Abstract

A sophisticated modeling program was used recently to predict the trapping and the manipulation properties of elongated cylindrical objects in the focal region of a high-intensity laser beam. On the basis of the model, the cylinders should align their longest diagonal dimension with the propagation axis of the laser beam and follow the beam when it is displaced transverse to the cylinder’s central axis. Experimental confirmation of the cylinder’s behavior is presented and confirms the suitability of the enhanced ray-optics approach to modeling micrometer-scale objects in optical-trap environments.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
    [CrossRef]
  2. R. Lewis, “Special delivery of sperm,” Photon. Spectra July, 44–45 (1996).
  3. S. C. Kuo, M. Sheetz, “Optical tweezers in cell biology,” Trends Cell Biol. 2, 116–118 (1992).
    [CrossRef] [PubMed]
  4. W. H. Wright, G. J. Sonek, Y. Tadir, M. W. Berns, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148–2157 (1990).
    [CrossRef]
  5. Y. Tadir, W. H. Wright, O. Vafa, T. Ord, R. H. Asch, M. W. Berns, “Micromanipulation of sperm by a laser generated optical trap,” Fertil. Steril. 52, 870–873 (1989).
    [PubMed]
  6. R. M. P. Doornbos, M. Scaeffer, A. G. Hoekstra, P. M. Sloot, B. G. de Grooth, J. Greve, “Elastic light-scattering measurements of single biological cells in an optical trap,” Appl. Opt. 35, 729–734 (1996).
    [CrossRef] [PubMed]
  7. T. T. Perkins, D. E. Smith, R. G. Larson, S. Chu, “Stretching of a single tethered polymer in a uniform flow,” Science 268, 83–87 (1995).
    [CrossRef] [PubMed]
  8. K. T. Gahagan, G. A. Swartzlander, “Optical vortex trapping of particles,” Opt. Lett. 21, 827–829 (1996).
    [CrossRef] [PubMed]
  9. L. Malmqvist, H. M. Hertz, “Two-color trapped-particle optical microscopy,” Opt. Lett. 19, 853–855 (1994).
    [CrossRef] [PubMed]
  10. E. Almaas, I. Brevik, “Radiation forces on a micrometer-sized sphere in an evanescent field,” J. Opt. Soc. Am. B 12, 2429–2438 (1995).
    [CrossRef]
  11. S. Sato, H. Inaba, “Second-harmonic and sum-frequency generation from optically trapped KTiOPO4 microscopic particles by use of Nd:YAG and Ti:Al2O3 lasers,” Opt. Lett. 19, 927–929 (1994).
    [CrossRef] [PubMed]
  12. E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, R. Sawada, “Optically induced rotation of dissymmetrically shaped fluorinated polyimide micro-objects in optical traps,” J. Appl. Phys. 82, 2773–2779 (1997).
    [CrossRef]
  13. R. C. Gauthier, “Optical trapping: a tool to assist in micro-machining,” Opt. Laser Technol. 29, 389–399 (1997).
    [CrossRef]
  14. D. R. Koehler, “Optical actuation of micromechanical components,” J. Opt. Soc. Am. B 14, 2197–2203 (1997).
    [CrossRef]
  15. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [CrossRef] [PubMed]
  16. R. Gussgard, T. Lindmo, I. Brevik, “Calculation of the trapping force in a strongly focused laser beam,” J. Opt. Soc. Am. B 9, 1992–1930 (1992).
    [CrossRef]
  17. K. F. Ren, G. Gréhan, G. Gouesbet, “Prediction of the reverse radiation pressure by generalized Lorentz–Mie theory,” Appl. Opt. 35, 2702–2710 (1996).
    [CrossRef] [PubMed]
  18. K. Visscher, G. J. Brakenhoff, “Theoretical study of optically induced forces on spherical particles in a single beam trap. II: Mie scatterers,” Optik (Stuttgart) 90, 57–60 (1992).
  19. W. H. Wright, G. J. Sonek, W. M. Berns, “Parametric study of forces on microspheres held in optical tweezers,” Appl. Opt. 33, 1735–1748 (1995).
    [CrossRef]
  20. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
    [CrossRef] [PubMed]
  21. E. Sidick, S. D. Collins, A. Knoesen, “Optical tweezers based on near infrared diode laser,” J. Biomed. Opt. 2, 332–339 (1997).
    [CrossRef]
  22. R. Roosen, B. Delaunay, C. Imbert, “Etude de la pression de radiation exercée par un faisceau lumineux sur une sphère réfringente,” J. Opt. (Paris) 8, 181–187 (1977).
    [CrossRef]
  23. E. Higurashi, H. Tanaka, O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64, 2209–2210 (1994).
    [CrossRef]
  24. R. C. Gauthier, “Ray optics model and numerical computations for the radiation pressure micromotor,” Appl. Phys. Lett. 67, 2269–2271 (1995).
    [CrossRef]
  25. R. C. Gauthier, “Theoretical model for an improved radiation pressure micromotor,” Appl. Phys. Lett. 69, 2015–2017 (1996).
    [CrossRef]
  26. R. C. Gauthier, “Trapping model for the low-index ring-shaped micro-object in a focused lowest-order Gaussian laser-beam profile,” J. Opt. Soc. Am. B 14, 782–789 (1997).
    [CrossRef]
  27. R. C. Gauthier, M. Ashman, “Simulated dynamic behavior of single and multiple spheres in the trap region of focused laser beams,” Appl. Opt. 37, 6421–6431 (1998).
    [CrossRef]
  28. R. C. Gauthier, “Theoretical investigation of the optical trapping force and torque on cylindrical micro-objects,” J. Opt. Soc. Am. B 14, 3323–3333 (1997).
    [CrossRef]

1998

1997

R. C. Gauthier, “Trapping model for the low-index ring-shaped micro-object in a focused lowest-order Gaussian laser-beam profile,” J. Opt. Soc. Am. B 14, 782–789 (1997).
[CrossRef]

D. R. Koehler, “Optical actuation of micromechanical components,” J. Opt. Soc. Am. B 14, 2197–2203 (1997).
[CrossRef]

R. C. Gauthier, “Theoretical investigation of the optical trapping force and torque on cylindrical micro-objects,” J. Opt. Soc. Am. B 14, 3323–3333 (1997).
[CrossRef]

E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, R. Sawada, “Optically induced rotation of dissymmetrically shaped fluorinated polyimide micro-objects in optical traps,” J. Appl. Phys. 82, 2773–2779 (1997).
[CrossRef]

R. C. Gauthier, “Optical trapping: a tool to assist in micro-machining,” Opt. Laser Technol. 29, 389–399 (1997).
[CrossRef]

E. Sidick, S. D. Collins, A. Knoesen, “Optical tweezers based on near infrared diode laser,” J. Biomed. Opt. 2, 332–339 (1997).
[CrossRef]

1996

1995

W. H. Wright, G. J. Sonek, W. M. Berns, “Parametric study of forces on microspheres held in optical tweezers,” Appl. Opt. 33, 1735–1748 (1995).
[CrossRef]

E. Almaas, I. Brevik, “Radiation forces on a micrometer-sized sphere in an evanescent field,” J. Opt. Soc. Am. B 12, 2429–2438 (1995).
[CrossRef]

R. C. Gauthier, “Ray optics model and numerical computations for the radiation pressure micromotor,” Appl. Phys. Lett. 67, 2269–2271 (1995).
[CrossRef]

T. T. Perkins, D. E. Smith, R. G. Larson, S. Chu, “Stretching of a single tethered polymer in a uniform flow,” Science 268, 83–87 (1995).
[CrossRef] [PubMed]

1994

1992

S. C. Kuo, M. Sheetz, “Optical tweezers in cell biology,” Trends Cell Biol. 2, 116–118 (1992).
[CrossRef] [PubMed]

R. Gussgard, T. Lindmo, I. Brevik, “Calculation of the trapping force in a strongly focused laser beam,” J. Opt. Soc. Am. B 9, 1992–1930 (1992).
[CrossRef]

K. Visscher, G. J. Brakenhoff, “Theoretical study of optically induced forces on spherical particles in a single beam trap. II: Mie scatterers,” Optik (Stuttgart) 90, 57–60 (1992).

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
[CrossRef] [PubMed]

1990

W. H. Wright, G. J. Sonek, Y. Tadir, M. W. Berns, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148–2157 (1990).
[CrossRef]

1989

Y. Tadir, W. H. Wright, O. Vafa, T. Ord, R. H. Asch, M. W. Berns, “Micromanipulation of sperm by a laser generated optical trap,” Fertil. Steril. 52, 870–873 (1989).
[PubMed]

1986

1977

R. Roosen, B. Delaunay, C. Imbert, “Etude de la pression de radiation exercée par un faisceau lumineux sur une sphère réfringente,” J. Opt. (Paris) 8, 181–187 (1977).
[CrossRef]

1970

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Almaas, E.

Asch, R. H.

Y. Tadir, W. H. Wright, O. Vafa, T. Ord, R. H. Asch, M. W. Berns, “Micromanipulation of sperm by a laser generated optical trap,” Fertil. Steril. 52, 870–873 (1989).
[PubMed]

Ashkin, A.

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[CrossRef] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Ashman, M.

Berns, M. W.

W. H. Wright, G. J. Sonek, Y. Tadir, M. W. Berns, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148–2157 (1990).
[CrossRef]

Y. Tadir, W. H. Wright, O. Vafa, T. Ord, R. H. Asch, M. W. Berns, “Micromanipulation of sperm by a laser generated optical trap,” Fertil. Steril. 52, 870–873 (1989).
[PubMed]

Berns, W. M.

Bjorkholm, J. E.

Brakenhoff, G. J.

K. Visscher, G. J. Brakenhoff, “Theoretical study of optically induced forces on spherical particles in a single beam trap. II: Mie scatterers,” Optik (Stuttgart) 90, 57–60 (1992).

Brevik, I.

E. Almaas, I. Brevik, “Radiation forces on a micrometer-sized sphere in an evanescent field,” J. Opt. Soc. Am. B 12, 2429–2438 (1995).
[CrossRef]

R. Gussgard, T. Lindmo, I. Brevik, “Calculation of the trapping force in a strongly focused laser beam,” J. Opt. Soc. Am. B 9, 1992–1930 (1992).
[CrossRef]

Chu, S.

T. T. Perkins, D. E. Smith, R. G. Larson, S. Chu, “Stretching of a single tethered polymer in a uniform flow,” Science 268, 83–87 (1995).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[CrossRef] [PubMed]

Collins, S. D.

E. Sidick, S. D. Collins, A. Knoesen, “Optical tweezers based on near infrared diode laser,” J. Biomed. Opt. 2, 332–339 (1997).
[CrossRef]

de Grooth, B. G.

Delaunay, B.

R. Roosen, B. Delaunay, C. Imbert, “Etude de la pression de radiation exercée par un faisceau lumineux sur une sphère réfringente,” J. Opt. (Paris) 8, 181–187 (1977).
[CrossRef]

Doornbos, R. M. P.

Dziedzic, J. M.

Gahagan, K. T.

Gauthier, R. C.

R. C. Gauthier, M. Ashman, “Simulated dynamic behavior of single and multiple spheres in the trap region of focused laser beams,” Appl. Opt. 37, 6421–6431 (1998).
[CrossRef]

R. C. Gauthier, “Optical trapping: a tool to assist in micro-machining,” Opt. Laser Technol. 29, 389–399 (1997).
[CrossRef]

R. C. Gauthier, “Trapping model for the low-index ring-shaped micro-object in a focused lowest-order Gaussian laser-beam profile,” J. Opt. Soc. Am. B 14, 782–789 (1997).
[CrossRef]

R. C. Gauthier, “Theoretical investigation of the optical trapping force and torque on cylindrical micro-objects,” J. Opt. Soc. Am. B 14, 3323–3333 (1997).
[CrossRef]

R. C. Gauthier, “Theoretical model for an improved radiation pressure micromotor,” Appl. Phys. Lett. 69, 2015–2017 (1996).
[CrossRef]

R. C. Gauthier, “Ray optics model and numerical computations for the radiation pressure micromotor,” Appl. Phys. Lett. 67, 2269–2271 (1995).
[CrossRef]

Gouesbet, G.

Gréhan, G.

Greve, J.

Gussgard, R.

R. Gussgard, T. Lindmo, I. Brevik, “Calculation of the trapping force in a strongly focused laser beam,” J. Opt. Soc. Am. B 9, 1992–1930 (1992).
[CrossRef]

Hertz, H. M.

Higurashi, E.

E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, R. Sawada, “Optically induced rotation of dissymmetrically shaped fluorinated polyimide micro-objects in optical traps,” J. Appl. Phys. 82, 2773–2779 (1997).
[CrossRef]

E. Higurashi, H. Tanaka, O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64, 2209–2210 (1994).
[CrossRef]

Hoekstra, A. G.

Imbert, C.

R. Roosen, B. Delaunay, C. Imbert, “Etude de la pression de radiation exercée par un faisceau lumineux sur une sphère réfringente,” J. Opt. (Paris) 8, 181–187 (1977).
[CrossRef]

Inaba, H.

Knoesen, A.

E. Sidick, S. D. Collins, A. Knoesen, “Optical tweezers based on near infrared diode laser,” J. Biomed. Opt. 2, 332–339 (1997).
[CrossRef]

Koehler, D. R.

Kuo, S. C.

S. C. Kuo, M. Sheetz, “Optical tweezers in cell biology,” Trends Cell Biol. 2, 116–118 (1992).
[CrossRef] [PubMed]

Larson, R. G.

T. T. Perkins, D. E. Smith, R. G. Larson, S. Chu, “Stretching of a single tethered polymer in a uniform flow,” Science 268, 83–87 (1995).
[CrossRef] [PubMed]

Lewis, R.

R. Lewis, “Special delivery of sperm,” Photon. Spectra July, 44–45 (1996).

Lindmo, T.

R. Gussgard, T. Lindmo, I. Brevik, “Calculation of the trapping force in a strongly focused laser beam,” J. Opt. Soc. Am. B 9, 1992–1930 (1992).
[CrossRef]

Malmqvist, L.

Ohguchi, O.

E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, R. Sawada, “Optically induced rotation of dissymmetrically shaped fluorinated polyimide micro-objects in optical traps,” J. Appl. Phys. 82, 2773–2779 (1997).
[CrossRef]

E. Higurashi, H. Tanaka, O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64, 2209–2210 (1994).
[CrossRef]

Ord, T.

Y. Tadir, W. H. Wright, O. Vafa, T. Ord, R. H. Asch, M. W. Berns, “Micromanipulation of sperm by a laser generated optical trap,” Fertil. Steril. 52, 870–873 (1989).
[PubMed]

Perkins, T. T.

T. T. Perkins, D. E. Smith, R. G. Larson, S. Chu, “Stretching of a single tethered polymer in a uniform flow,” Science 268, 83–87 (1995).
[CrossRef] [PubMed]

Ren, K. F.

Roosen, R.

R. Roosen, B. Delaunay, C. Imbert, “Etude de la pression de radiation exercée par un faisceau lumineux sur une sphère réfringente,” J. Opt. (Paris) 8, 181–187 (1977).
[CrossRef]

Sato, S.

Sawada, R.

E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, R. Sawada, “Optically induced rotation of dissymmetrically shaped fluorinated polyimide micro-objects in optical traps,” J. Appl. Phys. 82, 2773–2779 (1997).
[CrossRef]

Scaeffer, M.

Sheetz, M.

S. C. Kuo, M. Sheetz, “Optical tweezers in cell biology,” Trends Cell Biol. 2, 116–118 (1992).
[CrossRef] [PubMed]

Sidick, E.

E. Sidick, S. D. Collins, A. Knoesen, “Optical tweezers based on near infrared diode laser,” J. Biomed. Opt. 2, 332–339 (1997).
[CrossRef]

Sloot, P. M.

Smith, D. E.

T. T. Perkins, D. E. Smith, R. G. Larson, S. Chu, “Stretching of a single tethered polymer in a uniform flow,” Science 268, 83–87 (1995).
[CrossRef] [PubMed]

Sonek, G. J.

W. H. Wright, G. J. Sonek, W. M. Berns, “Parametric study of forces on microspheres held in optical tweezers,” Appl. Opt. 33, 1735–1748 (1995).
[CrossRef]

W. H. Wright, G. J. Sonek, Y. Tadir, M. W. Berns, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148–2157 (1990).
[CrossRef]

Swartzlander, G. A.

Tadir, Y.

W. H. Wright, G. J. Sonek, Y. Tadir, M. W. Berns, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148–2157 (1990).
[CrossRef]

Y. Tadir, W. H. Wright, O. Vafa, T. Ord, R. H. Asch, M. W. Berns, “Micromanipulation of sperm by a laser generated optical trap,” Fertil. Steril. 52, 870–873 (1989).
[PubMed]

Tamamura, T.

E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, R. Sawada, “Optically induced rotation of dissymmetrically shaped fluorinated polyimide micro-objects in optical traps,” J. Appl. Phys. 82, 2773–2779 (1997).
[CrossRef]

Tanaka, H.

E. Higurashi, H. Tanaka, O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64, 2209–2210 (1994).
[CrossRef]

Ukita, H.

E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, R. Sawada, “Optically induced rotation of dissymmetrically shaped fluorinated polyimide micro-objects in optical traps,” J. Appl. Phys. 82, 2773–2779 (1997).
[CrossRef]

Vafa, O.

Y. Tadir, W. H. Wright, O. Vafa, T. Ord, R. H. Asch, M. W. Berns, “Micromanipulation of sperm by a laser generated optical trap,” Fertil. Steril. 52, 870–873 (1989).
[PubMed]

Visscher, K.

K. Visscher, G. J. Brakenhoff, “Theoretical study of optically induced forces on spherical particles in a single beam trap. II: Mie scatterers,” Optik (Stuttgart) 90, 57–60 (1992).

Wright, W. H.

W. H. Wright, G. J. Sonek, W. M. Berns, “Parametric study of forces on microspheres held in optical tweezers,” Appl. Opt. 33, 1735–1748 (1995).
[CrossRef]

W. H. Wright, G. J. Sonek, Y. Tadir, M. W. Berns, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148–2157 (1990).
[CrossRef]

Y. Tadir, W. H. Wright, O. Vafa, T. Ord, R. H. Asch, M. W. Berns, “Micromanipulation of sperm by a laser generated optical trap,” Fertil. Steril. 52, 870–873 (1989).
[PubMed]

Appl. Opt.

Appl. Phys. Lett.

E. Higurashi, H. Tanaka, O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64, 2209–2210 (1994).
[CrossRef]

R. C. Gauthier, “Ray optics model and numerical computations for the radiation pressure micromotor,” Appl. Phys. Lett. 67, 2269–2271 (1995).
[CrossRef]

R. C. Gauthier, “Theoretical model for an improved radiation pressure micromotor,” Appl. Phys. Lett. 69, 2015–2017 (1996).
[CrossRef]

Biophys. J.

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
[CrossRef] [PubMed]

Fertil. Steril.

Y. Tadir, W. H. Wright, O. Vafa, T. Ord, R. H. Asch, M. W. Berns, “Micromanipulation of sperm by a laser generated optical trap,” Fertil. Steril. 52, 870–873 (1989).
[PubMed]

IEEE J. Quantum Electron.

W. H. Wright, G. J. Sonek, Y. Tadir, M. W. Berns, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148–2157 (1990).
[CrossRef]

J. Appl. Phys.

E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, R. Sawada, “Optically induced rotation of dissymmetrically shaped fluorinated polyimide micro-objects in optical traps,” J. Appl. Phys. 82, 2773–2779 (1997).
[CrossRef]

J. Biomed. Opt.

E. Sidick, S. D. Collins, A. Knoesen, “Optical tweezers based on near infrared diode laser,” J. Biomed. Opt. 2, 332–339 (1997).
[CrossRef]

J. Opt. (Paris)

R. Roosen, B. Delaunay, C. Imbert, “Etude de la pression de radiation exercée par un faisceau lumineux sur une sphère réfringente,” J. Opt. (Paris) 8, 181–187 (1977).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Laser Technol.

R. C. Gauthier, “Optical trapping: a tool to assist in micro-machining,” Opt. Laser Technol. 29, 389–399 (1997).
[CrossRef]

Opt. Lett.

Optik (Stuttgart)

K. Visscher, G. J. Brakenhoff, “Theoretical study of optically induced forces on spherical particles in a single beam trap. II: Mie scatterers,” Optik (Stuttgart) 90, 57–60 (1992).

Photon. Spectra

R. Lewis, “Special delivery of sperm,” Photon. Spectra July, 44–45 (1996).

Phys. Rev. Lett.

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Science

T. T. Perkins, D. E. Smith, R. G. Larson, S. Chu, “Stretching of a single tethered polymer in a uniform flow,” Science 268, 83–87 (1995).
[CrossRef] [PubMed]

Trends Cell Biol.

S. C. Kuo, M. Sheetz, “Optical tweezers in cell biology,” Trends Cell Biol. 2, 116–118 (1992).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Three of the possible orientations of a flat-end cylinder with respect to the propagation axis of the focused laser beam. Short-length cylinders line up with their central axis transverse to the beam; long cylinders line up perfectly with the beam; intermediate cylinders align with the longest diagonal dimension aligned with the beam.

Fig. 2
Fig. 2

Plot of the radial force versus the X and the Y coordinates for a 40-µm-length, 5-µm-diameter cylinder with its central axis in the XY plane. The radial force is negative when the center of the beam is not along the central axis, indicating that a centering force is present that pulls the cylinder into alignment with the beam.

Fig. 3
Fig. 3

Top-down laser-trap experimental configuration. The bottom-up trap is obtained by inversion of this trap.

Fig. 4
Fig. 4

Manipulation of a 5-µm cylinder in the plane transverse to the laser beam’s propagation axis. The shorter cylinder is displaced and rotated to the other side of the larger immobile cylinder. The experiment was performed with the top-down trap.

Fig. 5
Fig. 5

Trapping and rotation of a 26-µm-length cylinder. The cylinder comes to a stable inclination of 3° with respect to the beam’s propagation axis. This experiment was performed with the bottom-up trap.

Fig. 6
Fig. 6

Graph of the theoretically predicted stable orientation angle for 5-µm-diameter cylinders with lengths ranging between 10 and 35 µm.

Fig. 7
Fig. 7

Trapping and rotation of a 13-µm-length cylinder. The cylinder comes to a stable inclination of 11° with respect to the beam’s propagation axis. This experiment was performed with the bottom-up trap.

Fig. 8
Fig. 8

Trapping and rotation of a 15-µm-length cylinder. The cylinder comes to a stable inclination of 8° with respect to the beam’s propagation axis. In the image sequence (d) to (h) the cylinder is displaced relative to the background while being aligned with the laser beam. This experiment was performed with the bottom-up trap.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Fr=±Fx2+Fy21/2,

Metrics