Abstract

A method capable of measuring blood flow at precise depths within the skin is described. The method determines the static and the dynamic properties of light that is backscattered to small areas on the surface of the skin at several contiguous locations along the expected trajectory of laser-light propagation. From observations the method has been shown to be capable of determining physical characteristics that are unique to the different layers of the skin.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. A. Schabauer, T. W. Rooke, “Cutaneous laser Doppler flowmetry: application and findings,” Mayo Clin. Proc. 69, 564–574 (1994).
    [CrossRef] [PubMed]
  2. M. D. Stern, “In vivo evaluation of microcirculation by coherent light scattering,” Nature 254, 56–58 (1975).
    [CrossRef] [PubMed]
  3. T. Tanaka, G. B. Benedek, “Measurement of the velocity of blood flow (in vivo) using a fiber optic catheter and optical mixing spectroscopy,” Appl. Opt. 14, 189–196 (1975).
    [CrossRef] [PubMed]
  4. D. W. Stepnick, R. E. Hayden, “Postoperative monitoring and salvage of microvascular free flaps,” Reconstr. Mandible Oropharynx 27, 1201–1217 (1994).
  5. H. Svenson, P. Svedman, J. Holmberg, S. Jacobsson, “Detecting arterial and venous obstruction in flaps,” Ann. Plast. Surg. 14, 20–23 (1985).
    [CrossRef]
  6. H. Schliephake, R. Schnelzeisen, F. W. Neukam, “Long-term results of blood flow and cutaneous sensibility of flaps used for the reconstruction of facial soft tissues,” J. Oral Maxillofac. Surg. 52, 1247–1252 (1994).
    [CrossRef] [PubMed]
  7. H. Fujii, K. Nohira, Y. Yamamoto, H. Ikawa, T. Ohura, “Evaluation of blood flow by laser speckle image sensing. Part I,” Appl. Opt. 26, 5321–5325 (1987).
    [CrossRef] [PubMed]
  8. K. Wårdell, A. Jakobsson, G. Nilsson, “Laser Doppler perfusion imaging by dynamic light scattering,” IEEE Trans. Biomed. Eng. 40, 309–316 (1993).
    [CrossRef] [PubMed]
  9. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22, 1439–1441 (1997).
    [CrossRef]
  10. Z. Chen, T. E. Milner, X. Wang, S. Srinivas, J. S. Nelson, “Optical Doppler tomography: imaging in vivo blood flow dynamics following pharacological intervention and photodynamic therapy,” Photochem. Photobiol. 67, 56–60 (1998).
    [CrossRef] [PubMed]
  11. S. Gorti, “An apparatus and method for measuring blood flow at precise depths in tissue or skin, and the thickness and elasticity of region(s) within tissue or skin,” U.S. patent pending. (submitted 23March1997).
  12. R. Bonner, R. Nossal, “Model for laser Doppler measurements of blood flow in tissue,” Appl. Opt. 20, 2097–2107 (1981).
    [CrossRef] [PubMed]
  13. R. L. Fante, “Propagation of electromagnetic waves through turbulent plasma using transport theory,” IEEE Trans. Antennas Propag. AP-21, 750–755 (1973).
    [CrossRef]
  14. A. Ishimaru, “Diffusion of light in turbid material,” Appl. Opt. 28, 2210–2215 (1989).
    [CrossRef] [PubMed]
  15. W. A. G. Bruls, J. C. van der Leun, “Forward scattering properties of human epidermal layers,” Photochem. Photobiol. 40, 231–242 (1984).
    [CrossRef] [PubMed]
  16. W. A. G. Bruls, H. Slaper, J. C. van der Leun, L. Berrens, “Transmission of human epidermis and stratum corneum as a function of thickness in the ultraviolet and visible wavelengths,” Photochem. Photobiol. 40, 485–494 (1984).
    [CrossRef] [PubMed]
  17. Y. Kuga, A. Ishimaru, “Backscattering enhancement by randomly distributed very large particles,” Appl. Opt. 28, 2165–2169 (1989).
    [CrossRef] [PubMed]
  18. Z.-H. Gu, J. Q. Lu, A. A. Maradudin, A. Martinez, E. R. Mendez, “Coherence in the single and multiple scattering of light from randomly rough surfaces,” Appl. Opt. 32, 2852–2859 (1993).
    [CrossRef] [PubMed]
  19. S. Gorti, A. Kiba, “Noninvasive thickness measurement of stratum corneum by light scattering spectroscopy,” J. Soc. Cosmet. Chem. Jpn. 27, 374–382 (1993).
    [CrossRef]
  20. B. J. Berne, R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976).
  21. E. Jakeman, C. J. Oliver, E. R. Pike, “The effects of spatial coherence of intensity fluctuation distribution of Gaussian light,” J. Phys. A 3, L45–L48 (1970).
    [CrossRef]
  22. C. Kittel, Elementary Statistical Physics (Wiley, New York, 1958), pp. 133–140.
  23. J. M. Schmitt, S. H. Xiang, “Cross-polarized backscatter in optical coherence tomography of biological tissue,” Opt. Lett. 23, 1060–1062 (1998).
    [CrossRef]
  24. F. P. Bolin, L. E. Preuss, R. C. Taylor, R. J. Ference, “Refractive index of some mammalian tissues using a fiber optic cladding method,” Appl. Opt. 28, 2297–2303 (1989).
    [CrossRef] [PubMed]
  25. D. J. Pine, D. A. Weitz, J. X. Zhu, E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. France 51, 2101–2127 (1990).
    [CrossRef]
  26. T. Tanaka, “Light scattering from polymer gels,” in Dynamic Light Scattering, R. Pecora, ed. (Plenum, New York, 1985), pp. 347–362.
    [CrossRef]
  27. H. Svensson, P. Svedman, J. Holmberg, J. B. Wieslander, “Detecting changes in arterial and venous blood flow in flaps,” Ann. Plast. Surg. 15, 35–40 (1985).
    [CrossRef] [PubMed]

1998 (2)

Z. Chen, T. E. Milner, X. Wang, S. Srinivas, J. S. Nelson, “Optical Doppler tomography: imaging in vivo blood flow dynamics following pharacological intervention and photodynamic therapy,” Photochem. Photobiol. 67, 56–60 (1998).
[CrossRef] [PubMed]

J. M. Schmitt, S. H. Xiang, “Cross-polarized backscatter in optical coherence tomography of biological tissue,” Opt. Lett. 23, 1060–1062 (1998).
[CrossRef]

1997 (1)

1994 (3)

D. W. Stepnick, R. E. Hayden, “Postoperative monitoring and salvage of microvascular free flaps,” Reconstr. Mandible Oropharynx 27, 1201–1217 (1994).

H. Schliephake, R. Schnelzeisen, F. W. Neukam, “Long-term results of blood flow and cutaneous sensibility of flaps used for the reconstruction of facial soft tissues,” J. Oral Maxillofac. Surg. 52, 1247–1252 (1994).
[CrossRef] [PubMed]

A. M. A. Schabauer, T. W. Rooke, “Cutaneous laser Doppler flowmetry: application and findings,” Mayo Clin. Proc. 69, 564–574 (1994).
[CrossRef] [PubMed]

1993 (3)

S. Gorti, A. Kiba, “Noninvasive thickness measurement of stratum corneum by light scattering spectroscopy,” J. Soc. Cosmet. Chem. Jpn. 27, 374–382 (1993).
[CrossRef]

K. Wårdell, A. Jakobsson, G. Nilsson, “Laser Doppler perfusion imaging by dynamic light scattering,” IEEE Trans. Biomed. Eng. 40, 309–316 (1993).
[CrossRef] [PubMed]

Z.-H. Gu, J. Q. Lu, A. A. Maradudin, A. Martinez, E. R. Mendez, “Coherence in the single and multiple scattering of light from randomly rough surfaces,” Appl. Opt. 32, 2852–2859 (1993).
[CrossRef] [PubMed]

1990 (1)

D. J. Pine, D. A. Weitz, J. X. Zhu, E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. France 51, 2101–2127 (1990).
[CrossRef]

1989 (3)

1987 (1)

1985 (2)

H. Svensson, P. Svedman, J. Holmberg, J. B. Wieslander, “Detecting changes in arterial and venous blood flow in flaps,” Ann. Plast. Surg. 15, 35–40 (1985).
[CrossRef] [PubMed]

H. Svenson, P. Svedman, J. Holmberg, S. Jacobsson, “Detecting arterial and venous obstruction in flaps,” Ann. Plast. Surg. 14, 20–23 (1985).
[CrossRef]

1984 (2)

W. A. G. Bruls, J. C. van der Leun, “Forward scattering properties of human epidermal layers,” Photochem. Photobiol. 40, 231–242 (1984).
[CrossRef] [PubMed]

W. A. G. Bruls, H. Slaper, J. C. van der Leun, L. Berrens, “Transmission of human epidermis and stratum corneum as a function of thickness in the ultraviolet and visible wavelengths,” Photochem. Photobiol. 40, 485–494 (1984).
[CrossRef] [PubMed]

1981 (1)

1975 (2)

1973 (1)

R. L. Fante, “Propagation of electromagnetic waves through turbulent plasma using transport theory,” IEEE Trans. Antennas Propag. AP-21, 750–755 (1973).
[CrossRef]

1970 (1)

E. Jakeman, C. J. Oliver, E. R. Pike, “The effects of spatial coherence of intensity fluctuation distribution of Gaussian light,” J. Phys. A 3, L45–L48 (1970).
[CrossRef]

Barton, J. K.

Benedek, G. B.

Berne, B. J.

B. J. Berne, R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976).

Berrens, L.

W. A. G. Bruls, H. Slaper, J. C. van der Leun, L. Berrens, “Transmission of human epidermis and stratum corneum as a function of thickness in the ultraviolet and visible wavelengths,” Photochem. Photobiol. 40, 485–494 (1984).
[CrossRef] [PubMed]

Bolin, F. P.

Bonner, R.

Bruls, W. A. G.

W. A. G. Bruls, H. Slaper, J. C. van der Leun, L. Berrens, “Transmission of human epidermis and stratum corneum as a function of thickness in the ultraviolet and visible wavelengths,” Photochem. Photobiol. 40, 485–494 (1984).
[CrossRef] [PubMed]

W. A. G. Bruls, J. C. van der Leun, “Forward scattering properties of human epidermal layers,” Photochem. Photobiol. 40, 231–242 (1984).
[CrossRef] [PubMed]

Chen, Z.

Z. Chen, T. E. Milner, X. Wang, S. Srinivas, J. S. Nelson, “Optical Doppler tomography: imaging in vivo blood flow dynamics following pharacological intervention and photodynamic therapy,” Photochem. Photobiol. 67, 56–60 (1998).
[CrossRef] [PubMed]

Fante, R. L.

R. L. Fante, “Propagation of electromagnetic waves through turbulent plasma using transport theory,” IEEE Trans. Antennas Propag. AP-21, 750–755 (1973).
[CrossRef]

Ference, R. J.

Fujii, H.

Gorti, S.

S. Gorti, A. Kiba, “Noninvasive thickness measurement of stratum corneum by light scattering spectroscopy,” J. Soc. Cosmet. Chem. Jpn. 27, 374–382 (1993).
[CrossRef]

S. Gorti, “An apparatus and method for measuring blood flow at precise depths in tissue or skin, and the thickness and elasticity of region(s) within tissue or skin,” U.S. patent pending. (submitted 23March1997).

Gu, Z.-H.

Hayden, R. E.

D. W. Stepnick, R. E. Hayden, “Postoperative monitoring and salvage of microvascular free flaps,” Reconstr. Mandible Oropharynx 27, 1201–1217 (1994).

Herbolzheimer, E.

D. J. Pine, D. A. Weitz, J. X. Zhu, E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. France 51, 2101–2127 (1990).
[CrossRef]

Holmberg, J.

H. Svenson, P. Svedman, J. Holmberg, S. Jacobsson, “Detecting arterial and venous obstruction in flaps,” Ann. Plast. Surg. 14, 20–23 (1985).
[CrossRef]

H. Svensson, P. Svedman, J. Holmberg, J. B. Wieslander, “Detecting changes in arterial and venous blood flow in flaps,” Ann. Plast. Surg. 15, 35–40 (1985).
[CrossRef] [PubMed]

Ikawa, H.

Ishimaru, A.

Izatt, J. A.

Jacobsson, S.

H. Svenson, P. Svedman, J. Holmberg, S. Jacobsson, “Detecting arterial and venous obstruction in flaps,” Ann. Plast. Surg. 14, 20–23 (1985).
[CrossRef]

Jakeman, E.

E. Jakeman, C. J. Oliver, E. R. Pike, “The effects of spatial coherence of intensity fluctuation distribution of Gaussian light,” J. Phys. A 3, L45–L48 (1970).
[CrossRef]

Jakobsson, A.

K. Wårdell, A. Jakobsson, G. Nilsson, “Laser Doppler perfusion imaging by dynamic light scattering,” IEEE Trans. Biomed. Eng. 40, 309–316 (1993).
[CrossRef] [PubMed]

Kiba, A.

S. Gorti, A. Kiba, “Noninvasive thickness measurement of stratum corneum by light scattering spectroscopy,” J. Soc. Cosmet. Chem. Jpn. 27, 374–382 (1993).
[CrossRef]

Kittel, C.

C. Kittel, Elementary Statistical Physics (Wiley, New York, 1958), pp. 133–140.

Kuga, Y.

Kulkarni, M. D.

Lu, J. Q.

Maradudin, A. A.

Martinez, A.

Mendez, E. R.

Milner, T. E.

Z. Chen, T. E. Milner, X. Wang, S. Srinivas, J. S. Nelson, “Optical Doppler tomography: imaging in vivo blood flow dynamics following pharacological intervention and photodynamic therapy,” Photochem. Photobiol. 67, 56–60 (1998).
[CrossRef] [PubMed]

Nelson, J. S.

Z. Chen, T. E. Milner, X. Wang, S. Srinivas, J. S. Nelson, “Optical Doppler tomography: imaging in vivo blood flow dynamics following pharacological intervention and photodynamic therapy,” Photochem. Photobiol. 67, 56–60 (1998).
[CrossRef] [PubMed]

Neukam, F. W.

H. Schliephake, R. Schnelzeisen, F. W. Neukam, “Long-term results of blood flow and cutaneous sensibility of flaps used for the reconstruction of facial soft tissues,” J. Oral Maxillofac. Surg. 52, 1247–1252 (1994).
[CrossRef] [PubMed]

Nilsson, G.

K. Wårdell, A. Jakobsson, G. Nilsson, “Laser Doppler perfusion imaging by dynamic light scattering,” IEEE Trans. Biomed. Eng. 40, 309–316 (1993).
[CrossRef] [PubMed]

Nohira, K.

Nossal, R.

Ohura, T.

Oliver, C. J.

E. Jakeman, C. J. Oliver, E. R. Pike, “The effects of spatial coherence of intensity fluctuation distribution of Gaussian light,” J. Phys. A 3, L45–L48 (1970).
[CrossRef]

Pecora, R.

B. J. Berne, R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976).

Pike, E. R.

E. Jakeman, C. J. Oliver, E. R. Pike, “The effects of spatial coherence of intensity fluctuation distribution of Gaussian light,” J. Phys. A 3, L45–L48 (1970).
[CrossRef]

Pine, D. J.

D. J. Pine, D. A. Weitz, J. X. Zhu, E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. France 51, 2101–2127 (1990).
[CrossRef]

Preuss, L. E.

Rooke, T. W.

A. M. A. Schabauer, T. W. Rooke, “Cutaneous laser Doppler flowmetry: application and findings,” Mayo Clin. Proc. 69, 564–574 (1994).
[CrossRef] [PubMed]

Schabauer, A. M. A.

A. M. A. Schabauer, T. W. Rooke, “Cutaneous laser Doppler flowmetry: application and findings,” Mayo Clin. Proc. 69, 564–574 (1994).
[CrossRef] [PubMed]

Schliephake, H.

H. Schliephake, R. Schnelzeisen, F. W. Neukam, “Long-term results of blood flow and cutaneous sensibility of flaps used for the reconstruction of facial soft tissues,” J. Oral Maxillofac. Surg. 52, 1247–1252 (1994).
[CrossRef] [PubMed]

Schmitt, J. M.

Schnelzeisen, R.

H. Schliephake, R. Schnelzeisen, F. W. Neukam, “Long-term results of blood flow and cutaneous sensibility of flaps used for the reconstruction of facial soft tissues,” J. Oral Maxillofac. Surg. 52, 1247–1252 (1994).
[CrossRef] [PubMed]

Slaper, H.

W. A. G. Bruls, H. Slaper, J. C. van der Leun, L. Berrens, “Transmission of human epidermis and stratum corneum as a function of thickness in the ultraviolet and visible wavelengths,” Photochem. Photobiol. 40, 485–494 (1984).
[CrossRef] [PubMed]

Srinivas, S.

Z. Chen, T. E. Milner, X. Wang, S. Srinivas, J. S. Nelson, “Optical Doppler tomography: imaging in vivo blood flow dynamics following pharacological intervention and photodynamic therapy,” Photochem. Photobiol. 67, 56–60 (1998).
[CrossRef] [PubMed]

Stepnick, D. W.

D. W. Stepnick, R. E. Hayden, “Postoperative monitoring and salvage of microvascular free flaps,” Reconstr. Mandible Oropharynx 27, 1201–1217 (1994).

Stern, M. D.

M. D. Stern, “In vivo evaluation of microcirculation by coherent light scattering,” Nature 254, 56–58 (1975).
[CrossRef] [PubMed]

Svedman, P.

H. Svensson, P. Svedman, J. Holmberg, J. B. Wieslander, “Detecting changes in arterial and venous blood flow in flaps,” Ann. Plast. Surg. 15, 35–40 (1985).
[CrossRef] [PubMed]

H. Svenson, P. Svedman, J. Holmberg, S. Jacobsson, “Detecting arterial and venous obstruction in flaps,” Ann. Plast. Surg. 14, 20–23 (1985).
[CrossRef]

Svenson, H.

H. Svenson, P. Svedman, J. Holmberg, S. Jacobsson, “Detecting arterial and venous obstruction in flaps,” Ann. Plast. Surg. 14, 20–23 (1985).
[CrossRef]

Svensson, H.

H. Svensson, P. Svedman, J. Holmberg, J. B. Wieslander, “Detecting changes in arterial and venous blood flow in flaps,” Ann. Plast. Surg. 15, 35–40 (1985).
[CrossRef] [PubMed]

Tanaka, T.

T. Tanaka, G. B. Benedek, “Measurement of the velocity of blood flow (in vivo) using a fiber optic catheter and optical mixing spectroscopy,” Appl. Opt. 14, 189–196 (1975).
[CrossRef] [PubMed]

T. Tanaka, “Light scattering from polymer gels,” in Dynamic Light Scattering, R. Pecora, ed. (Plenum, New York, 1985), pp. 347–362.
[CrossRef]

Taylor, R. C.

van der Leun, J. C.

W. A. G. Bruls, J. C. van der Leun, “Forward scattering properties of human epidermal layers,” Photochem. Photobiol. 40, 231–242 (1984).
[CrossRef] [PubMed]

W. A. G. Bruls, H. Slaper, J. C. van der Leun, L. Berrens, “Transmission of human epidermis and stratum corneum as a function of thickness in the ultraviolet and visible wavelengths,” Photochem. Photobiol. 40, 485–494 (1984).
[CrossRef] [PubMed]

Wang, X.

Z. Chen, T. E. Milner, X. Wang, S. Srinivas, J. S. Nelson, “Optical Doppler tomography: imaging in vivo blood flow dynamics following pharacological intervention and photodynamic therapy,” Photochem. Photobiol. 67, 56–60 (1998).
[CrossRef] [PubMed]

Wårdell, K.

K. Wårdell, A. Jakobsson, G. Nilsson, “Laser Doppler perfusion imaging by dynamic light scattering,” IEEE Trans. Biomed. Eng. 40, 309–316 (1993).
[CrossRef] [PubMed]

Weitz, D. A.

D. J. Pine, D. A. Weitz, J. X. Zhu, E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. France 51, 2101–2127 (1990).
[CrossRef]

Welch, A. J.

Wieslander, J. B.

H. Svensson, P. Svedman, J. Holmberg, J. B. Wieslander, “Detecting changes in arterial and venous blood flow in flaps,” Ann. Plast. Surg. 15, 35–40 (1985).
[CrossRef] [PubMed]

Xiang, S. H.

Yamamoto, Y.

Yazdanfar, S.

Zhu, J. X.

D. J. Pine, D. A. Weitz, J. X. Zhu, E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. France 51, 2101–2127 (1990).
[CrossRef]

Ann. Plast. Surg. (2)

H. Svenson, P. Svedman, J. Holmberg, S. Jacobsson, “Detecting arterial and venous obstruction in flaps,” Ann. Plast. Surg. 14, 20–23 (1985).
[CrossRef]

H. Svensson, P. Svedman, J. Holmberg, J. B. Wieslander, “Detecting changes in arterial and venous blood flow in flaps,” Ann. Plast. Surg. 15, 35–40 (1985).
[CrossRef] [PubMed]

Appl. Opt. (7)

IEEE Trans. Antennas Propag. (1)

R. L. Fante, “Propagation of electromagnetic waves through turbulent plasma using transport theory,” IEEE Trans. Antennas Propag. AP-21, 750–755 (1973).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

K. Wårdell, A. Jakobsson, G. Nilsson, “Laser Doppler perfusion imaging by dynamic light scattering,” IEEE Trans. Biomed. Eng. 40, 309–316 (1993).
[CrossRef] [PubMed]

J. Oral Maxillofac. Surg. (1)

H. Schliephake, R. Schnelzeisen, F. W. Neukam, “Long-term results of blood flow and cutaneous sensibility of flaps used for the reconstruction of facial soft tissues,” J. Oral Maxillofac. Surg. 52, 1247–1252 (1994).
[CrossRef] [PubMed]

J. Phys. A (1)

E. Jakeman, C. J. Oliver, E. R. Pike, “The effects of spatial coherence of intensity fluctuation distribution of Gaussian light,” J. Phys. A 3, L45–L48 (1970).
[CrossRef]

J. Phys. France (1)

D. J. Pine, D. A. Weitz, J. X. Zhu, E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. France 51, 2101–2127 (1990).
[CrossRef]

J. Soc. Cosmet. Chem. Jpn. (1)

S. Gorti, A. Kiba, “Noninvasive thickness measurement of stratum corneum by light scattering spectroscopy,” J. Soc. Cosmet. Chem. Jpn. 27, 374–382 (1993).
[CrossRef]

Mayo Clin. Proc. (1)

A. M. A. Schabauer, T. W. Rooke, “Cutaneous laser Doppler flowmetry: application and findings,” Mayo Clin. Proc. 69, 564–574 (1994).
[CrossRef] [PubMed]

Nature (1)

M. D. Stern, “In vivo evaluation of microcirculation by coherent light scattering,” Nature 254, 56–58 (1975).
[CrossRef] [PubMed]

Opt. Lett. (2)

Photochem. Photobiol. (3)

Z. Chen, T. E. Milner, X. Wang, S. Srinivas, J. S. Nelson, “Optical Doppler tomography: imaging in vivo blood flow dynamics following pharacological intervention and photodynamic therapy,” Photochem. Photobiol. 67, 56–60 (1998).
[CrossRef] [PubMed]

W. A. G. Bruls, J. C. van der Leun, “Forward scattering properties of human epidermal layers,” Photochem. Photobiol. 40, 231–242 (1984).
[CrossRef] [PubMed]

W. A. G. Bruls, H. Slaper, J. C. van der Leun, L. Berrens, “Transmission of human epidermis and stratum corneum as a function of thickness in the ultraviolet and visible wavelengths,” Photochem. Photobiol. 40, 485–494 (1984).
[CrossRef] [PubMed]

Reconstr. Mandible Oropharynx (1)

D. W. Stepnick, R. E. Hayden, “Postoperative monitoring and salvage of microvascular free flaps,” Reconstr. Mandible Oropharynx 27, 1201–1217 (1994).

Other (4)

T. Tanaka, “Light scattering from polymer gels,” in Dynamic Light Scattering, R. Pecora, ed. (Plenum, New York, 1985), pp. 347–362.
[CrossRef]

B. J. Berne, R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976).

C. Kittel, Elementary Statistical Physics (Wiley, New York, 1958), pp. 133–140.

S. Gorti, “An apparatus and method for measuring blood flow at precise depths in tissue or skin, and the thickness and elasticity of region(s) within tissue or skin,” U.S. patent pending. (submitted 23March1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Schematic diagram of a protypical apparatus for the triangulation method for LDF that measures the CBF volume and velocities at the epidermal–dermal boundary region.

Fig. 2
Fig. 2

(a) Object resting at the focal plane of the microscope: Schematic representation of laser light exiting an optical fiber and passing through gradient-index lens L1, which focuses the light onto a sample at the focal plane of objective lens L2. (b) Actual image of the object as observed from the microscope’s eyepiece: The field of view observed as the incident laser light that is focused on the surface of the skin propagates within. The small white circles (inserted after the image was taken) schematically represent the different positions on the skin’s surface from which emitted photons are picked up by the translating optical fiber. The optical-fiber samples have an area of ∼125 µm2 and a center-to-center distance between different locations of approximately 12.5 µm.

Fig. 3
Fig. 3

(a) Simple schematic diagram detailing the principles associated with the method of triangulation for LDF. (b) Schematic of the method used to determine the geometric relation between the depth z and the associated distances to the surface of the skin. The distance between the maxima x 1 or x 2 is dependent on the laser-light incident angle ϕ i and the thickness z of each layer.

Fig. 4
Fig. 4

Average backscattered-light-intensity data obtained at contiguous location on the surface of a painted microscope glass cover slip along the expected trajectory of the laser-light propagation within the cover slip.

Fig. 5
Fig. 5

Average backscattered-light-intensity data obtained at contiguous locations on the skin surface along the expected trajectory of the laser-light propagation within the skin as a function of the polarization of the collection process. The data are classified into five perceptible regions (regions I–V) with respect to the optical-fiber translation position.

Fig. 6
Fig. 6

(a) Changes in the observed distances between the backscattered-light-intensity maxima x val as the incident angle ϕ i is varied. The open squares represent x val data from a painted glass cover slip, and the open and the filled circles represent x val data from the stratum corneum and the epidermal-dermal boundary, respectively, of a rat’s foot. The solid curves represent the best fits to the experimental x val data that were obtained by use of Eq. (3). The values obtained for the thickness and the refractive index of each sample are given in Table 1. (b) Cross section of the skin of a rat’s foot.

Fig. 7
Fig. 7

Power-spectral data as a function of the surface position for the polarized-light configuration: The power-spectral amplitudes of the polarized component of backscattered light versus the frequency (range of 110–2500 Hz) relates the magnitude of the temporal fluctuations. Regions I–V of the surface of the skin are indicated at the right-hand sides of the curves of the power spectra. Notable features of the averaged spectra are the differences in their amplitudes and spectral widths with respect to the specific skin-surface regions from which the polarized scattered light was collected by the optical fiber.

Fig. 8
Fig. 8

Power-spectral data as a function of the surface position for the depolarized-light configuration: Shown are the power-spectral amplitudes of the depolarized component of backscattered light versus the frequency (range of 110–2500 Hz). Regions I–V of the surface of the skin are indicated at the right-hand sides of the curves of the power spectra. Notable features of the average spectra are the differences in their amplitudes and spectral widths, particularly from data collected within region IV.

Fig. 9
Fig. 9

Theoretical fit to Doppler-shifted spectra: Analyses of the power spectra obtained from observations of the fluctuations in the intensities of (a) the polarized and (b) the depolarized components of light that backscattered to the skin’s surface from regions I, IV, and V. The solid curves represent the best fits to the data as obtained by use of Eqs. (11)–(15) with an additional 1/ω noise term included in the right-hand side of Eq. (11) to improve the appearance of the fitted curves.

Fig. 10
Fig. 10

Calculated values defining blood flow: Values of (a) the average number of collisions between a detected photon and moving RBC’s and (b) the velocity 〈V 21/2 of the RBC’s versus the optical-fiber positions that best represent the power-spectral data of the polarized (open circles) and the depolarized (open squares) components of light that backscattered from regions I, IV, and V. Also shown in (b) are the polarized (filled circles) and the depolarized (filled squares) values of 〈ω〉 as calculated with Eq. (16) by use of the parameters and 〈V 21/2.

Fig. 11
Fig. 11

Normalized-intensity correlation functions that elucidate the dynamics of the fluctuations in the intensities of both (a) the polarized and (b) the depolarized light that backscattered to the surface from regions I–V within the skin.

Fig. 12
Fig. 12

Calculated values defining blood flow: (a) Values of the average number of collisions between a detected photon and moving RBC’s (open circles) and the velocity 〈V 21/2 of moving RBC’s (open squares) versus the optical-fiber positions that best represent the intensity correlation functions of the polarized component of the light that backscattered from regions I, IV, and V. (b) Values obtained for %I D = 100[I D /(I S + I D )] within regions I, II, IV, and V that define the relative contributions of the dynamic component to the overall backscattered-light intensity.

Fig. 13
Fig. 13

Plot of the dependence of q 2 on Γ: Diffusion coefficients calculated from the intensity correlation functions obtained within region II as the wave vector q is varied. The slope is D = (4.0 ± 0.3) × 10-9 cm2/s.

Fig. 14
Fig. 14

(a) Behavior of the static depolarized backscattered light emitted when blood flow under normal circumstances is stopped, allowed to resume, and then permanently cut off. (b) The power-spectral amplitudes of the depolarized backscattered laser light obtained at the same time points as shown in (a) versus the frequency of intensity fluctuations.

Fig. 15
Fig. 15

Calculated values that define blood flow under stop–flow conditions: (a) Average number of collisions between a detected photon and moving RBC’s and (b) the velocities 〈V 21/2 of the RBC’s that best represent the power-spectral data of the depolarized components of light that backscattered from region IV under stop–flow conditions, as obtained by use of Eqs. (3)–(5), plotted versus time. Also shown in (a) are values of 〈ω〉 as calculated with Eq. (16) by use of the displayed parameters and 〈V 21/2.

Tables (3)

Tables Icon

Table 1 Thickness and Refractive-Index Measurement with the Triangulation Method

Tables Icon

Table 2 Summary of Parameters Describing Backscattered-Light Dynamics

Tables Icon

Table 3 Dependence of the Fitting Parameters on the Incident Angle ϕi

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

It=IS+IDt.
xval=z tan ϕt.
xval=z tanarcsinsin ϕini/nt.
Cτ=ItIt+τt,
Cτ=1+βID2I2|gτ|2+2ISIDI2|gτ|,
gτ=exp-Γτ,
q=4πnλsinϕS2.
gτ=expm¯I1τ-1-exp-m¯1-exp-m¯,
I1τ=2ξ2ξ+T2.
T=V21/2τ6a,
Pω=I2δω+eIπ+I2 ReSω,
Sω=1π0cos ωtCt-1dt.
Sω=βπexp-2m¯j=12m¯jSjωj!,
S1ω=exp-W, S2ω=141+Wexp-W, S3ω=116W2+3W+3exp-W,
Wω=12ξ1/2aωV21/2.
ω=βV21/212ξ1/2a2π1/2exp-2m¯j=12m¯jΓj+1/2Γj+1Γj.

Metrics