Abstract

Contributions to the acoustic signal sensitivity of fiber distributed-feedback (DFB) lasers in air are investigated both theoretically and experimentally. The theoretical results show that the dominant contribution to the laser frequency shift comes from adiabatic temperature shifts in the surrounding air at lower frequencies and from pressure at higher frequencies. The transition frequency was found to be between 5 and 20 kHz, depending on the elastic boundary conditions of the fiber laser. The acoustically induced frequency shifts of two fiber DFB lasers were measured, and the sensitivities varied from 0.61 MHz/Pa at a 100-Hz acoustic frequency to 0.34 kHz/Pa at a 15-kHz acoustic frequency.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Bucaro, H. D. Dardy, E. F. Carome, “Fiber-optic hydrophone,” J. Acoust. Soc. Am. 62, 1302–1304 (1977).
    [CrossRef]
  2. A. D. Kersey, “A review of recent developments in fiber optic sensor technology,” Opt. Fiber Technol. 2, 291–316 (1996).
    [CrossRef]
  3. S. Knudsen, K. Bløtekjær, “An ultrasonic fiber-optic hydrophone incorperating a push–pull transducer in a Sagnac interferometer,” J. Lightwave Technol. 12, 1696–1700 (1994).
    [CrossRef]
  4. S.-T. Shih, “Wide-band polarization-insensitive fiber optic acoustic sensors,” Opt. Eng. 37, 968–976 (1998).
    [CrossRef]
  5. W. W. Morey, G. Meltz, W. H. Glenn, “Fiber optic Bragg grating sensors,” in Fiber Optic and Laser Sensors VII, R. P. DePaula, E. Udd, eds., Proc. SPIE1169, 98–107 (1989).
    [CrossRef]
  6. A. D. Kersey, M. A. Davis, H. J. Patrick, M. L. K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
    [CrossRef]
  7. N. E. Fisher, J. Surowiec, D. J. Webb, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “In-fibre Bragg gratings for ultrasonic medical applications,” Meas. Sci. Technol. 8, 1050–1054 (1997).
    [CrossRef]
  8. N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “Ultrasonic field and temperature sensor based on short in-fibre Bragg gratings,” Electron. Lett. 34, 1139–1140 (1998).
    [CrossRef]
  9. N. Takahashi, A. Hirose, S. Takahashi, “Underwater acoustic sensor with fiber Bragg grating,” Opt. Rev. 4, 691–694 (1997).
    [CrossRef]
  10. M. G. Xu, L. Reekie, Y. T. Chow, J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29, 398–399 (1993).
    [CrossRef]
  11. K. P. Koo, A. D. Kersey, “Noise and cross talk of a 4-element serial fiber laser sensor array,” in Optical Fiber Communication Conference, Vol. 2 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), paper ThP2, pp. 266–267.
  12. K. P. Koo, A. D. Kersey, “Bragg grating-based laser sensor systems with interferometric interrogation and wavelength division multiplexing,” J. Lightwave Technol. 13, 1243–1249 (1995).
    [CrossRef]
  13. J. Hübner, P. Varming, M. Kristiansen, “Five wavelength DFB fiber laser source for WDM systems,” Electron. Lett. 33, 139–140 (1997).
    [CrossRef]
  14. E. Rønnekleiv, S. W. Løvseth, “Stability of distributed feedback fiber lasers with optical feedback,” in Thirteenth International Conference on Optical Fiber Sensors, B. Y. Kim, K. Hotate, eds., Proc. SPIE3746, 466–469 (1999).
  15. J. T. Kringlebotn, J. Archambault, L. Reekie, D. N. Payne, “Er+3:Yb3+-codoped fiber distributed-feedback laser,” Opt. Lett. 19, 2101–2103 (1994).
    [CrossRef] [PubMed]
  16. P. M. Morse, K. U. Ingard, Theoretical Acoustics (Princeton U. Press, Princeton, N.J., 1986).
  17. P. C. Riedi, “First Law of Thermodynamics,” in An Introduction to Thermodynamics, Statistical Mechanics and Kinetic Theory (MacMillan, London, 1976), Chaps. 2; P. C. Riedi, “Second Law of Thermodynamics,” in An Introduction to Thermodynamics, Statistical Mechanics and Kinetic Theory (MacMillan, London, 1976), Chap. 3.
  18. F. P. Incropera, D. P. DeWitt, Fundamentals of Heat and Mass Transfer, 3rd ed. (Wiley, New York, 1990).
  19. S. Takahashi, S. Shibita, “Thermal variation of attenuiation for optical fibers,” J. Non-Cryst. Solids 30, 359–370 (1978).
    [CrossRef]
  20. A. Bertholds, R. Dändliker, “Determination of the individual strain-optic coefficient in single-mode optical fibers,” J. Lightwave Technol. 6, 17–20 (1988).
    [CrossRef]
  21. S. P. Timoshenko, J. N. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1970).
  22. N. Lagakos, J. H. Cole, J. A. Bucaro, “Ultrasonic sensitivity of coated fibers,” J. Lightwave Technol. 1, 495–497 (1983).
    [CrossRef]
  23. D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).
    [CrossRef]
  24. S. Knudsen, “Fiber-optic acoustic sensors based on the Michelson and Sagnac interferometers: responsivity and noise properties,” Ph.D. dissertation (Department of Physical Electronics, University of Trondheim, Trondheim, Norway, 1996).
  25. E. Rønnekleiv, M. Ibsen, M. N. Zervas, R. I. Laming, “Characterization of intensity distribution in symmetric and asymmetric fiber DFB lasers,” in Conference on Lasers and Electro-Optics, Vol. 6 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 80.
  26. O. Hadeler, E. Rønnekleiv, M. Ibsen, R. I. Laming, “Polarimetric distributed feedback fiber laser sensor for simultaneous strain and temperature measurements,” Appl. Opt. 38, 1953–1958 (1999).
    [CrossRef]
  27. S. W. Churchill, H. H. S. Chu, “Correlating equations for laminar and turbulent free convection from a horizontal cylinder,” Int. J. Heat Mass Transfer 18, 1049–1053 (1975).
    [CrossRef]
  28. S. Nakai, T. Okazaki, “Heat transfer from a horizontal circular wire at small Reynolds and Grashof numbers—I: pure convection,” Int. J. Heat Mass Transfer 18, 387–396 (1975).
    [CrossRef]
  29. S. W. Churchill, M. Bernstein, “A correlating equation for forced convection from gases and liquids to a circular cylinder in cross flow,” J. Heat Transfer 99, 300–306 (1977).
    [CrossRef]
  30. V. T. Morgan, “The overall convective heat transfer from smooth circular cylinders,” in Advances in Heat Transfer, T. F. Irvine, J. P. Hartnett, eds. (Academic, New York, 1975), Vol. 11, pp. 199–264.
    [CrossRef]
  31. J. F. Nye, Physical Properties of Crystals (Oxford U. Press, Oxford, 1985).

1999 (1)

1998 (2)

S.-T. Shih, “Wide-band polarization-insensitive fiber optic acoustic sensors,” Opt. Eng. 37, 968–976 (1998).
[CrossRef]

N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “Ultrasonic field and temperature sensor based on short in-fibre Bragg gratings,” Electron. Lett. 34, 1139–1140 (1998).
[CrossRef]

1997 (4)

N. Takahashi, A. Hirose, S. Takahashi, “Underwater acoustic sensor with fiber Bragg grating,” Opt. Rev. 4, 691–694 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. L. K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
[CrossRef]

N. E. Fisher, J. Surowiec, D. J. Webb, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “In-fibre Bragg gratings for ultrasonic medical applications,” Meas. Sci. Technol. 8, 1050–1054 (1997).
[CrossRef]

J. Hübner, P. Varming, M. Kristiansen, “Five wavelength DFB fiber laser source for WDM systems,” Electron. Lett. 33, 139–140 (1997).
[CrossRef]

1996 (1)

A. D. Kersey, “A review of recent developments in fiber optic sensor technology,” Opt. Fiber Technol. 2, 291–316 (1996).
[CrossRef]

1995 (1)

K. P. Koo, A. D. Kersey, “Bragg grating-based laser sensor systems with interferometric interrogation and wavelength division multiplexing,” J. Lightwave Technol. 13, 1243–1249 (1995).
[CrossRef]

1994 (2)

S. Knudsen, K. Bløtekjær, “An ultrasonic fiber-optic hydrophone incorperating a push–pull transducer in a Sagnac interferometer,” J. Lightwave Technol. 12, 1696–1700 (1994).
[CrossRef]

J. T. Kringlebotn, J. Archambault, L. Reekie, D. N. Payne, “Er+3:Yb3+-codoped fiber distributed-feedback laser,” Opt. Lett. 19, 2101–2103 (1994).
[CrossRef] [PubMed]

1993 (1)

M. G. Xu, L. Reekie, Y. T. Chow, J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29, 398–399 (1993).
[CrossRef]

1988 (1)

A. Bertholds, R. Dändliker, “Determination of the individual strain-optic coefficient in single-mode optical fibers,” J. Lightwave Technol. 6, 17–20 (1988).
[CrossRef]

1983 (1)

N. Lagakos, J. H. Cole, J. A. Bucaro, “Ultrasonic sensitivity of coated fibers,” J. Lightwave Technol. 1, 495–497 (1983).
[CrossRef]

1978 (1)

S. Takahashi, S. Shibita, “Thermal variation of attenuiation for optical fibers,” J. Non-Cryst. Solids 30, 359–370 (1978).
[CrossRef]

1977 (3)

S. W. Churchill, M. Bernstein, “A correlating equation for forced convection from gases and liquids to a circular cylinder in cross flow,” J. Heat Transfer 99, 300–306 (1977).
[CrossRef]

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).
[CrossRef]

J. A. Bucaro, H. D. Dardy, E. F. Carome, “Fiber-optic hydrophone,” J. Acoust. Soc. Am. 62, 1302–1304 (1977).
[CrossRef]

1975 (2)

S. W. Churchill, H. H. S. Chu, “Correlating equations for laminar and turbulent free convection from a horizontal cylinder,” Int. J. Heat Mass Transfer 18, 1049–1053 (1975).
[CrossRef]

S. Nakai, T. Okazaki, “Heat transfer from a horizontal circular wire at small Reynolds and Grashof numbers—I: pure convection,” Int. J. Heat Mass Transfer 18, 387–396 (1975).
[CrossRef]

Archambault, J.

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. L. K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
[CrossRef]

Bennion, I.

N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “Ultrasonic field and temperature sensor based on short in-fibre Bragg gratings,” Electron. Lett. 34, 1139–1140 (1998).
[CrossRef]

N. E. Fisher, J. Surowiec, D. J. Webb, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “In-fibre Bragg gratings for ultrasonic medical applications,” Meas. Sci. Technol. 8, 1050–1054 (1997).
[CrossRef]

Bernstein, M.

S. W. Churchill, M. Bernstein, “A correlating equation for forced convection from gases and liquids to a circular cylinder in cross flow,” J. Heat Transfer 99, 300–306 (1977).
[CrossRef]

Bertholds, A.

A. Bertholds, R. Dändliker, “Determination of the individual strain-optic coefficient in single-mode optical fibers,” J. Lightwave Technol. 6, 17–20 (1988).
[CrossRef]

Bløtekjær, K.

S. Knudsen, K. Bløtekjær, “An ultrasonic fiber-optic hydrophone incorperating a push–pull transducer in a Sagnac interferometer,” J. Lightwave Technol. 12, 1696–1700 (1994).
[CrossRef]

Bucaro, J. A.

N. Lagakos, J. H. Cole, J. A. Bucaro, “Ultrasonic sensitivity of coated fibers,” J. Lightwave Technol. 1, 495–497 (1983).
[CrossRef]

J. A. Bucaro, H. D. Dardy, E. F. Carome, “Fiber-optic hydrophone,” J. Acoust. Soc. Am. 62, 1302–1304 (1977).
[CrossRef]

Carome, E. F.

J. A. Bucaro, H. D. Dardy, E. F. Carome, “Fiber-optic hydrophone,” J. Acoust. Soc. Am. 62, 1302–1304 (1977).
[CrossRef]

Chow, Y. T.

M. G. Xu, L. Reekie, Y. T. Chow, J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29, 398–399 (1993).
[CrossRef]

Chu, H. H. S.

S. W. Churchill, H. H. S. Chu, “Correlating equations for laminar and turbulent free convection from a horizontal cylinder,” Int. J. Heat Mass Transfer 18, 1049–1053 (1975).
[CrossRef]

Churchill, S. W.

S. W. Churchill, M. Bernstein, “A correlating equation for forced convection from gases and liquids to a circular cylinder in cross flow,” J. Heat Transfer 99, 300–306 (1977).
[CrossRef]

S. W. Churchill, H. H. S. Chu, “Correlating equations for laminar and turbulent free convection from a horizontal cylinder,” Int. J. Heat Mass Transfer 18, 1049–1053 (1975).
[CrossRef]

Cole, J. H.

N. Lagakos, J. H. Cole, J. A. Bucaro, “Ultrasonic sensitivity of coated fibers,” J. Lightwave Technol. 1, 495–497 (1983).
[CrossRef]

Dakin, J. P.

M. G. Xu, L. Reekie, Y. T. Chow, J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29, 398–399 (1993).
[CrossRef]

Dändliker, R.

A. Bertholds, R. Dändliker, “Determination of the individual strain-optic coefficient in single-mode optical fibers,” J. Lightwave Technol. 6, 17–20 (1988).
[CrossRef]

Dardy, H. D.

J. A. Bucaro, H. D. Dardy, E. F. Carome, “Fiber-optic hydrophone,” J. Acoust. Soc. Am. 62, 1302–1304 (1977).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. L. K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
[CrossRef]

DeWitt, D. P.

F. P. Incropera, D. P. DeWitt, Fundamentals of Heat and Mass Transfer, 3rd ed. (Wiley, New York, 1990).

Fisher, N. E.

N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “Ultrasonic field and temperature sensor based on short in-fibre Bragg gratings,” Electron. Lett. 34, 1139–1140 (1998).
[CrossRef]

N. E. Fisher, J. Surowiec, D. J. Webb, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “In-fibre Bragg gratings for ultrasonic medical applications,” Meas. Sci. Technol. 8, 1050–1054 (1997).
[CrossRef]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. L. K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
[CrossRef]

Gavrilov, L. R.

N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “Ultrasonic field and temperature sensor based on short in-fibre Bragg gratings,” Electron. Lett. 34, 1139–1140 (1998).
[CrossRef]

N. E. Fisher, J. Surowiec, D. J. Webb, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “In-fibre Bragg gratings for ultrasonic medical applications,” Meas. Sci. Technol. 8, 1050–1054 (1997).
[CrossRef]

Glenn, W. H.

W. W. Morey, G. Meltz, W. H. Glenn, “Fiber optic Bragg grating sensors,” in Fiber Optic and Laser Sensors VII, R. P. DePaula, E. Udd, eds., Proc. SPIE1169, 98–107 (1989).
[CrossRef]

Goodier, J. N.

S. P. Timoshenko, J. N. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1970).

Hadeler, O.

Hand, J. W.

N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “Ultrasonic field and temperature sensor based on short in-fibre Bragg gratings,” Electron. Lett. 34, 1139–1140 (1998).
[CrossRef]

N. E. Fisher, J. Surowiec, D. J. Webb, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “In-fibre Bragg gratings for ultrasonic medical applications,” Meas. Sci. Technol. 8, 1050–1054 (1997).
[CrossRef]

Hirose, A.

N. Takahashi, A. Hirose, S. Takahashi, “Underwater acoustic sensor with fiber Bragg grating,” Opt. Rev. 4, 691–694 (1997).
[CrossRef]

Hübner, J.

J. Hübner, P. Varming, M. Kristiansen, “Five wavelength DFB fiber laser source for WDM systems,” Electron. Lett. 33, 139–140 (1997).
[CrossRef]

Ibsen, M.

O. Hadeler, E. Rønnekleiv, M. Ibsen, R. I. Laming, “Polarimetric distributed feedback fiber laser sensor for simultaneous strain and temperature measurements,” Appl. Opt. 38, 1953–1958 (1999).
[CrossRef]

E. Rønnekleiv, M. Ibsen, M. N. Zervas, R. I. Laming, “Characterization of intensity distribution in symmetric and asymmetric fiber DFB lasers,” in Conference on Lasers and Electro-Optics, Vol. 6 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 80.

Incropera, F. P.

F. P. Incropera, D. P. DeWitt, Fundamentals of Heat and Mass Transfer, 3rd ed. (Wiley, New York, 1990).

Ingard, K. U.

P. M. Morse, K. U. Ingard, Theoretical Acoustics (Princeton U. Press, Princeton, N.J., 1986).

Jackson, D. A.

N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “Ultrasonic field and temperature sensor based on short in-fibre Bragg gratings,” Electron. Lett. 34, 1139–1140 (1998).
[CrossRef]

N. E. Fisher, J. Surowiec, D. J. Webb, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “In-fibre Bragg gratings for ultrasonic medical applications,” Meas. Sci. Technol. 8, 1050–1054 (1997).
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. L. K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
[CrossRef]

A. D. Kersey, “A review of recent developments in fiber optic sensor technology,” Opt. Fiber Technol. 2, 291–316 (1996).
[CrossRef]

K. P. Koo, A. D. Kersey, “Bragg grating-based laser sensor systems with interferometric interrogation and wavelength division multiplexing,” J. Lightwave Technol. 13, 1243–1249 (1995).
[CrossRef]

K. P. Koo, A. D. Kersey, “Noise and cross talk of a 4-element serial fiber laser sensor array,” in Optical Fiber Communication Conference, Vol. 2 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), paper ThP2, pp. 266–267.

Knudsen, S.

S. Knudsen, K. Bløtekjær, “An ultrasonic fiber-optic hydrophone incorperating a push–pull transducer in a Sagnac interferometer,” J. Lightwave Technol. 12, 1696–1700 (1994).
[CrossRef]

S. Knudsen, “Fiber-optic acoustic sensors based on the Michelson and Sagnac interferometers: responsivity and noise properties,” Ph.D. dissertation (Department of Physical Electronics, University of Trondheim, Trondheim, Norway, 1996).

Koo, K. P.

K. P. Koo, A. D. Kersey, “Bragg grating-based laser sensor systems with interferometric interrogation and wavelength division multiplexing,” J. Lightwave Technol. 13, 1243–1249 (1995).
[CrossRef]

K. P. Koo, A. D. Kersey, “Noise and cross talk of a 4-element serial fiber laser sensor array,” in Optical Fiber Communication Conference, Vol. 2 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), paper ThP2, pp. 266–267.

Koo, M. L. K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. L. K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
[CrossRef]

Kringlebotn, J. T.

Kristiansen, M.

J. Hübner, P. Varming, M. Kristiansen, “Five wavelength DFB fiber laser source for WDM systems,” Electron. Lett. 33, 139–140 (1997).
[CrossRef]

Lagakos, N.

N. Lagakos, J. H. Cole, J. A. Bucaro, “Ultrasonic sensitivity of coated fibers,” J. Lightwave Technol. 1, 495–497 (1983).
[CrossRef]

Laming, R. I.

O. Hadeler, E. Rønnekleiv, M. Ibsen, R. I. Laming, “Polarimetric distributed feedback fiber laser sensor for simultaneous strain and temperature measurements,” Appl. Opt. 38, 1953–1958 (1999).
[CrossRef]

E. Rønnekleiv, M. Ibsen, M. N. Zervas, R. I. Laming, “Characterization of intensity distribution in symmetric and asymmetric fiber DFB lasers,” in Conference on Lasers and Electro-Optics, Vol. 6 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 80.

Løvseth, S. W.

E. Rønnekleiv, S. W. Løvseth, “Stability of distributed feedback fiber lasers with optical feedback,” in Thirteenth International Conference on Optical Fiber Sensors, B. Y. Kim, K. Hotate, eds., Proc. SPIE3746, 466–469 (1999).

Marcuse, D.

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).
[CrossRef]

Meltz, G.

W. W. Morey, G. Meltz, W. H. Glenn, “Fiber optic Bragg grating sensors,” in Fiber Optic and Laser Sensors VII, R. P. DePaula, E. Udd, eds., Proc. SPIE1169, 98–107 (1989).
[CrossRef]

Morey, W. W.

W. W. Morey, G. Meltz, W. H. Glenn, “Fiber optic Bragg grating sensors,” in Fiber Optic and Laser Sensors VII, R. P. DePaula, E. Udd, eds., Proc. SPIE1169, 98–107 (1989).
[CrossRef]

Morgan, V. T.

V. T. Morgan, “The overall convective heat transfer from smooth circular cylinders,” in Advances in Heat Transfer, T. F. Irvine, J. P. Hartnett, eds. (Academic, New York, 1975), Vol. 11, pp. 199–264.
[CrossRef]

Morse, P. M.

P. M. Morse, K. U. Ingard, Theoretical Acoustics (Princeton U. Press, Princeton, N.J., 1986).

Nakai, S.

S. Nakai, T. Okazaki, “Heat transfer from a horizontal circular wire at small Reynolds and Grashof numbers—I: pure convection,” Int. J. Heat Mass Transfer 18, 387–396 (1975).
[CrossRef]

Nye, J. F.

J. F. Nye, Physical Properties of Crystals (Oxford U. Press, Oxford, 1985).

Okazaki, T.

S. Nakai, T. Okazaki, “Heat transfer from a horizontal circular wire at small Reynolds and Grashof numbers—I: pure convection,” Int. J. Heat Mass Transfer 18, 387–396 (1975).
[CrossRef]

Pannell, C. N.

N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “Ultrasonic field and temperature sensor based on short in-fibre Bragg gratings,” Electron. Lett. 34, 1139–1140 (1998).
[CrossRef]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. L. K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
[CrossRef]

Payne, D. N.

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. L. K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
[CrossRef]

Reekie, L.

J. T. Kringlebotn, J. Archambault, L. Reekie, D. N. Payne, “Er+3:Yb3+-codoped fiber distributed-feedback laser,” Opt. Lett. 19, 2101–2103 (1994).
[CrossRef] [PubMed]

M. G. Xu, L. Reekie, Y. T. Chow, J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29, 398–399 (1993).
[CrossRef]

Riedi, P. C.

P. C. Riedi, “First Law of Thermodynamics,” in An Introduction to Thermodynamics, Statistical Mechanics and Kinetic Theory (MacMillan, London, 1976), Chaps. 2; P. C. Riedi, “Second Law of Thermodynamics,” in An Introduction to Thermodynamics, Statistical Mechanics and Kinetic Theory (MacMillan, London, 1976), Chap. 3.

Rønnekleiv, E.

O. Hadeler, E. Rønnekleiv, M. Ibsen, R. I. Laming, “Polarimetric distributed feedback fiber laser sensor for simultaneous strain and temperature measurements,” Appl. Opt. 38, 1953–1958 (1999).
[CrossRef]

E. Rønnekleiv, S. W. Løvseth, “Stability of distributed feedback fiber lasers with optical feedback,” in Thirteenth International Conference on Optical Fiber Sensors, B. Y. Kim, K. Hotate, eds., Proc. SPIE3746, 466–469 (1999).

E. Rønnekleiv, M. Ibsen, M. N. Zervas, R. I. Laming, “Characterization of intensity distribution in symmetric and asymmetric fiber DFB lasers,” in Conference on Lasers and Electro-Optics, Vol. 6 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 80.

Shibita, S.

S. Takahashi, S. Shibita, “Thermal variation of attenuiation for optical fibers,” J. Non-Cryst. Solids 30, 359–370 (1978).
[CrossRef]

Shih, S.-T.

S.-T. Shih, “Wide-band polarization-insensitive fiber optic acoustic sensors,” Opt. Eng. 37, 968–976 (1998).
[CrossRef]

Surowiec, J.

N. E. Fisher, J. Surowiec, D. J. Webb, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “In-fibre Bragg gratings for ultrasonic medical applications,” Meas. Sci. Technol. 8, 1050–1054 (1997).
[CrossRef]

Takahashi, N.

N. Takahashi, A. Hirose, S. Takahashi, “Underwater acoustic sensor with fiber Bragg grating,” Opt. Rev. 4, 691–694 (1997).
[CrossRef]

Takahashi, S.

N. Takahashi, A. Hirose, S. Takahashi, “Underwater acoustic sensor with fiber Bragg grating,” Opt. Rev. 4, 691–694 (1997).
[CrossRef]

S. Takahashi, S. Shibita, “Thermal variation of attenuiation for optical fibers,” J. Non-Cryst. Solids 30, 359–370 (1978).
[CrossRef]

Timoshenko, S. P.

S. P. Timoshenko, J. N. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1970).

Varming, P.

J. Hübner, P. Varming, M. Kristiansen, “Five wavelength DFB fiber laser source for WDM systems,” Electron. Lett. 33, 139–140 (1997).
[CrossRef]

Webb, D. J.

N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “Ultrasonic field and temperature sensor based on short in-fibre Bragg gratings,” Electron. Lett. 34, 1139–1140 (1998).
[CrossRef]

N. E. Fisher, J. Surowiec, D. J. Webb, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “In-fibre Bragg gratings for ultrasonic medical applications,” Meas. Sci. Technol. 8, 1050–1054 (1997).
[CrossRef]

Xu, M. G.

M. G. Xu, L. Reekie, Y. T. Chow, J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29, 398–399 (1993).
[CrossRef]

Zervas, M. N.

E. Rønnekleiv, M. Ibsen, M. N. Zervas, R. I. Laming, “Characterization of intensity distribution in symmetric and asymmetric fiber DFB lasers,” in Conference on Lasers and Electro-Optics, Vol. 6 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 80.

Zhang, L.

N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “Ultrasonic field and temperature sensor based on short in-fibre Bragg gratings,” Electron. Lett. 34, 1139–1140 (1998).
[CrossRef]

N. E. Fisher, J. Surowiec, D. J. Webb, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “In-fibre Bragg gratings for ultrasonic medical applications,” Meas. Sci. Technol. 8, 1050–1054 (1997).
[CrossRef]

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).
[CrossRef]

Electron. Lett. (3)

N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “Ultrasonic field and temperature sensor based on short in-fibre Bragg gratings,” Electron. Lett. 34, 1139–1140 (1998).
[CrossRef]

J. Hübner, P. Varming, M. Kristiansen, “Five wavelength DFB fiber laser source for WDM systems,” Electron. Lett. 33, 139–140 (1997).
[CrossRef]

M. G. Xu, L. Reekie, Y. T. Chow, J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29, 398–399 (1993).
[CrossRef]

Int. J. Heat Mass Transfer (2)

S. W. Churchill, H. H. S. Chu, “Correlating equations for laminar and turbulent free convection from a horizontal cylinder,” Int. J. Heat Mass Transfer 18, 1049–1053 (1975).
[CrossRef]

S. Nakai, T. Okazaki, “Heat transfer from a horizontal circular wire at small Reynolds and Grashof numbers—I: pure convection,” Int. J. Heat Mass Transfer 18, 387–396 (1975).
[CrossRef]

J. Acoust. Soc. Am. (1)

J. A. Bucaro, H. D. Dardy, E. F. Carome, “Fiber-optic hydrophone,” J. Acoust. Soc. Am. 62, 1302–1304 (1977).
[CrossRef]

J. Heat Transfer (1)

S. W. Churchill, M. Bernstein, “A correlating equation for forced convection from gases and liquids to a circular cylinder in cross flow,” J. Heat Transfer 99, 300–306 (1977).
[CrossRef]

J. Lightwave Technol. (5)

A. Bertholds, R. Dändliker, “Determination of the individual strain-optic coefficient in single-mode optical fibers,” J. Lightwave Technol. 6, 17–20 (1988).
[CrossRef]

N. Lagakos, J. H. Cole, J. A. Bucaro, “Ultrasonic sensitivity of coated fibers,” J. Lightwave Technol. 1, 495–497 (1983).
[CrossRef]

S. Knudsen, K. Bløtekjær, “An ultrasonic fiber-optic hydrophone incorperating a push–pull transducer in a Sagnac interferometer,” J. Lightwave Technol. 12, 1696–1700 (1994).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. L. K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
[CrossRef]

K. P. Koo, A. D. Kersey, “Bragg grating-based laser sensor systems with interferometric interrogation and wavelength division multiplexing,” J. Lightwave Technol. 13, 1243–1249 (1995).
[CrossRef]

J. Non-Cryst. Solids (1)

S. Takahashi, S. Shibita, “Thermal variation of attenuiation for optical fibers,” J. Non-Cryst. Solids 30, 359–370 (1978).
[CrossRef]

Meas. Sci. Technol. (1)

N. E. Fisher, J. Surowiec, D. J. Webb, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “In-fibre Bragg gratings for ultrasonic medical applications,” Meas. Sci. Technol. 8, 1050–1054 (1997).
[CrossRef]

Opt. Eng. (1)

S.-T. Shih, “Wide-band polarization-insensitive fiber optic acoustic sensors,” Opt. Eng. 37, 968–976 (1998).
[CrossRef]

Opt. Fiber Technol. (1)

A. D. Kersey, “A review of recent developments in fiber optic sensor technology,” Opt. Fiber Technol. 2, 291–316 (1996).
[CrossRef]

Opt. Lett. (1)

Opt. Rev. (1)

N. Takahashi, A. Hirose, S. Takahashi, “Underwater acoustic sensor with fiber Bragg grating,” Opt. Rev. 4, 691–694 (1997).
[CrossRef]

Other (11)

W. W. Morey, G. Meltz, W. H. Glenn, “Fiber optic Bragg grating sensors,” in Fiber Optic and Laser Sensors VII, R. P. DePaula, E. Udd, eds., Proc. SPIE1169, 98–107 (1989).
[CrossRef]

K. P. Koo, A. D. Kersey, “Noise and cross talk of a 4-element serial fiber laser sensor array,” in Optical Fiber Communication Conference, Vol. 2 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), paper ThP2, pp. 266–267.

E. Rønnekleiv, S. W. Løvseth, “Stability of distributed feedback fiber lasers with optical feedback,” in Thirteenth International Conference on Optical Fiber Sensors, B. Y. Kim, K. Hotate, eds., Proc. SPIE3746, 466–469 (1999).

P. M. Morse, K. U. Ingard, Theoretical Acoustics (Princeton U. Press, Princeton, N.J., 1986).

P. C. Riedi, “First Law of Thermodynamics,” in An Introduction to Thermodynamics, Statistical Mechanics and Kinetic Theory (MacMillan, London, 1976), Chaps. 2; P. C. Riedi, “Second Law of Thermodynamics,” in An Introduction to Thermodynamics, Statistical Mechanics and Kinetic Theory (MacMillan, London, 1976), Chap. 3.

F. P. Incropera, D. P. DeWitt, Fundamentals of Heat and Mass Transfer, 3rd ed. (Wiley, New York, 1990).

S. P. Timoshenko, J. N. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1970).

S. Knudsen, “Fiber-optic acoustic sensors based on the Michelson and Sagnac interferometers: responsivity and noise properties,” Ph.D. dissertation (Department of Physical Electronics, University of Trondheim, Trondheim, Norway, 1996).

E. Rønnekleiv, M. Ibsen, M. N. Zervas, R. I. Laming, “Characterization of intensity distribution in symmetric and asymmetric fiber DFB lasers,” in Conference on Lasers and Electro-Optics, Vol. 6 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 80.

V. T. Morgan, “The overall convective heat transfer from smooth circular cylinders,” in Advances in Heat Transfer, T. F. Irvine, J. P. Hartnett, eds. (Academic, New York, 1975), Vol. 11, pp. 199–264.
[CrossRef]

J. F. Nye, Physical Properties of Crystals (Oxford U. Press, Oxford, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

ΔTp as a function of the radius r at acoustic frequencies of 100 Hz and 20 kHz for a stripped fiber with a radius of 62.5 µm and embedded in air at T = 300 K.

Fig. 2
Fig. 2

ΔT(r = 0)/Δp for the same fiber as that of Fig. 1.

Fig. 3
Fig. 3

Contributions to the total frequency shift Δν totp of a fiber laser made of the same fiber as that of Fig. 1 and embedded in air with acoustic waves. The contributions from the acoustic pressure Δν T and the three thermally induced terms of Eq. (10), which are the strain-independent term Δν ∊,p and the terms proportional to ∊ rr and ∊ zz , are plotted. The fiber is axially free.

Fig. 4
Fig. 4

Same as for Fig. 3 but with the fiber axially constrained.

Fig. 5
Fig. 5

Experimental setup used to measure the frequency shift of a fiber DFB laser that is due to acoustic-wave motion. PZT, piezoelectric stretcher; Pol., polarization; LPF, low-pass filter.

Fig. 6
Fig. 6

Theoretical and measured frequency shifts of laser I when exposed to an acoustic wave. The error bars show the extremal values of the measured data.

Fig. 7
Fig. 7

Same as for Fig. 6 but for laser II.

Fig. 8
Fig. 8

NEP determined by use of the acoustic sensitivity of laser I and a typical noise spectrum for a fiber DFB laser.

Fig. 9
Fig. 9

Temperature gradients in air at the fiber surface that are due to pure diffusion and to free and forced convection with f = 100 Hz versus the acoustic pressure. The gradients are calculated by use of the theory of Section 2 and Eqs. (A2)–(A5). The free convection is calculated for dc temperature differences of 1, 5, and 10 K between the fiber surface and air, but the three curves overlap.

Fig. 10
Fig. 10

Same temperature gradients as for Fig. 9 at the measured acoustic pressures versus the acoustic frequency. The measured pressure was in the range 85–125 dB re. 20 µPa.

Fig. 11
Fig. 11

rms acoustic-drift velocity, reference velocity v ref [defined in expression (A6)], and an approximate value of the drift velocity of the free convection for dc temperature differences of 1, 5, and 10 K at the frequencies and the acoustic pressures of the experiments discussed in Section 3.

Tables (2)

Tables Icon

Table 1 Parameters Used in the Calculationsa

Tables Icon

Table 2 Constants to Be Used in Empirical Formula (A5)

Equations (34)

Equations on this page are rendered with MathJax. Learn more.

dq=ρcVdT+cp-cVρTVpdV=ρcpdT-cp-cVρ Tpdp,
dq=κ2T dt+dqconv,
Tr, t=Tstatic+ΔTrexpjωt,
pr, t=pstatic+Δprexpjωt,
jωΔT=DTair2ΔT+jωΔT0,
DTair=κρcp,
ΔT0=cp-cVcpTstaticpstatic Δp.
DTairω/c2ω=DTair2πfc2=22.5×10-6 m2/s2πf350 m/s2=f0.87 GHz  1.
ΔTairr=ΔT0+C1J0ωjDTair1/2r+C2Y0ωjDTair1/2r.
ΔTfiberr=C3J0ωjDTsilica1/2r+C4Y0ωjDTsilica1/2r.
C1=T0DTsilicaDTair1/2J0ζsilicaH12ζairJ1ζsilica-H02ζair,
C2=-jC1,
C3=T0J0ζsilica-DTairDTsilica1/2H02ζairJ1ζsilicaH12ζair,
C4=0
ζair=ωjDTair1/2R,
ζsilica=ωjDTsilica1/2R,
Δννσzz,p=-zzT+1nnTσzz,pΔT=-α+ξΔT,
Δννzz,p=-peα+ξΔT,
pe=n22p12-μp11+p120.22,
Δννp=-ξ+p11+2p12n22 αΔT-1-p12n22zz+p11+p12n22 rr,
rr;i=K1;i+K2;ir2,
θθ;i=K1;i-K2;ir2,
zz;i=K3;i,
NuD=Δ2Rlimr Tr-TRTr.
NuD¯=0.60+0.387RaD1/61+0.559/Pr9/168/272, 10-5<RaD<1012,
RaD=ΔgTR-limr Tr2R3vTRDTair,
ReD=Δ2VRv.
NuD¯=D2ReDn1,
vdrift4Rf=vref.
Δni=niTΔT+nijTjniTΔT-n32 pijj,
ξ=1nnTσzz,p=1nnT-n322p12+p11α.
Δννp=-Δnn-zz,
1ΔpΔν/νσzz,T
1ΔpΔν/νzz,T

Metrics