Monte Carlo modeling of photon transport in multi-layered tissues,” Comp. Meth. Prog. Biomed. 47, 131–146 (1995). The MCML/CONV software package may be downloaded from URL: http://people.tamu.edu/~lwang .

[CrossRef]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).

[CrossRef]
[PubMed]

A. Sassaroli, C. Blumetti, F. Martelli, L. Alianelli, D. Contini, A. Ismaelli, G. Zaccanti, “Monte Carlo procedure for investigating light propagation and imaging of highly scattering media,” Appl. Opt. 37, 7392–7400 (1997).

[CrossRef]

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “MCML—Monte Carlo modeling of photon transport in multi-layered tissues,” Comp. Meth. Prog. Biomed. 47, 131–146 (1995). The MCML/CONV software package may be downloaded from URL: http://people.tamu.edu/~lwang .

[CrossRef]

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “CONV—convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comp. Meth. Prog. Biomed. 54, 141–150 (1997).

[CrossRef]

A. Singh, K. P. Gopinathan, “Confocal microscopy—a powerful technique for biological research,” Curr. Sci. 74, 841–851 (1998).

S. T. Flock, B. C. Wilson, D. R. Wyman, M. S. Patterson, “Monte-Carlo modeling of light-propagation in highly scattering tissues I: model predictions and comparison with diffusion-theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).

[CrossRef]
[PubMed]

B. C. Wilson, G. A. Adam, “Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1983).

[CrossRef]
[PubMed]

M. Schweiger, S. R. Arridge, “The finite-element method for the propagation of light in scattering media—frequency domain case,” Med. Phys. 24, 895–902 (1997).

[CrossRef]
[PubMed]

A. H. Hielscher, R. E. Alcouffe, R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues,” Phys. Med. Biol. 43, 1285–1302 (1998).

[CrossRef]
[PubMed]

C. Sturesson, S. Andersson-Engels, “Mathematical modeling of dynamic cooling and pre-heating, used to increase the depth of selective damage to blood vessels in laser treatment of port wine stains,” Phys. Med. Biol. 41, 413–428 (1996).

[CrossRef]
[PubMed]

A. H. Gandjbakhche, G. H. Weiss, R. F. Bonner, R. Nossal, “Photon path-length distributions for transmission through optically turbid slabs,” Phys. Rev. E 48, 810–818 (1993).

[CrossRef]

L. T. Perelman, J. Wu, I. Itzkan, M. S. Feld, “Photon migration in turbid media using path integrals,” Phys. Rev. Lett. 72, 1341–1344 (1994).

[CrossRef]
[PubMed]

S. A. Prahl, M. Keijzer, S. L. Jacques, A. J. Welch, “A Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, G. J. Muller, D. H. Sliney, eds. Vol. IS5 of SPIE Institute Series (SPIE, Bellingham, Wash., 1989), pp. 102–111.

S. L. Jacques, L.-H. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical Thermal Response of Laser Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds., (Plenum, New York, 1995), pp. 73–100.

[CrossRef]

I. Lux, L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations (CRC Press, Boca Raton, Fla., 1991).