Abstract

A method is presented to determine fluorescence decay lifetimes within tissuelike scattering media. Fluorescence lifetimes are determined for micromolar concentrations of the dyes 3,3′-Diethylthiatricarbocyanine Iodide and Indocyanine Green by frequency-domain investigations of light propagating in turbid media. Dual-wavelength photon-migration measurements that use intensity-modulated sources at excitation and emission wavelengths of the fluorophores provide optical parameters of the media as well as fluorescence properties of the dyes. The deduction of fluorescence lifetimes requires no calibration with reference fluorophores, and the results are shown to be independent of dye concentration.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Richards-Kortum, E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
    [CrossRef] [PubMed]
  2. G. A. Wagnières, W. M. Star, B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–632 (1998).
    [PubMed]
  3. A. Pradhan, B. B. Das, K. M. Yoo, J. Cleary, R. Prudente, E. Celmer, R. R. Alfano, “Time-resolved UV photoexcited fluorescence kinetics from malignant and nonmalignant human breast tissues,” Lasers Life Sci. 4, 225–234 (1992).
  4. S. Andersson-Engels, S. Johansson, U. Stenram, K. Svanberg, S. Svanberg, “Time-resolved laser-induced fluorescence spectroscopy for enhanced demarcation of human atherosclerotic plaques,” J. Photochem. Photobiol. B 4, 363–369 (1990).
    [CrossRef] [PubMed]
  5. D. B. Tata, M. Foresti, J. Cordero, P. Tomashefpsky, “Fluorescence polarization spectroscopy and time-resolved fluorescence kinetics of native cancerous and normal rat kidney tissues,” Biophys. J. 50, 463–469 (1986).
    [CrossRef] [PubMed]
  6. J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, M. L. Johnson, “Fluorescence lifetime imaging of free and protein-bound NADH,” Biochemistry 89, 1271–1275 (1992).
  7. D. L. Meadows, J. S. Schultz, “Design, manufacture and characterization of an optical fibre glucose affinity sensor based on an homogenous fluorescence energy transfer assay system,” Anal. Chim. Acta 280, 21–30 (1993).
    [CrossRef]
  8. J. R. Lakowicz, B. Maliwal, “Optical sensing of glucose using phase-modulation fluorimetry,” Anal. Clin. Acta 271, 155–164 (1993).
    [CrossRef]
  9. M. S. Patterson, B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt. 33, 1963–1974 (1994).
    [CrossRef] [PubMed]
  10. E. M. Sevick, C. L. Burch, “Origin of phosphorescence signals reemitted from tissues,” Opt. Lett. 19, 1928–1930 (1994).
    [CrossRef]
  11. X. D. Li, M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Fluorescent diffuse photon density waves in homogenous and heterogenous turbid media: analytic solutions and applications,” Appl. Opt. 35, 3746–3758 (1996).
    [CrossRef] [PubMed]
  12. A. E. Cerussi, J. S. Maier, S. Fantini, M. A. Franceschini, W. W. Mantulin, E. Gratton, “Experimental verification of a theory for the time-resolved fluorescence spectroscopy of thick tissues,” Appl. Opt. 36, 116–124 (1997).
    [CrossRef] [PubMed]
  13. A. Cerussi, S. Fantini, E. Gratton, “Quantitative fluorescence spectroscopy in strongly scattering media containing multiple fluorophores,” in Biomedical Optical Spectroscopy and Diagnostics/Therapeutic Laser Applications, E. M. Sevick-Muraca, J. A. Izatt, M. N. Ediger, eds., Vol. 22 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 70–75.
  14. H. Szmacinski, J. R. Lakowicz, “Frequency-domain lifetime measurements and sensing in highly scattering media,” Sens. Actuators B 30, 207–215 (1997).
    [CrossRef]
  15. C. L. Hutchinson, J. R. Lakowicz, E. M. Sevick-Muraca, “Fluorescence lifetime based sensing in tissues; a computational study,” Biophys. J. 68, 1574–1582 (1995).
    [CrossRef] [PubMed]
  16. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
    [CrossRef]
  17. J. B. Fishkin, E. Gratton, “Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” J. Opt. Soc. Am. A 10, 127–140 (1993).
    [CrossRef] [PubMed]
  18. J. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1983).
    [CrossRef]
  19. R. B. Thompson, J. K. Frisoli, J. R. Lakowicz, “Phase fluorometry using a continuously modulated laser diode,” Anal. Chem. 64, 2075–2078 (1992).
    [CrossRef]
  20. S. A. Soper, B. L. Legendre, “Error analysis of simple algorithms for determining fluorescence lifetimes in ultradilute dye solutions,” Appl. Spectrosc. 48, 400–405 (1994).
    [CrossRef]
  21. E. Sevick-Muraca, G. Lopez, J. Reynolds, T. Troy, C. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
    [CrossRef] [PubMed]

1998 (1)

G. A. Wagnières, W. M. Star, B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–632 (1998).
[PubMed]

1997 (3)

A. E. Cerussi, J. S. Maier, S. Fantini, M. A. Franceschini, W. W. Mantulin, E. Gratton, “Experimental verification of a theory for the time-resolved fluorescence spectroscopy of thick tissues,” Appl. Opt. 36, 116–124 (1997).
[CrossRef] [PubMed]

H. Szmacinski, J. R. Lakowicz, “Frequency-domain lifetime measurements and sensing in highly scattering media,” Sens. Actuators B 30, 207–215 (1997).
[CrossRef]

E. Sevick-Muraca, G. Lopez, J. Reynolds, T. Troy, C. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef] [PubMed]

1996 (2)

1995 (1)

C. L. Hutchinson, J. R. Lakowicz, E. M. Sevick-Muraca, “Fluorescence lifetime based sensing in tissues; a computational study,” Biophys. J. 68, 1574–1582 (1995).
[CrossRef] [PubMed]

1994 (4)

1993 (3)

J. B. Fishkin, E. Gratton, “Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” J. Opt. Soc. Am. A 10, 127–140 (1993).
[CrossRef] [PubMed]

D. L. Meadows, J. S. Schultz, “Design, manufacture and characterization of an optical fibre glucose affinity sensor based on an homogenous fluorescence energy transfer assay system,” Anal. Chim. Acta 280, 21–30 (1993).
[CrossRef]

J. R. Lakowicz, B. Maliwal, “Optical sensing of glucose using phase-modulation fluorimetry,” Anal. Clin. Acta 271, 155–164 (1993).
[CrossRef]

1992 (3)

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, M. L. Johnson, “Fluorescence lifetime imaging of free and protein-bound NADH,” Biochemistry 89, 1271–1275 (1992).

A. Pradhan, B. B. Das, K. M. Yoo, J. Cleary, R. Prudente, E. Celmer, R. R. Alfano, “Time-resolved UV photoexcited fluorescence kinetics from malignant and nonmalignant human breast tissues,” Lasers Life Sci. 4, 225–234 (1992).

R. B. Thompson, J. K. Frisoli, J. R. Lakowicz, “Phase fluorometry using a continuously modulated laser diode,” Anal. Chem. 64, 2075–2078 (1992).
[CrossRef]

1990 (1)

S. Andersson-Engels, S. Johansson, U. Stenram, K. Svanberg, S. Svanberg, “Time-resolved laser-induced fluorescence spectroscopy for enhanced demarcation of human atherosclerotic plaques,” J. Photochem. Photobiol. B 4, 363–369 (1990).
[CrossRef] [PubMed]

1986 (1)

D. B. Tata, M. Foresti, J. Cordero, P. Tomashefpsky, “Fluorescence polarization spectroscopy and time-resolved fluorescence kinetics of native cancerous and normal rat kidney tissues,” Biophys. J. 50, 463–469 (1986).
[CrossRef] [PubMed]

Alfano, R. R.

A. Pradhan, B. B. Das, K. M. Yoo, J. Cleary, R. Prudente, E. Celmer, R. R. Alfano, “Time-resolved UV photoexcited fluorescence kinetics from malignant and nonmalignant human breast tissues,” Lasers Life Sci. 4, 225–234 (1992).

Andersson-Engels, S.

S. Andersson-Engels, S. Johansson, U. Stenram, K. Svanberg, S. Svanberg, “Time-resolved laser-induced fluorescence spectroscopy for enhanced demarcation of human atherosclerotic plaques,” J. Photochem. Photobiol. B 4, 363–369 (1990).
[CrossRef] [PubMed]

Boas, D. A.

Burch, C. L.

Celmer, E.

A. Pradhan, B. B. Das, K. M. Yoo, J. Cleary, R. Prudente, E. Celmer, R. R. Alfano, “Time-resolved UV photoexcited fluorescence kinetics from malignant and nonmalignant human breast tissues,” Lasers Life Sci. 4, 225–234 (1992).

Cerussi, A.

A. Cerussi, S. Fantini, E. Gratton, “Quantitative fluorescence spectroscopy in strongly scattering media containing multiple fluorophores,” in Biomedical Optical Spectroscopy and Diagnostics/Therapeutic Laser Applications, E. M. Sevick-Muraca, J. A. Izatt, M. N. Ediger, eds., Vol. 22 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 70–75.

Cerussi, A. E.

Chance, B.

Cleary, J.

A. Pradhan, B. B. Das, K. M. Yoo, J. Cleary, R. Prudente, E. Celmer, R. R. Alfano, “Time-resolved UV photoexcited fluorescence kinetics from malignant and nonmalignant human breast tissues,” Lasers Life Sci. 4, 225–234 (1992).

Cordero, J.

D. B. Tata, M. Foresti, J. Cordero, P. Tomashefpsky, “Fluorescence polarization spectroscopy and time-resolved fluorescence kinetics of native cancerous and normal rat kidney tissues,” Biophys. J. 50, 463–469 (1986).
[CrossRef] [PubMed]

Das, B. B.

A. Pradhan, B. B. Das, K. M. Yoo, J. Cleary, R. Prudente, E. Celmer, R. R. Alfano, “Time-resolved UV photoexcited fluorescence kinetics from malignant and nonmalignant human breast tissues,” Lasers Life Sci. 4, 225–234 (1992).

Fantini, S.

A. E. Cerussi, J. S. Maier, S. Fantini, M. A. Franceschini, W. W. Mantulin, E. Gratton, “Experimental verification of a theory for the time-resolved fluorescence spectroscopy of thick tissues,” Appl. Opt. 36, 116–124 (1997).
[CrossRef] [PubMed]

A. Cerussi, S. Fantini, E. Gratton, “Quantitative fluorescence spectroscopy in strongly scattering media containing multiple fluorophores,” in Biomedical Optical Spectroscopy and Diagnostics/Therapeutic Laser Applications, E. M. Sevick-Muraca, J. A. Izatt, M. N. Ediger, eds., Vol. 22 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 70–75.

Feng, T.

Fishkin, J. B.

Foresti, M.

D. B. Tata, M. Foresti, J. Cordero, P. Tomashefpsky, “Fluorescence polarization spectroscopy and time-resolved fluorescence kinetics of native cancerous and normal rat kidney tissues,” Biophys. J. 50, 463–469 (1986).
[CrossRef] [PubMed]

Franceschini, M. A.

Frisoli, J. K.

R. B. Thompson, J. K. Frisoli, J. R. Lakowicz, “Phase fluorometry using a continuously modulated laser diode,” Anal. Chem. 64, 2075–2078 (1992).
[CrossRef]

Gratton, E.

A. E. Cerussi, J. S. Maier, S. Fantini, M. A. Franceschini, W. W. Mantulin, E. Gratton, “Experimental verification of a theory for the time-resolved fluorescence spectroscopy of thick tissues,” Appl. Opt. 36, 116–124 (1997).
[CrossRef] [PubMed]

J. B. Fishkin, E. Gratton, “Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” J. Opt. Soc. Am. A 10, 127–140 (1993).
[CrossRef] [PubMed]

A. Cerussi, S. Fantini, E. Gratton, “Quantitative fluorescence spectroscopy in strongly scattering media containing multiple fluorophores,” in Biomedical Optical Spectroscopy and Diagnostics/Therapeutic Laser Applications, E. M. Sevick-Muraca, J. A. Izatt, M. N. Ediger, eds., Vol. 22 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 70–75.

Haskell, R. C.

Hutchinson, C.

E. Sevick-Muraca, G. Lopez, J. Reynolds, T. Troy, C. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef] [PubMed]

Hutchinson, C. L.

C. L. Hutchinson, J. R. Lakowicz, E. M. Sevick-Muraca, “Fluorescence lifetime based sensing in tissues; a computational study,” Biophys. J. 68, 1574–1582 (1995).
[CrossRef] [PubMed]

Johansson, S.

S. Andersson-Engels, S. Johansson, U. Stenram, K. Svanberg, S. Svanberg, “Time-resolved laser-induced fluorescence spectroscopy for enhanced demarcation of human atherosclerotic plaques,” J. Photochem. Photobiol. B 4, 363–369 (1990).
[CrossRef] [PubMed]

Johnson, M. L.

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, M. L. Johnson, “Fluorescence lifetime imaging of free and protein-bound NADH,” Biochemistry 89, 1271–1275 (1992).

Lakowicz, J.

J. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1983).
[CrossRef]

Lakowicz, J. R.

H. Szmacinski, J. R. Lakowicz, “Frequency-domain lifetime measurements and sensing in highly scattering media,” Sens. Actuators B 30, 207–215 (1997).
[CrossRef]

C. L. Hutchinson, J. R. Lakowicz, E. M. Sevick-Muraca, “Fluorescence lifetime based sensing in tissues; a computational study,” Biophys. J. 68, 1574–1582 (1995).
[CrossRef] [PubMed]

J. R. Lakowicz, B. Maliwal, “Optical sensing of glucose using phase-modulation fluorimetry,” Anal. Clin. Acta 271, 155–164 (1993).
[CrossRef]

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, M. L. Johnson, “Fluorescence lifetime imaging of free and protein-bound NADH,” Biochemistry 89, 1271–1275 (1992).

R. B. Thompson, J. K. Frisoli, J. R. Lakowicz, “Phase fluorometry using a continuously modulated laser diode,” Anal. Chem. 64, 2075–2078 (1992).
[CrossRef]

Legendre, B. L.

Li, X. D.

Lopez, G.

E. Sevick-Muraca, G. Lopez, J. Reynolds, T. Troy, C. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef] [PubMed]

Maier, J. S.

Maliwal, B.

J. R. Lakowicz, B. Maliwal, “Optical sensing of glucose using phase-modulation fluorimetry,” Anal. Clin. Acta 271, 155–164 (1993).
[CrossRef]

Mantulin, W. W.

McAdams, M. S.

Meadows, D. L.

D. L. Meadows, J. S. Schultz, “Design, manufacture and characterization of an optical fibre glucose affinity sensor based on an homogenous fluorescence energy transfer assay system,” Anal. Chim. Acta 280, 21–30 (1993).
[CrossRef]

Nowaczyk, K.

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, M. L. Johnson, “Fluorescence lifetime imaging of free and protein-bound NADH,” Biochemistry 89, 1271–1275 (1992).

O’Leary, M. A.

Patterson, M. S.

Pogue, B. W.

Pradhan, A.

A. Pradhan, B. B. Das, K. M. Yoo, J. Cleary, R. Prudente, E. Celmer, R. R. Alfano, “Time-resolved UV photoexcited fluorescence kinetics from malignant and nonmalignant human breast tissues,” Lasers Life Sci. 4, 225–234 (1992).

Prudente, R.

A. Pradhan, B. B. Das, K. M. Yoo, J. Cleary, R. Prudente, E. Celmer, R. R. Alfano, “Time-resolved UV photoexcited fluorescence kinetics from malignant and nonmalignant human breast tissues,” Lasers Life Sci. 4, 225–234 (1992).

Reynolds, J.

E. Sevick-Muraca, G. Lopez, J. Reynolds, T. Troy, C. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef] [PubMed]

Richards-Kortum, R.

R. Richards-Kortum, E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
[CrossRef] [PubMed]

Schultz, J. S.

D. L. Meadows, J. S. Schultz, “Design, manufacture and characterization of an optical fibre glucose affinity sensor based on an homogenous fluorescence energy transfer assay system,” Anal. Chim. Acta 280, 21–30 (1993).
[CrossRef]

Sevick, E. M.

Sevick-Muraca, E.

E. Sevick-Muraca, G. Lopez, J. Reynolds, T. Troy, C. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef] [PubMed]

R. Richards-Kortum, E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
[CrossRef] [PubMed]

Sevick-Muraca, E. M.

C. L. Hutchinson, J. R. Lakowicz, E. M. Sevick-Muraca, “Fluorescence lifetime based sensing in tissues; a computational study,” Biophys. J. 68, 1574–1582 (1995).
[CrossRef] [PubMed]

Soper, S. A.

Star, W. M.

G. A. Wagnières, W. M. Star, B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–632 (1998).
[PubMed]

Stenram, U.

S. Andersson-Engels, S. Johansson, U. Stenram, K. Svanberg, S. Svanberg, “Time-resolved laser-induced fluorescence spectroscopy for enhanced demarcation of human atherosclerotic plaques,” J. Photochem. Photobiol. B 4, 363–369 (1990).
[CrossRef] [PubMed]

Svaasand, L. O.

Svanberg, K.

S. Andersson-Engels, S. Johansson, U. Stenram, K. Svanberg, S. Svanberg, “Time-resolved laser-induced fluorescence spectroscopy for enhanced demarcation of human atherosclerotic plaques,” J. Photochem. Photobiol. B 4, 363–369 (1990).
[CrossRef] [PubMed]

Svanberg, S.

S. Andersson-Engels, S. Johansson, U. Stenram, K. Svanberg, S. Svanberg, “Time-resolved laser-induced fluorescence spectroscopy for enhanced demarcation of human atherosclerotic plaques,” J. Photochem. Photobiol. B 4, 363–369 (1990).
[CrossRef] [PubMed]

Szmacinski, H.

H. Szmacinski, J. R. Lakowicz, “Frequency-domain lifetime measurements and sensing in highly scattering media,” Sens. Actuators B 30, 207–215 (1997).
[CrossRef]

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, M. L. Johnson, “Fluorescence lifetime imaging of free and protein-bound NADH,” Biochemistry 89, 1271–1275 (1992).

Tata, D. B.

D. B. Tata, M. Foresti, J. Cordero, P. Tomashefpsky, “Fluorescence polarization spectroscopy and time-resolved fluorescence kinetics of native cancerous and normal rat kidney tissues,” Biophys. J. 50, 463–469 (1986).
[CrossRef] [PubMed]

Thompson, R. B.

R. B. Thompson, J. K. Frisoli, J. R. Lakowicz, “Phase fluorometry using a continuously modulated laser diode,” Anal. Chem. 64, 2075–2078 (1992).
[CrossRef]

Tomashefpsky, P.

D. B. Tata, M. Foresti, J. Cordero, P. Tomashefpsky, “Fluorescence polarization spectroscopy and time-resolved fluorescence kinetics of native cancerous and normal rat kidney tissues,” Biophys. J. 50, 463–469 (1986).
[CrossRef] [PubMed]

Tromberg, B. J.

Troy, T.

E. Sevick-Muraca, G. Lopez, J. Reynolds, T. Troy, C. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef] [PubMed]

Tsay, T.-T.

Wagnières, G. A.

G. A. Wagnières, W. M. Star, B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–632 (1998).
[PubMed]

Wilson, B. C.

G. A. Wagnières, W. M. Star, B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–632 (1998).
[PubMed]

Yodh, A. G.

Yoo, K. M.

A. Pradhan, B. B. Das, K. M. Yoo, J. Cleary, R. Prudente, E. Celmer, R. R. Alfano, “Time-resolved UV photoexcited fluorescence kinetics from malignant and nonmalignant human breast tissues,” Lasers Life Sci. 4, 225–234 (1992).

Anal. Chem. (1)

R. B. Thompson, J. K. Frisoli, J. R. Lakowicz, “Phase fluorometry using a continuously modulated laser diode,” Anal. Chem. 64, 2075–2078 (1992).
[CrossRef]

Anal. Chim. Acta (1)

D. L. Meadows, J. S. Schultz, “Design, manufacture and characterization of an optical fibre glucose affinity sensor based on an homogenous fluorescence energy transfer assay system,” Anal. Chim. Acta 280, 21–30 (1993).
[CrossRef]

Anal. Clin. Acta (1)

J. R. Lakowicz, B. Maliwal, “Optical sensing of glucose using phase-modulation fluorimetry,” Anal. Clin. Acta 271, 155–164 (1993).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

R. Richards-Kortum, E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Spectrosc. (1)

Biochemistry (1)

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, M. L. Johnson, “Fluorescence lifetime imaging of free and protein-bound NADH,” Biochemistry 89, 1271–1275 (1992).

Biophys. J. (2)

D. B. Tata, M. Foresti, J. Cordero, P. Tomashefpsky, “Fluorescence polarization spectroscopy and time-resolved fluorescence kinetics of native cancerous and normal rat kidney tissues,” Biophys. J. 50, 463–469 (1986).
[CrossRef] [PubMed]

C. L. Hutchinson, J. R. Lakowicz, E. M. Sevick-Muraca, “Fluorescence lifetime based sensing in tissues; a computational study,” Biophys. J. 68, 1574–1582 (1995).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (2)

J. Photochem. Photobiol. B (1)

S. Andersson-Engels, S. Johansson, U. Stenram, K. Svanberg, S. Svanberg, “Time-resolved laser-induced fluorescence spectroscopy for enhanced demarcation of human atherosclerotic plaques,” J. Photochem. Photobiol. B 4, 363–369 (1990).
[CrossRef] [PubMed]

Lasers Life Sci. (1)

A. Pradhan, B. B. Das, K. M. Yoo, J. Cleary, R. Prudente, E. Celmer, R. R. Alfano, “Time-resolved UV photoexcited fluorescence kinetics from malignant and nonmalignant human breast tissues,” Lasers Life Sci. 4, 225–234 (1992).

Opt. Lett. (1)

Photochem. Photobiol. (2)

G. A. Wagnières, W. M. Star, B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–632 (1998).
[PubMed]

E. Sevick-Muraca, G. Lopez, J. Reynolds, T. Troy, C. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef] [PubMed]

Sens. Actuators B (1)

H. Szmacinski, J. R. Lakowicz, “Frequency-domain lifetime measurements and sensing in highly scattering media,” Sens. Actuators B 30, 207–215 (1997).
[CrossRef]

Other (2)

J. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1983).
[CrossRef]

A. Cerussi, S. Fantini, E. Gratton, “Quantitative fluorescence spectroscopy in strongly scattering media containing multiple fluorophores,” in Biomedical Optical Spectroscopy and Diagnostics/Therapeutic Laser Applications, E. M. Sevick-Muraca, J. A. Izatt, M. N. Ediger, eds., Vol. 22 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 70–75.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Normalized excitation and emission spectra for indicated concentrations of fluorescent dyes DTTCI and ICG. The DTTCI excitation spectrum is for 830-nm emission, and its emission spectrum is for 750-nm excitation. The ICG excitation spectrum is for 830-nm emission, and its emission spectrum is for 780-nm excitation. A DTTCI stock solution, prepared in ethanol, was diluted with water; ICG was dissolved directly in water.

Fig. 2
Fig. 2

Schematic of the FDPM system for fluorescence-lifetime determination in a multiply scattering medium: RF AMP, radio-frequency amplifier; ND, neutral density.

Fig. 3
Fig. 3

Measured phase shift in the presence of scatter at a single detector fiber separation distance (Δr = 1.5 cm) over a range of modulation frequencies. The sample consists of the fluorescent dye DTTCI in 1.0% Intralipid solution. Plotted symbols denote experimental data. Error bars lie within the plotted points. Lines represent two-parameter least-squares fits of Eq. (5) to the phase-shift data at excitation and emission wavelengths. Fluorescence data points are connected by lines to guide the eye.

Fig. 4
Fig. 4

Measured phase shift in the presence of scatter at a single detector fiber separation distance (Δr = 1.5 cm) over a range of modulation frequencies. The sample consists of the fluorescent dye ICG in 1.0% Intralipid solution. As before, plotted symbols denote experimental data. Error bars lie within the plotted points. Lines represent two-parameter least-squares fits of Eq. (5) to the phase-shift data at excitation and emission wavelengths. Fluorescence data points are connected by lines to guide the eye.

Fig. 5
Fig. 5

Fluorescence lifetime measured in the presence of scatter at a single detector fiber separation distance (Δr = 1.5 cm) as a function of modulation frequency. Lifetimes obtained for fluorescent dyes DTTCI and ICG at the indicated dye concentrations in 1.0% Intralipid solution. Symbols denote lifetimes deduced from Eq. (10). Error bars are estimated as described in the text. Lines connecting the data points were drawn to guide the eye.

Tables (1)

Tables Icon

Table 1 Fluorescent Dyes and Their Concentrations, Excitation (λx) and Emission (λm) Wavelengths Used, and Optical Properties Deduced for Fluorescent Dyes Suspended in Multiply Scattering 1.0% Intralipid Solutionsa

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

-cD2Ur, ω+cμa+iωUr, ω=qr, ω,
Uxr, ω=Pxω4πcDxrexp-kxωr,
kx2ω=μaxDx1-i ωcμax.
Uxr, ω=Pxω4πcDxrexp-βxωrcosγxωr+i sinγxωr,
αxω=μaxDx2+ωcDx21/21/2, βxω=αxωcos12tan-1ωcμax, γxω=αxωsin12tan-1ωcμax.
tan θr, ω=ImUr, ωReUr, ω.
θxr, ω=γxωr.
Ufr, ω=ϕμafPω4πcDxDmrexp-kxωr-exp-kmωrkm2ω-kx2ω×1+iωτ1+ωτ2.
Ufr, ω=ϕμafPω4πcDxDm1+ωτ2rψr, ω-κr, ωωτ+iκr, ω+ψr, ωωτ,
ψr, ω=δr, ωξ+ζr, ωρωξ2+ρω2, κr, ω=ζr, ωξ-δr, ωρωξ2+ρω2, δr, ω=exp-βxωrcosγxωr-exp-βmωrcosγmωr, ζr, ω=exp-βxωrsinγxωr-exp-βmωrsinγmωr, ξ=μamDm-μaxDx, ρω=ωc1Dx-1Dm.
tan θfr, ω=κr, ω+ψr, ωωτψr, ω-κr, ωωτ,
τ=1ωtan θfr, ω-ηr, ωηr, ωtan θfr, ω+1,

Metrics