Abstract

Local and superficial near-infrared (NIR) optical-property characterization of turbid biological tissues can be achieved by measurement of spatially resolved diffuse reflectance at small source–detector separations (<1.4 mm). However, in these conditions the inverse problem, i.e., calculation of localized absorption and the reduced scattering coefficients, is necessarily sensitive to the scattering phase function. This effect can be minimized if a new parameter of the phase function γ, which depends on the first and the second moments of the phase function, is known. If γ is unknown, an estimation of this parameter can be obtained by the measurement, but the uncertainty of the absorption coefficient is increased. A spatially resolved reflectance probe employing multiple detector fibers (0.3–1.4 mm from the source) is described. Monte Carlo simulations are used to determine γ, the reduced scattering and absorption coefficients from reflectance data. Probe performance is assessed by measurements on phantoms, the optical properties of which were measured by other techniques [frequency domain photon migration (FDPM) and spatially resolved transmittance]. Our results show that changes in the absorption coefficient, the reduced scattering coefficient, and γ can be measured to within ±0.005 mm-1, ±0.05 mm-1, and ±0.2, respectively. In vivo measurements performed intraoperatively on a human skull and brain are reported for four NIR wavelengths (674, 811, 849, 956 nm) when the spatially resolved probe and FDPM are used. The spatially resolved probe shows optimum measurement sensitivity in the measurement volume immediately beneath the probe (typically 1 mm3 in tissues), whereas FDPM typically samples larger regions of tissues. Optical-property values for human skull, white matter, scar tissue, optic nerve, and tumors are reported that show distinct absorption and scattering differences between structures and a dependence on the phase-function parameter γ.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W.-F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
    [CrossRef]
  2. J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt. 36, 10–20 (1997).
    [CrossRef] [PubMed]
  3. B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Noninvasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
    [CrossRef]
  4. J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350–357 (1995).
    [CrossRef] [PubMed]
  5. T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
    [CrossRef] [PubMed]
  6. R. Bays, G. Wagnières, D. Robert, D. Braichotte, J.-F. Savary, P. Monnier, H. van den Bergh, “Clinical determination of tissue optical properties by endoscopic spatially resolved reflectometry,” Appl. Opt. 35, 1756–1766 (1996).
    [CrossRef] [PubMed]
  7. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996).
    [CrossRef] [PubMed]
  8. S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, E. Gratton, “Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light-emitting-diode based technique,” Appl. Opt. 33, 5204–5213 (1994).
    [CrossRef] [PubMed]
  9. G. Mitic, J. Kölzer, J. Otto, E. Plies, G. Sölkner, W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Appl. Opt. 33, 6699–6710 (1994).
    [CrossRef] [PubMed]
  10. G. Kumar, J. M. Schmitt, “Optimal probe geometry for near-infrared spectroscopy of biological tissue,” Appl. Opt. 36, 2286–2293 (1997).
    [CrossRef] [PubMed]
  11. J. R. Mourant, I. J. Bigio, D. A. Jack, T. M. Johnson, H. D. Miller, “Measuring absorption coefficients in small volumes of highly scattering media: source-detector separations for which path lengths do not depend on scattering properties,” Appl. Opt. 36, 5655–5661 (1997).
    [CrossRef] [PubMed]
  12. F. Bevilacqua, “Optical characterization of biological tissues in vitro and in vivo,” Ph.D. dissertation 1781 (Swiss Federal Institute of Technology, Lausanne, 1998).
  13. F. Bevilacqua, C. Depeursinge, “Monte Carlo study of diffuse reflectance at source–detector separations close to one transport mean free path,” submitted to J. Opt. Soc. Am. A.
  14. F. P. Bolin, L. E. Preuss, R. C. Taylor, R. J. Ference, “Refractive index of some mammalian tissues using a fiber optic cladding method,” Appl. Opt. 28, 2297–2303 (1989).
    [CrossRef] [PubMed]
  15. D. R. Wyman, M. S. Patterson, B. C. Wilson, “Similarity relations for anisotropic scattering in Monte Carlo simulations of deeply penetrating neutral particles,” J. Comput. Phys. 81, 137–150 (1989).
    [CrossRef]
  16. H. C. van de Hulst, Multiple Light Scattering, Tables, Formulas, and Applications (Academic, London, 1980).
  17. S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependance of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).
  18. R. Marchesini, A. Bertoni, S. Andreola, E. Melloni, A. E. Sichirollo, “Extinction and absorption coefficients and scattering phase functions of human tissues in vitro,” Appl. Opt. 28, 2318–2324 (1989).
    [CrossRef] [PubMed]
  19. P. van der Zee, M. Essenpreis, D. T. Delpy, “Optical properties of brain tissue,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 454–465 (1993).
    [CrossRef]
  20. S. T. Flock, B. C. Wilson, M. S. Patterson, “Total attenuation coefficient and scattering phase functions of tissues and phantom materials at 633 nm,” Med. Phys. 14, 835–841 (1987).
    [CrossRef] [PubMed]
  21. R. Graaff, A. C. M. Dassel, M. H. Koelink, F. F. M. de Mul, J. G. Aarnoudse, W. G. Zijlstra, “Optical properties of human dermis in vitro and in vivo,” Appl. Opt. 32, 435–447 (1993).
    [CrossRef] [PubMed]
  22. P. Marquet, F. Bevilacqua, C. Depeursinge, E. B. de Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled-device array measurement, part I: comparison between experiments and simulations,” Opt. Eng. 34, 2055–2063 (1995).
    [CrossRef]
  23. F. Bevilacqua, P. Marquet, C. Depeursinge, E. B. de Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled-device array measurement, part II: measurements on biological tissues,” Opt. Eng. 34, 2064–2069 (1995).
    [CrossRef]
  24. G. H. Weiss, R. Nossal, R. F. Bonner, “Statistics of penetration depth of photons reemitted from irradiated tissue,” J. Mod. Opt. 36, 349–359 (1989).
    [CrossRef]
  25. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  26. J. R. A. Bolt, J. J. ten Bosch, “Method for measuring position-dependent volume reflection,” Appl. Opt. 32, 4641–4645 (1993).
    [CrossRef] [PubMed]
  27. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, Martin J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
    [CrossRef] [PubMed]
  28. S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. L. Jacques, Y. Hefetz, “Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measurements,” Appl. Opt. 31, 3509–3517 (1992).
    [CrossRef] [PubMed]
  29. F. Bevilacqua, P. Marquet, O. Coquoz, C. Depeursinge, “Role of tissue structure in photon migration through breast tissues,” Appl. Opt. 36, 44–51 (1997).
    [CrossRef] [PubMed]
  30. Protocol and informed consent were obtained from the patient undergoing neurological surgery for an intra-axial brain tumor as demonstrated on conventional neuroimaging. The protocol and informed consent documents were approved by the University of California Irvine review board (HS 96-495).
  31. M. Cope, “The development of a near infrared spectroscopy system and its application for noninvasive monitoring of cerebral blood and tissue oxygenation in the newborn infant,” Ph.D. dissertation (University College London, London, 1991).
  32. K. M. Hebeda, T. Menovsky, J. F. Beek, J. G. Wolbers, M. J. C. van Gemert, “Light propagation in the brain depends on nerve fiber orientation,” Neurosurgery 35, 720–722 (1994).
    [CrossRef] [PubMed]
  33. D. R. Sandeman, T. Mills, S. G. Bown, “Enhancement of light penetration by white matter tracts in the normal mouse brain,” Lasers Med. Sci. 3, 47 (1986).
  34. J. G. Wolbers, W. Kamphorst, H. J. M. Sterenborg, M. J. C. van Gemert, W. Hogervorst, “Dose response of rat brains interstitially irradiated by argon light,” Lasers Med. Sci. 2, 255–260 (1987).
    [CrossRef]
  35. M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, “Measurements of the optical properties of the skull in the wavelength range 650–950 nm,” Phy. Med. Biol. 38, 503–510 (1993).
    [CrossRef]

1997

1996

1995

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350–357 (1995).
[CrossRef] [PubMed]

P. Marquet, F. Bevilacqua, C. Depeursinge, E. B. de Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled-device array measurement, part I: comparison between experiments and simulations,” Opt. Eng. 34, 2055–2063 (1995).
[CrossRef]

F. Bevilacqua, P. Marquet, C. Depeursinge, E. B. de Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled-device array measurement, part II: measurements on biological tissues,” Opt. Eng. 34, 2064–2069 (1995).
[CrossRef]

1994

1993

1992

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. L. Jacques, Y. Hefetz, “Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measurements,” Appl. Opt. 31, 3509–3517 (1992).
[CrossRef] [PubMed]

1991

1990

W.-F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

1989

D. R. Wyman, M. S. Patterson, B. C. Wilson, “Similarity relations for anisotropic scattering in Monte Carlo simulations of deeply penetrating neutral particles,” J. Comput. Phys. 81, 137–150 (1989).
[CrossRef]

G. H. Weiss, R. Nossal, R. F. Bonner, “Statistics of penetration depth of photons reemitted from irradiated tissue,” J. Mod. Opt. 36, 349–359 (1989).
[CrossRef]

F. P. Bolin, L. E. Preuss, R. C. Taylor, R. J. Ference, “Refractive index of some mammalian tissues using a fiber optic cladding method,” Appl. Opt. 28, 2297–2303 (1989).
[CrossRef] [PubMed]

R. Marchesini, A. Bertoni, S. Andreola, E. Melloni, A. E. Sichirollo, “Extinction and absorption coefficients and scattering phase functions of human tissues in vitro,” Appl. Opt. 28, 2318–2324 (1989).
[CrossRef] [PubMed]

1987

J. G. Wolbers, W. Kamphorst, H. J. M. Sterenborg, M. J. C. van Gemert, W. Hogervorst, “Dose response of rat brains interstitially irradiated by argon light,” Lasers Med. Sci. 2, 255–260 (1987).
[CrossRef]

S. T. Flock, B. C. Wilson, M. S. Patterson, “Total attenuation coefficient and scattering phase functions of tissues and phantom materials at 633 nm,” Med. Phys. 14, 835–841 (1987).
[CrossRef] [PubMed]

S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependance of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).

1986

D. R. Sandeman, T. Mills, S. G. Bown, “Enhancement of light penetration by white matter tracts in the normal mouse brain,” Lasers Med. Sci. 3, 47 (1986).

Aarnoudse, J. G.

Alter, C. A.

S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependance of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).

Anderson, E. R.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Noninvasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt. 36, 10–20 (1997).
[CrossRef] [PubMed]

Andreola, S.

Barbieri, B.

Bays, R.

Beek, J. F.

K. M. Hebeda, T. Menovsky, J. F. Beek, J. G. Wolbers, M. J. C. van Gemert, “Light propagation in the brain depends on nerve fiber orientation,” Neurosurgery 35, 720–722 (1994).
[CrossRef] [PubMed]

Bertoni, A.

Bevilacqua, F.

F. Bevilacqua, P. Marquet, O. Coquoz, C. Depeursinge, “Role of tissue structure in photon migration through breast tissues,” Appl. Opt. 36, 44–51 (1997).
[CrossRef] [PubMed]

F. Bevilacqua, P. Marquet, C. Depeursinge, E. B. de Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled-device array measurement, part II: measurements on biological tissues,” Opt. Eng. 34, 2064–2069 (1995).
[CrossRef]

P. Marquet, F. Bevilacqua, C. Depeursinge, E. B. de Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled-device array measurement, part I: comparison between experiments and simulations,” Opt. Eng. 34, 2055–2063 (1995).
[CrossRef]

F. Bevilacqua, “Optical characterization of biological tissues in vitro and in vivo,” Ph.D. dissertation 1781 (Swiss Federal Institute of Technology, Lausanne, 1998).

F. Bevilacqua, C. Depeursinge, “Monte Carlo study of diffuse reflectance at source–detector separations close to one transport mean free path,” submitted to J. Opt. Soc. Am. A.

Bigio, I. J.

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Bolin, F. P.

Bolt, J. R. A.

Bonner, R. F.

G. H. Weiss, R. Nossal, R. F. Bonner, “Statistics of penetration depth of photons reemitted from irradiated tissue,” J. Mod. Opt. 36, 349–359 (1989).
[CrossRef]

Bown, S. G.

D. R. Sandeman, T. Mills, S. G. Bown, “Enhancement of light penetration by white matter tracts in the normal mouse brain,” Lasers Med. Sci. 3, 47 (1986).

Boyer, J.

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350–357 (1995).
[CrossRef] [PubMed]

Braichotte, D.

Brenner, M.

Butler, J.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Noninvasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Cahn, M.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Noninvasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Cheong, W.-F.

W.-F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Conn, R. L.

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350–357 (1995).
[CrossRef] [PubMed]

Cope, M.

M. Cope, “The development of a near infrared spectroscopy system and its application for noninvasive monitoring of cerebral blood and tissue oxygenation in the newborn infant,” Ph.D. dissertation (University College London, London, 1991).

Coquoz, O.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Noninvasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt. 36, 10–20 (1997).
[CrossRef] [PubMed]

F. Bevilacqua, P. Marquet, O. Coquoz, C. Depeursinge, “Role of tissue structure in photon migration through breast tissues,” Appl. Opt. 36, 44–51 (1997).
[CrossRef] [PubMed]

Dassel, A. C. M.

de Haller, E. B.

F. Bevilacqua, P. Marquet, C. Depeursinge, E. B. de Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled-device array measurement, part II: measurements on biological tissues,” Opt. Eng. 34, 2064–2069 (1995).
[CrossRef]

P. Marquet, F. Bevilacqua, C. Depeursinge, E. B. de Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled-device array measurement, part I: comparison between experiments and simulations,” Opt. Eng. 34, 2055–2063 (1995).
[CrossRef]

de Mul, F. F. M.

Delpy, D. T.

M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, “Measurements of the optical properties of the skull in the wavelength range 650–950 nm,” Phy. Med. Biol. 38, 503–510 (1993).
[CrossRef]

P. van der Zee, M. Essenpreis, D. T. Delpy, “Optical properties of brain tissue,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 454–465 (1993).
[CrossRef]

Depeursinge, C.

F. Bevilacqua, P. Marquet, O. Coquoz, C. Depeursinge, “Role of tissue structure in photon migration through breast tissues,” Appl. Opt. 36, 44–51 (1997).
[CrossRef] [PubMed]

P. Marquet, F. Bevilacqua, C. Depeursinge, E. B. de Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled-device array measurement, part I: comparison between experiments and simulations,” Opt. Eng. 34, 2055–2063 (1995).
[CrossRef]

F. Bevilacqua, P. Marquet, C. Depeursinge, E. B. de Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled-device array measurement, part II: measurements on biological tissues,” Opt. Eng. 34, 2064–2069 (1995).
[CrossRef]

F. Bevilacqua, C. Depeursinge, “Monte Carlo study of diffuse reflectance at source–detector separations close to one transport mean free path,” submitted to J. Opt. Soc. Am. A.

Essenpreis, M.

M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, “Measurements of the optical properties of the skull in the wavelength range 650–950 nm,” Phy. Med. Biol. 38, 503–510 (1993).
[CrossRef]

P. van der Zee, M. Essenpreis, D. T. Delpy, “Optical properties of brain tissue,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 454–465 (1993).
[CrossRef]

Fantini, S.

Farrell, T. J.

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

Ference, R. J.

Firbank, M.

M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, “Measurements of the optical properties of the skull in the wavelength range 650–950 nm,” Phy. Med. Biol. 38, 503–510 (1993).
[CrossRef]

Fishkin, J. B.

Flock, S. T.

S. T. Flock, B. C. Wilson, M. S. Patterson, “Total attenuation coefficient and scattering phase functions of tissues and phantom materials at 633 nm,” Med. Phys. 14, 835–841 (1987).
[CrossRef] [PubMed]

Franceschini, M. A.

Graaff, R.

Gratton, E.

Gross, J. D.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Noninvasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Hebeda, K. M.

K. M. Hebeda, T. Menovsky, J. F. Beek, J. G. Wolbers, M. J. C. van Gemert, “Light propagation in the brain depends on nerve fiber orientation,” Neurosurgery 35, 720–722 (1994).
[CrossRef] [PubMed]

Hefetz, Y.

Hibst, R.

Hiraoka, M.

M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, “Measurements of the optical properties of the skull in the wavelength range 650–950 nm,” Phy. Med. Biol. 38, 503–510 (1993).
[CrossRef]

Hogervorst, W.

J. G. Wolbers, W. Kamphorst, H. J. M. Sterenborg, M. J. C. van Gemert, W. Hogervorst, “Dose response of rat brains interstitially irradiated by argon light,” Lasers Med. Sci. 2, 255–260 (1987).
[CrossRef]

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Jack, D. A.

Jacques, S. L.

Johnson, T.

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350–357 (1995).
[CrossRef] [PubMed]

Johnson, T. M.

Kamphorst, W.

J. G. Wolbers, W. Kamphorst, H. J. M. Sterenborg, M. J. C. van Gemert, W. Hogervorst, “Dose response of rat brains interstitially irradiated by argon light,” Lasers Med. Sci. 2, 255–260 (1987).
[CrossRef]

Kienle, A.

Koelink, M. H.

Kölzer, J.

Kumar, G.

Lilge, L.

Madsen, S. J.

Marchesini, R.

Marquet, P.

F. Bevilacqua, P. Marquet, O. Coquoz, C. Depeursinge, “Role of tissue structure in photon migration through breast tissues,” Appl. Opt. 36, 44–51 (1997).
[CrossRef] [PubMed]

F. Bevilacqua, P. Marquet, C. Depeursinge, E. B. de Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled-device array measurement, part II: measurements on biological tissues,” Opt. Eng. 34, 2064–2069 (1995).
[CrossRef]

P. Marquet, F. Bevilacqua, C. Depeursinge, E. B. de Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled-device array measurement, part I: comparison between experiments and simulations,” Opt. Eng. 34, 2055–2063 (1995).
[CrossRef]

Melloni, E.

Menovsky, T.

K. M. Hebeda, T. Menovsky, J. F. Beek, J. G. Wolbers, M. J. C. van Gemert, “Light propagation in the brain depends on nerve fiber orientation,” Neurosurgery 35, 720–722 (1994).
[CrossRef] [PubMed]

Miller, H. D.

Mills, T.

D. R. Sandeman, T. Mills, S. G. Bown, “Enhancement of light penetration by white matter tracts in the normal mouse brain,” Lasers Med. Sci. 3, 47 (1986).

Mitic, G.

Moes, C. J. M.

Monnier, P.

Mourant, J. R.

Nossal, R.

G. H. Weiss, R. Nossal, R. F. Bonner, “Statistics of penetration depth of photons reemitted from irradiated tissue,” J. Mod. Opt. 36, 349–359 (1989).
[CrossRef]

Otto, J.

Park, Y. D.

Patterson, M. S.

A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996).
[CrossRef] [PubMed]

S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. L. Jacques, Y. Hefetz, “Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measurements,” Appl. Opt. 31, 3509–3517 (1992).
[CrossRef] [PubMed]

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

D. R. Wyman, M. S. Patterson, B. C. Wilson, “Similarity relations for anisotropic scattering in Monte Carlo simulations of deeply penetrating neutral particles,” J. Comput. Phys. 81, 137–150 (1989).
[CrossRef]

S. T. Flock, B. C. Wilson, M. S. Patterson, “Total attenuation coefficient and scattering phase functions of tissues and phantom materials at 633 nm,” Med. Phys. 14, 835–841 (1987).
[CrossRef] [PubMed]

Pham, D.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Noninvasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Pham, T.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Noninvasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Plies, E.

Prahl, S. A.

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, Martin J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
[CrossRef] [PubMed]

W.-F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependance of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).

Preuss, L. E.

Robert, D.

Sandeman, D. R.

D. R. Sandeman, T. Mills, S. G. Bown, “Enhancement of light penetration by white matter tracts in the normal mouse brain,” Lasers Med. Sci. 3, 47 (1986).

Savary, J.-F.

Schmitt, J. M.

Shimada, T.

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350–357 (1995).
[CrossRef] [PubMed]

Sichirollo, A. E.

Sölkner, G.

Steiner, R.

Sterenborg, H. J. M.

J. G. Wolbers, W. Kamphorst, H. J. M. Sterenborg, M. J. C. van Gemert, W. Hogervorst, “Dose response of rat brains interstitially irradiated by argon light,” Lasers Med. Sci. 2, 255–260 (1987).
[CrossRef]

Taylor, R. C.

ten Bosch, J. J.

Tromberg, B. J.

J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt. 36, 10–20 (1997).
[CrossRef] [PubMed]

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Noninvasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Multiple Light Scattering, Tables, Formulas, and Applications (Academic, London, 1980).

van den Bergh, H.

van der Zee, P.

P. van der Zee, M. Essenpreis, D. T. Delpy, “Optical properties of brain tissue,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 454–465 (1993).
[CrossRef]

van Gemert, M. J. C.

K. M. Hebeda, T. Menovsky, J. F. Beek, J. G. Wolbers, M. J. C. van Gemert, “Light propagation in the brain depends on nerve fiber orientation,” Neurosurgery 35, 720–722 (1994).
[CrossRef] [PubMed]

J. G. Wolbers, W. Kamphorst, H. J. M. Sterenborg, M. J. C. van Gemert, W. Hogervorst, “Dose response of rat brains interstitially irradiated by argon light,” Lasers Med. Sci. 2, 255–260 (1987).
[CrossRef]

van Gemert, Martin J. C.

van Marle, J.

van Staveren, H. J.

Venugopalan, V.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Noninvasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Wagnières, G.

Weiss, G. H.

G. H. Weiss, R. Nossal, R. F. Bonner, “Statistics of penetration depth of photons reemitted from irradiated tissue,” J. Mod. Opt. 36, 349–359 (1989).
[CrossRef]

Welch, A. J.

W.-F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Wilson, B. C.

A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996).
[CrossRef] [PubMed]

S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. L. Jacques, Y. Hefetz, “Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measurements,” Appl. Opt. 31, 3509–3517 (1992).
[CrossRef] [PubMed]

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

D. R. Wyman, M. S. Patterson, B. C. Wilson, “Similarity relations for anisotropic scattering in Monte Carlo simulations of deeply penetrating neutral particles,” J. Comput. Phys. 81, 137–150 (1989).
[CrossRef]

S. T. Flock, B. C. Wilson, M. S. Patterson, “Total attenuation coefficient and scattering phase functions of tissues and phantom materials at 633 nm,” Med. Phys. 14, 835–841 (1987).
[CrossRef] [PubMed]

Wolbers, J. G.

K. M. Hebeda, T. Menovsky, J. F. Beek, J. G. Wolbers, M. J. C. van Gemert, “Light propagation in the brain depends on nerve fiber orientation,” Neurosurgery 35, 720–722 (1994).
[CrossRef] [PubMed]

J. G. Wolbers, W. Kamphorst, H. J. M. Sterenborg, M. J. C. van Gemert, W. Hogervorst, “Dose response of rat brains interstitially irradiated by argon light,” Lasers Med. Sci. 2, 255–260 (1987).
[CrossRef]

Wyman, D. R.

D. R. Wyman, M. S. Patterson, B. C. Wilson, “Similarity relations for anisotropic scattering in Monte Carlo simulations of deeply penetrating neutral particles,” J. Comput. Phys. 81, 137–150 (1989).
[CrossRef]

Zijlstra, W. G.

Zinth, W.

Appl. Opt.

R. Bays, G. Wagnières, D. Robert, D. Braichotte, J.-F. Savary, P. Monnier, H. van den Bergh, “Clinical determination of tissue optical properties by endoscopic spatially resolved reflectometry,” Appl. Opt. 35, 1756–1766 (1996).
[CrossRef] [PubMed]

A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, E. Gratton, “Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light-emitting-diode based technique,” Appl. Opt. 33, 5204–5213 (1994).
[CrossRef] [PubMed]

G. Mitic, J. Kölzer, J. Otto, E. Plies, G. Sölkner, W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Appl. Opt. 33, 6699–6710 (1994).
[CrossRef] [PubMed]

G. Kumar, J. M. Schmitt, “Optimal probe geometry for near-infrared spectroscopy of biological tissue,” Appl. Opt. 36, 2286–2293 (1997).
[CrossRef] [PubMed]

J. R. Mourant, I. J. Bigio, D. A. Jack, T. M. Johnson, H. D. Miller, “Measuring absorption coefficients in small volumes of highly scattering media: source-detector separations for which path lengths do not depend on scattering properties,” Appl. Opt. 36, 5655–5661 (1997).
[CrossRef] [PubMed]

J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt. 36, 10–20 (1997).
[CrossRef] [PubMed]

F. P. Bolin, L. E. Preuss, R. C. Taylor, R. J. Ference, “Refractive index of some mammalian tissues using a fiber optic cladding method,” Appl. Opt. 28, 2297–2303 (1989).
[CrossRef] [PubMed]

R. Marchesini, A. Bertoni, S. Andreola, E. Melloni, A. E. Sichirollo, “Extinction and absorption coefficients and scattering phase functions of human tissues in vitro,” Appl. Opt. 28, 2318–2324 (1989).
[CrossRef] [PubMed]

R. Graaff, A. C. M. Dassel, M. H. Koelink, F. F. M. de Mul, J. G. Aarnoudse, W. G. Zijlstra, “Optical properties of human dermis in vitro and in vivo,” Appl. Opt. 32, 435–447 (1993).
[CrossRef] [PubMed]

J. R. A. Bolt, J. J. ten Bosch, “Method for measuring position-dependent volume reflection,” Appl. Opt. 32, 4641–4645 (1993).
[CrossRef] [PubMed]

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, Martin J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
[CrossRef] [PubMed]

S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. L. Jacques, Y. Hefetz, “Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measurements,” Appl. Opt. 31, 3509–3517 (1992).
[CrossRef] [PubMed]

F. Bevilacqua, P. Marquet, O. Coquoz, C. Depeursinge, “Role of tissue structure in photon migration through breast tissues,” Appl. Opt. 36, 44–51 (1997).
[CrossRef] [PubMed]

IEEE J. Quantum Electron.

W.-F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

J. Comput. Phys.

D. R. Wyman, M. S. Patterson, B. C. Wilson, “Similarity relations for anisotropic scattering in Monte Carlo simulations of deeply penetrating neutral particles,” J. Comput. Phys. 81, 137–150 (1989).
[CrossRef]

J. Mod. Opt.

G. H. Weiss, R. Nossal, R. F. Bonner, “Statistics of penetration depth of photons reemitted from irradiated tissue,” J. Mod. Opt. 36, 349–359 (1989).
[CrossRef]

Lasers Life Sci.

S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependance of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).

Lasers Med. Sci.

D. R. Sandeman, T. Mills, S. G. Bown, “Enhancement of light penetration by white matter tracts in the normal mouse brain,” Lasers Med. Sci. 3, 47 (1986).

J. G. Wolbers, W. Kamphorst, H. J. M. Sterenborg, M. J. C. van Gemert, W. Hogervorst, “Dose response of rat brains interstitially irradiated by argon light,” Lasers Med. Sci. 2, 255–260 (1987).
[CrossRef]

Lasers Surg. Med.

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350–357 (1995).
[CrossRef] [PubMed]

Med. Phys.

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

S. T. Flock, B. C. Wilson, M. S. Patterson, “Total attenuation coefficient and scattering phase functions of tissues and phantom materials at 633 nm,” Med. Phys. 14, 835–841 (1987).
[CrossRef] [PubMed]

Neurosurgery

K. M. Hebeda, T. Menovsky, J. F. Beek, J. G. Wolbers, M. J. C. van Gemert, “Light propagation in the brain depends on nerve fiber orientation,” Neurosurgery 35, 720–722 (1994).
[CrossRef] [PubMed]

Opt. Eng.

P. Marquet, F. Bevilacqua, C. Depeursinge, E. B. de Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled-device array measurement, part I: comparison between experiments and simulations,” Opt. Eng. 34, 2055–2063 (1995).
[CrossRef]

F. Bevilacqua, P. Marquet, C. Depeursinge, E. B. de Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled-device array measurement, part II: measurements on biological tissues,” Opt. Eng. 34, 2064–2069 (1995).
[CrossRef]

Philos. Trans. R. Soc. London Ser. B

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Noninvasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Phy. Med. Biol.

M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, “Measurements of the optical properties of the skull in the wavelength range 650–950 nm,” Phy. Med. Biol. 38, 503–510 (1993).
[CrossRef]

Other

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

P. van der Zee, M. Essenpreis, D. T. Delpy, “Optical properties of brain tissue,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 454–465 (1993).
[CrossRef]

Protocol and informed consent were obtained from the patient undergoing neurological surgery for an intra-axial brain tumor as demonstrated on conventional neuroimaging. The protocol and informed consent documents were approved by the University of California Irvine review board (HS 96-495).

M. Cope, “The development of a near infrared spectroscopy system and its application for noninvasive monitoring of cerebral blood and tissue oxygenation in the newborn infant,” Ph.D. dissertation (University College London, London, 1991).

H. C. van de Hulst, Multiple Light Scattering, Tables, Formulas, and Applications (Academic, London, 1980).

F. Bevilacqua, “Optical characterization of biological tissues in vitro and in vivo,” Ph.D. dissertation 1781 (Swiss Federal Institute of Technology, Lausanne, 1998).

F. Bevilacqua, C. Depeursinge, “Monte Carlo study of diffuse reflectance at source–detector separations close to one transport mean free path,” submitted to J. Opt. Soc. Am. A.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Probe for measuring spatially resolved reflectance.

Fig. 2
Fig. 2

Experimental setup.

Fig. 3
Fig. 3

Comparison between the exact and the simplified boundary conditions. The optical coefficients are μ s ′ = 1 mm-1, μ a = 0.01 mm-1, and γ = 1.9.

Fig. 4
Fig. 4

Comparison between measurements in semi-infinite and in infinite media. The medium is Intralipid. The optical coefficients were measured by the FDPM technique: μ s ′ = 1.2 mm-1, μ a = 0.0005 mm-1 (λ = 675 nm).

Fig. 5
Fig. 5

Probability density of the mean depth of scattering events per detected photon for the case of γ = 1.9.

Fig. 6
Fig. 6

Effect of the Intralipid thickness on the reflectance. The setup for the investigation of Intralipid with varying thickness is illustrated on the right-hand side. The optical coefficients of Intralipid were measured by the FDPM technique (λ = 956 nm). The reduced albedo is a′ = μ s ′/(μ s ′ + μ a ) = 0.98.

Fig. 7
Fig. 7

Calibration measurement of a siloxane phantom and measurement test of a microsphere suspension. The siloxane phantom optical properties were measured with FDPM: μ a = 0.00024 ± 0.00002 mm-1, μ s ′ = 1.82 ± 0.01 mm-1 (λ = 674 nm). The siloxane phantom measurement is multiplied by the calibration factor to fit the corresponding simulation (γ = 1.8). The measurement on microsphere suspension is multiplied by the calibration factor derived from the siloxane phantom measurement. The simulation, corresponding to the microsphere suspension measurement, is performed by using the optical properties derived from Mie theory: μ s ′ = 1.0 mm-1, μ a = 0.0005 mm-1, Mie phase function (g 1 = 0.916, γ = 2.2).

Fig. 8
Fig. 8

Relationship between parameters R(ρ = 1 mm) and |∂ρ ln R(ρ = 1 mm)| and the optical coefficients μ s ′ and μ a for cases of γ = 1.5 and 1.9.

Fig. 9
Fig. 9

Comparison between (a) μ a , and (b) μ s ′ obtained by the FDPM technique and by probe measurements. Measurements are on Intralipid [(a) with dye; (b) without dye].

Fig. 10
Fig. 10

Comparison between (a) μ a , and (b) μ s ′, obtained from spatially resolved transmittance (the method described in Refs. 22 and 23) and from probe measurements. Measurements are on microsphere suspensions [(a) with ink; (b) without ink].

Fig. 11
Fig. 11

Clinical measurements in vivo on human brain for (a) case 1 and (b) case 2. Plot of R(ρ = 1) and |∂ρ ln R(ρ = 1 mm)| for different types of brain tissue: (a) normal cortex (frontal and temporal lobe), optic nerve astrocytoma, and normal optic nerve; (b) skull, deep cerebellar white matter with scar tissue, medulloblastoma, and deep cerebellar white matter (surrounding normal tissue).

Fig. 12
Fig. 12

Comparison between the spatially resolved reflectance curve measured in vivo on normal cortex (temporal lobe) and simulations.

Tables (2)

Tables Icon

Table 1 Optical Properties of Normal and Malignant Human Brain Tissue, Case 1

Tables Icon

Table 2 Optical Properties of Normal and Malignant Human Brain Tissue, Case 2

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

gn=-11 Pncos θpcos θdcos θ,
ptissuecos θ=1-αpHAcos θ+αpLAcos θ.
pHGcos θ=1-gHG221+gHG2-2gHG cos θ3/2.
pRayleighcos θ=381+cos2 θ.
g1=1-αgHG,  g2=1-αgHG2+0.1α.

Metrics