Abstract

Trace concentrations of 1,4-dinitrobenzene (DNB) are detected by a combination of laser photolysis and laser-induced fluorescence. A one-color laser is applied to induce DNB photodissociation and for subsequent detection of NO photofragments by excitation and emission through A(v′ = 0) ← X(v″ = 0 - 2) and A(v′ = 0) → X(v″ = 0, 1) transitions, respectively. The resulting NO rovibrational excitation spectra serve as markers for the presence of DNB. The NO is produced in vibrational ground and excited states with peak height ratios of (v″ = 0):(v″ = 1):(v″ = 2) = 1:0.5:0.13. The limits of detection of DNB mixed with 100 or 500 Torr of air with v″ = 2 excitation at 248 nm are 13 and 11 parts in 109 by weight, respectively, for a 30-s integration time. The application of this scheme for DNB detection has the advantage that no ambient ground state NO interferes and that the fluorescence is collected at shorter wavelengths than the exciting radiation, precluding background fluorescence.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. I. Schiff, “Ground based measurements of atmospheric gases by spectroscopic methods,” Ber. Bunsenges. Phys. Chem. 96, 296–306 (1992).
    [CrossRef]
  2. J. Pfab, “Laser-induced fluorescence and ionization spectroscopy of gas phase species,” in Spectroscopy in Environmental Science, R. J. H. Clark, R. E. Hester, eds. (Wiley, New York, 1995), pp. 149–222.
  3. J. B. Simeonsson, R. C. Sausa, “A critical review of laser photofragmentation/fragment detection techniques for gas-phase chemical analysis,” Appl. Spectrosc. Rev. 31, 1–72 (1996).
    [CrossRef]
  4. G. W. Lemire, J. B. Simeonsson, R. C. Sausa, “Monitoring of vapor-phase nitro compounds using 226 nm radiation: fragmentation with subsequent NO resonance-enhanced multiphoton ionization,” Anal. Chem. 65, 529–533 (1993).
    [CrossRef]
  5. D. Wu, J. P. Singh, F. Y. Yueh, D. L. Monts, “2,4,6-Trinitrotoluene detection by laser-photofragmentation–laser-induced fluorescence,” Appl. Opt. 35, 3998–4003 (1996).
    [CrossRef] [PubMed]
  6. J. D. Bradshaw, M. O. Rodgers, S. T. Sandholm, S. Kesheng, D. D. Davis, “A two-photon laser-induced fluorescence field instrument for ground-based and airborne measurements of atmospheric NO,” J. Geophys. Res. 90, 12,861–12,873 (1985).
    [CrossRef]
  7. S. T. Sandholm, J. D. Bradshaw, K. S. Dorris, M. O. Rodgers, D. D. Davis, “An airborne compatible photofragmentation two-photon laser induced fluorescence instrument for measuring background tropospheric levels of NO, NOx, and NO2,” J. Geophys. Res. 95, 10,155–10,161 (1990).
    [CrossRef]
  8. N. Daugey, J. Shu, I. Bar, S. Rosenwaks, “Nitrobenzene detection by one-color laser-photolysis/laser induced fluorescence of NO (v″ = 0–3),” Appl. Spectrosc. 53, 57–64 (1999).
    [CrossRef]
  9. M. Godfrey, J. N. Murrell, “Substituent effects on the electronic spectra of aromatic hydrocarbons. III. An analysis of the spectra of amino- and nitrobenzenes in terms of the localized-orbital model,” Proc. R. Soc. London Ser. A 278, 71–90 (1964).
    [CrossRef]
  10. K. W. D. Ledingham, “The use of lasers to detect strategic and environmentally sensitive materials,” Phys. Scr. T 58, 100–103 (1995).
    [CrossRef]
  11. A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singhal, “Laser ionisation studies of nitroaromatic and NOx (x = 1 or 2) molecules in the region 224–238 nm,” Int. J. Mass Spectrom. Ion Processes 125, R21–R26 (1993).
    [CrossRef]
  12. T. E. Daubert, R. P. Danner, Physical and Thermodynamic Properties of Pure Chemicals: Data Compilation, National Standard Reference Data System and American Institute of Chemical Engineers, Part 3 (Taylor & Francis, Washington, D.C., 1994).
  13. J. Luque, D. R. Crosley, “lifbase: database and spectral simulation program (version 1.4),” (SRI International, 333 Ravenswood Ave., Menlo Park, Calif. 94025-3493, 1998).
  14. L. Bigio, R. S. Tapper, E. R. Grant, “The role of near-resonant intermediate states in the two-photon excitation of NO2: the distinct dynamics of two-photon photofragmentation,” J. Phys. Chem. 88, 1271–1273 (1984).
    [CrossRef]
  15. D. B. Galloway, J. A. Bartz, L. G. Huey, F. F. Crim, “Pathways and kinetic energy disposal in the photodissociation of nitrobenzene,” J. Chem. Phys. 98, 2107–2114 (1993).
    [CrossRef]
  16. C. Kosmidis, K. W. D. Ledingham, A. Clark, A. Marshall, R. Jennings, J. Sander, R. P. Singhal, “On the dissociation pathways of nitrobenzene,” Int. J. Mass Spectrom. Ion Processes 135, 229–242 (1994).
    [CrossRef]
  17. J. Danielak, U. Domin, R. Kepa, M. Rytel, M. Zachwieja, “Reinvestigation of the emission γ band system (A2Σ+ → X2Π) of the NO molecule,” J. Mol. Spectrosc. 181, 394–402 (1997).
    [CrossRef]
  18. R. Zhang, D. R. Crosley, “Temperature dependent quenching of A2Σ+ NO between 215 and 300 K,” J. Chem. Phys. 102, 7418–7424 (1995).
    [CrossRef]
  19. M. C. Drake, J. W. Ratcliffe, “High temperature quenching cross sections for nitric oxide laser-induced fluorescence measurements,” J. Chem. Phys. 98, 3850–3865 (1993).
    [CrossRef]
  20. C. N. R. Rao, “Spectroscopy of the nitro group,” in Chemistry of the Nitro and Nitroso Groups, H. Feuer, ed. (Interscience, New York, 1969), pp. 79–137.

1999 (1)

1997 (1)

J. Danielak, U. Domin, R. Kepa, M. Rytel, M. Zachwieja, “Reinvestigation of the emission γ band system (A2Σ+ → X2Π) of the NO molecule,” J. Mol. Spectrosc. 181, 394–402 (1997).
[CrossRef]

1996 (2)

D. Wu, J. P. Singh, F. Y. Yueh, D. L. Monts, “2,4,6-Trinitrotoluene detection by laser-photofragmentation–laser-induced fluorescence,” Appl. Opt. 35, 3998–4003 (1996).
[CrossRef] [PubMed]

J. B. Simeonsson, R. C. Sausa, “A critical review of laser photofragmentation/fragment detection techniques for gas-phase chemical analysis,” Appl. Spectrosc. Rev. 31, 1–72 (1996).
[CrossRef]

1995 (2)

R. Zhang, D. R. Crosley, “Temperature dependent quenching of A2Σ+ NO between 215 and 300 K,” J. Chem. Phys. 102, 7418–7424 (1995).
[CrossRef]

K. W. D. Ledingham, “The use of lasers to detect strategic and environmentally sensitive materials,” Phys. Scr. T 58, 100–103 (1995).
[CrossRef]

1994 (1)

C. Kosmidis, K. W. D. Ledingham, A. Clark, A. Marshall, R. Jennings, J. Sander, R. P. Singhal, “On the dissociation pathways of nitrobenzene,” Int. J. Mass Spectrom. Ion Processes 135, 229–242 (1994).
[CrossRef]

1993 (4)

G. W. Lemire, J. B. Simeonsson, R. C. Sausa, “Monitoring of vapor-phase nitro compounds using 226 nm radiation: fragmentation with subsequent NO resonance-enhanced multiphoton ionization,” Anal. Chem. 65, 529–533 (1993).
[CrossRef]

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singhal, “Laser ionisation studies of nitroaromatic and NOx (x = 1 or 2) molecules in the region 224–238 nm,” Int. J. Mass Spectrom. Ion Processes 125, R21–R26 (1993).
[CrossRef]

D. B. Galloway, J. A. Bartz, L. G. Huey, F. F. Crim, “Pathways and kinetic energy disposal in the photodissociation of nitrobenzene,” J. Chem. Phys. 98, 2107–2114 (1993).
[CrossRef]

M. C. Drake, J. W. Ratcliffe, “High temperature quenching cross sections for nitric oxide laser-induced fluorescence measurements,” J. Chem. Phys. 98, 3850–3865 (1993).
[CrossRef]

1992 (1)

H. I. Schiff, “Ground based measurements of atmospheric gases by spectroscopic methods,” Ber. Bunsenges. Phys. Chem. 96, 296–306 (1992).
[CrossRef]

1990 (1)

S. T. Sandholm, J. D. Bradshaw, K. S. Dorris, M. O. Rodgers, D. D. Davis, “An airborne compatible photofragmentation two-photon laser induced fluorescence instrument for measuring background tropospheric levels of NO, NOx, and NO2,” J. Geophys. Res. 95, 10,155–10,161 (1990).
[CrossRef]

1985 (1)

J. D. Bradshaw, M. O. Rodgers, S. T. Sandholm, S. Kesheng, D. D. Davis, “A two-photon laser-induced fluorescence field instrument for ground-based and airborne measurements of atmospheric NO,” J. Geophys. Res. 90, 12,861–12,873 (1985).
[CrossRef]

1984 (1)

L. Bigio, R. S. Tapper, E. R. Grant, “The role of near-resonant intermediate states in the two-photon excitation of NO2: the distinct dynamics of two-photon photofragmentation,” J. Phys. Chem. 88, 1271–1273 (1984).
[CrossRef]

1964 (1)

M. Godfrey, J. N. Murrell, “Substituent effects on the electronic spectra of aromatic hydrocarbons. III. An analysis of the spectra of amino- and nitrobenzenes in terms of the localized-orbital model,” Proc. R. Soc. London Ser. A 278, 71–90 (1964).
[CrossRef]

Bar, I.

Bartz, J. A.

D. B. Galloway, J. A. Bartz, L. G. Huey, F. F. Crim, “Pathways and kinetic energy disposal in the photodissociation of nitrobenzene,” J. Chem. Phys. 98, 2107–2114 (1993).
[CrossRef]

Bigio, L.

L. Bigio, R. S. Tapper, E. R. Grant, “The role of near-resonant intermediate states in the two-photon excitation of NO2: the distinct dynamics of two-photon photofragmentation,” J. Phys. Chem. 88, 1271–1273 (1984).
[CrossRef]

Bradshaw, J. D.

S. T. Sandholm, J. D. Bradshaw, K. S. Dorris, M. O. Rodgers, D. D. Davis, “An airborne compatible photofragmentation two-photon laser induced fluorescence instrument for measuring background tropospheric levels of NO, NOx, and NO2,” J. Geophys. Res. 95, 10,155–10,161 (1990).
[CrossRef]

J. D. Bradshaw, M. O. Rodgers, S. T. Sandholm, S. Kesheng, D. D. Davis, “A two-photon laser-induced fluorescence field instrument for ground-based and airborne measurements of atmospheric NO,” J. Geophys. Res. 90, 12,861–12,873 (1985).
[CrossRef]

Clark, A.

C. Kosmidis, K. W. D. Ledingham, A. Clark, A. Marshall, R. Jennings, J. Sander, R. P. Singhal, “On the dissociation pathways of nitrobenzene,” Int. J. Mass Spectrom. Ion Processes 135, 229–242 (1994).
[CrossRef]

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singhal, “Laser ionisation studies of nitroaromatic and NOx (x = 1 or 2) molecules in the region 224–238 nm,” Int. J. Mass Spectrom. Ion Processes 125, R21–R26 (1993).
[CrossRef]

Crim, F. F.

D. B. Galloway, J. A. Bartz, L. G. Huey, F. F. Crim, “Pathways and kinetic energy disposal in the photodissociation of nitrobenzene,” J. Chem. Phys. 98, 2107–2114 (1993).
[CrossRef]

Crosley, D. R.

R. Zhang, D. R. Crosley, “Temperature dependent quenching of A2Σ+ NO between 215 and 300 K,” J. Chem. Phys. 102, 7418–7424 (1995).
[CrossRef]

J. Luque, D. R. Crosley, “lifbase: database and spectral simulation program (version 1.4),” (SRI International, 333 Ravenswood Ave., Menlo Park, Calif. 94025-3493, 1998).

Danielak, J.

J. Danielak, U. Domin, R. Kepa, M. Rytel, M. Zachwieja, “Reinvestigation of the emission γ band system (A2Σ+ → X2Π) of the NO molecule,” J. Mol. Spectrosc. 181, 394–402 (1997).
[CrossRef]

Danner, R. P.

T. E. Daubert, R. P. Danner, Physical and Thermodynamic Properties of Pure Chemicals: Data Compilation, National Standard Reference Data System and American Institute of Chemical Engineers, Part 3 (Taylor & Francis, Washington, D.C., 1994).

Daubert, T. E.

T. E. Daubert, R. P. Danner, Physical and Thermodynamic Properties of Pure Chemicals: Data Compilation, National Standard Reference Data System and American Institute of Chemical Engineers, Part 3 (Taylor & Francis, Washington, D.C., 1994).

Daugey, N.

Davis, D. D.

S. T. Sandholm, J. D. Bradshaw, K. S. Dorris, M. O. Rodgers, D. D. Davis, “An airborne compatible photofragmentation two-photon laser induced fluorescence instrument for measuring background tropospheric levels of NO, NOx, and NO2,” J. Geophys. Res. 95, 10,155–10,161 (1990).
[CrossRef]

J. D. Bradshaw, M. O. Rodgers, S. T. Sandholm, S. Kesheng, D. D. Davis, “A two-photon laser-induced fluorescence field instrument for ground-based and airborne measurements of atmospheric NO,” J. Geophys. Res. 90, 12,861–12,873 (1985).
[CrossRef]

Domin, U.

J. Danielak, U. Domin, R. Kepa, M. Rytel, M. Zachwieja, “Reinvestigation of the emission γ band system (A2Σ+ → X2Π) of the NO molecule,” J. Mol. Spectrosc. 181, 394–402 (1997).
[CrossRef]

Dorris, K. S.

S. T. Sandholm, J. D. Bradshaw, K. S. Dorris, M. O. Rodgers, D. D. Davis, “An airborne compatible photofragmentation two-photon laser induced fluorescence instrument for measuring background tropospheric levels of NO, NOx, and NO2,” J. Geophys. Res. 95, 10,155–10,161 (1990).
[CrossRef]

Drake, M. C.

M. C. Drake, J. W. Ratcliffe, “High temperature quenching cross sections for nitric oxide laser-induced fluorescence measurements,” J. Chem. Phys. 98, 3850–3865 (1993).
[CrossRef]

Galloway, D. B.

D. B. Galloway, J. A. Bartz, L. G. Huey, F. F. Crim, “Pathways and kinetic energy disposal in the photodissociation of nitrobenzene,” J. Chem. Phys. 98, 2107–2114 (1993).
[CrossRef]

Godfrey, M.

M. Godfrey, J. N. Murrell, “Substituent effects on the electronic spectra of aromatic hydrocarbons. III. An analysis of the spectra of amino- and nitrobenzenes in terms of the localized-orbital model,” Proc. R. Soc. London Ser. A 278, 71–90 (1964).
[CrossRef]

Grant, E. R.

L. Bigio, R. S. Tapper, E. R. Grant, “The role of near-resonant intermediate states in the two-photon excitation of NO2: the distinct dynamics of two-photon photofragmentation,” J. Phys. Chem. 88, 1271–1273 (1984).
[CrossRef]

Huey, L. G.

D. B. Galloway, J. A. Bartz, L. G. Huey, F. F. Crim, “Pathways and kinetic energy disposal in the photodissociation of nitrobenzene,” J. Chem. Phys. 98, 2107–2114 (1993).
[CrossRef]

Jennings, R.

C. Kosmidis, K. W. D. Ledingham, A. Clark, A. Marshall, R. Jennings, J. Sander, R. P. Singhal, “On the dissociation pathways of nitrobenzene,” Int. J. Mass Spectrom. Ion Processes 135, 229–242 (1994).
[CrossRef]

Kepa, R.

J. Danielak, U. Domin, R. Kepa, M. Rytel, M. Zachwieja, “Reinvestigation of the emission γ band system (A2Σ+ → X2Π) of the NO molecule,” J. Mol. Spectrosc. 181, 394–402 (1997).
[CrossRef]

Kesheng, S.

J. D. Bradshaw, M. O. Rodgers, S. T. Sandholm, S. Kesheng, D. D. Davis, “A two-photon laser-induced fluorescence field instrument for ground-based and airborne measurements of atmospheric NO,” J. Geophys. Res. 90, 12,861–12,873 (1985).
[CrossRef]

Kosmidis, C.

C. Kosmidis, K. W. D. Ledingham, A. Clark, A. Marshall, R. Jennings, J. Sander, R. P. Singhal, “On the dissociation pathways of nitrobenzene,” Int. J. Mass Spectrom. Ion Processes 135, 229–242 (1994).
[CrossRef]

Ledingham, K. W. D.

K. W. D. Ledingham, “The use of lasers to detect strategic and environmentally sensitive materials,” Phys. Scr. T 58, 100–103 (1995).
[CrossRef]

C. Kosmidis, K. W. D. Ledingham, A. Clark, A. Marshall, R. Jennings, J. Sander, R. P. Singhal, “On the dissociation pathways of nitrobenzene,” Int. J. Mass Spectrom. Ion Processes 135, 229–242 (1994).
[CrossRef]

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singhal, “Laser ionisation studies of nitroaromatic and NOx (x = 1 or 2) molecules in the region 224–238 nm,” Int. J. Mass Spectrom. Ion Processes 125, R21–R26 (1993).
[CrossRef]

Lemire, G. W.

G. W. Lemire, J. B. Simeonsson, R. C. Sausa, “Monitoring of vapor-phase nitro compounds using 226 nm radiation: fragmentation with subsequent NO resonance-enhanced multiphoton ionization,” Anal. Chem. 65, 529–533 (1993).
[CrossRef]

Luque, J.

J. Luque, D. R. Crosley, “lifbase: database and spectral simulation program (version 1.4),” (SRI International, 333 Ravenswood Ave., Menlo Park, Calif. 94025-3493, 1998).

Marshall, A.

C. Kosmidis, K. W. D. Ledingham, A. Clark, A. Marshall, R. Jennings, J. Sander, R. P. Singhal, “On the dissociation pathways of nitrobenzene,” Int. J. Mass Spectrom. Ion Processes 135, 229–242 (1994).
[CrossRef]

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singhal, “Laser ionisation studies of nitroaromatic and NOx (x = 1 or 2) molecules in the region 224–238 nm,” Int. J. Mass Spectrom. Ion Processes 125, R21–R26 (1993).
[CrossRef]

Monts, D. L.

Murrell, J. N.

M. Godfrey, J. N. Murrell, “Substituent effects on the electronic spectra of aromatic hydrocarbons. III. An analysis of the spectra of amino- and nitrobenzenes in terms of the localized-orbital model,” Proc. R. Soc. London Ser. A 278, 71–90 (1964).
[CrossRef]

Pfab, J.

J. Pfab, “Laser-induced fluorescence and ionization spectroscopy of gas phase species,” in Spectroscopy in Environmental Science, R. J. H. Clark, R. E. Hester, eds. (Wiley, New York, 1995), pp. 149–222.

Rao, C. N. R.

C. N. R. Rao, “Spectroscopy of the nitro group,” in Chemistry of the Nitro and Nitroso Groups, H. Feuer, ed. (Interscience, New York, 1969), pp. 79–137.

Ratcliffe, J. W.

M. C. Drake, J. W. Ratcliffe, “High temperature quenching cross sections for nitric oxide laser-induced fluorescence measurements,” J. Chem. Phys. 98, 3850–3865 (1993).
[CrossRef]

Rodgers, M. O.

S. T. Sandholm, J. D. Bradshaw, K. S. Dorris, M. O. Rodgers, D. D. Davis, “An airborne compatible photofragmentation two-photon laser induced fluorescence instrument for measuring background tropospheric levels of NO, NOx, and NO2,” J. Geophys. Res. 95, 10,155–10,161 (1990).
[CrossRef]

J. D. Bradshaw, M. O. Rodgers, S. T. Sandholm, S. Kesheng, D. D. Davis, “A two-photon laser-induced fluorescence field instrument for ground-based and airborne measurements of atmospheric NO,” J. Geophys. Res. 90, 12,861–12,873 (1985).
[CrossRef]

Rosenwaks, S.

Rytel, M.

J. Danielak, U. Domin, R. Kepa, M. Rytel, M. Zachwieja, “Reinvestigation of the emission γ band system (A2Σ+ → X2Π) of the NO molecule,” J. Mol. Spectrosc. 181, 394–402 (1997).
[CrossRef]

Sander, J.

C. Kosmidis, K. W. D. Ledingham, A. Clark, A. Marshall, R. Jennings, J. Sander, R. P. Singhal, “On the dissociation pathways of nitrobenzene,” Int. J. Mass Spectrom. Ion Processes 135, 229–242 (1994).
[CrossRef]

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singhal, “Laser ionisation studies of nitroaromatic and NOx (x = 1 or 2) molecules in the region 224–238 nm,” Int. J. Mass Spectrom. Ion Processes 125, R21–R26 (1993).
[CrossRef]

Sandholm, S. T.

S. T. Sandholm, J. D. Bradshaw, K. S. Dorris, M. O. Rodgers, D. D. Davis, “An airborne compatible photofragmentation two-photon laser induced fluorescence instrument for measuring background tropospheric levels of NO, NOx, and NO2,” J. Geophys. Res. 95, 10,155–10,161 (1990).
[CrossRef]

J. D. Bradshaw, M. O. Rodgers, S. T. Sandholm, S. Kesheng, D. D. Davis, “A two-photon laser-induced fluorescence field instrument for ground-based and airborne measurements of atmospheric NO,” J. Geophys. Res. 90, 12,861–12,873 (1985).
[CrossRef]

Sausa, R. C.

J. B. Simeonsson, R. C. Sausa, “A critical review of laser photofragmentation/fragment detection techniques for gas-phase chemical analysis,” Appl. Spectrosc. Rev. 31, 1–72 (1996).
[CrossRef]

G. W. Lemire, J. B. Simeonsson, R. C. Sausa, “Monitoring of vapor-phase nitro compounds using 226 nm radiation: fragmentation with subsequent NO resonance-enhanced multiphoton ionization,” Anal. Chem. 65, 529–533 (1993).
[CrossRef]

Schiff, H. I.

H. I. Schiff, “Ground based measurements of atmospheric gases by spectroscopic methods,” Ber. Bunsenges. Phys. Chem. 96, 296–306 (1992).
[CrossRef]

Shu, J.

Simeonsson, J. B.

J. B. Simeonsson, R. C. Sausa, “A critical review of laser photofragmentation/fragment detection techniques for gas-phase chemical analysis,” Appl. Spectrosc. Rev. 31, 1–72 (1996).
[CrossRef]

G. W. Lemire, J. B. Simeonsson, R. C. Sausa, “Monitoring of vapor-phase nitro compounds using 226 nm radiation: fragmentation with subsequent NO resonance-enhanced multiphoton ionization,” Anal. Chem. 65, 529–533 (1993).
[CrossRef]

Singh, J. P.

Singhal, R. P.

C. Kosmidis, K. W. D. Ledingham, A. Clark, A. Marshall, R. Jennings, J. Sander, R. P. Singhal, “On the dissociation pathways of nitrobenzene,” Int. J. Mass Spectrom. Ion Processes 135, 229–242 (1994).
[CrossRef]

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singhal, “Laser ionisation studies of nitroaromatic and NOx (x = 1 or 2) molecules in the region 224–238 nm,” Int. J. Mass Spectrom. Ion Processes 125, R21–R26 (1993).
[CrossRef]

Tapper, R. S.

L. Bigio, R. S. Tapper, E. R. Grant, “The role of near-resonant intermediate states in the two-photon excitation of NO2: the distinct dynamics of two-photon photofragmentation,” J. Phys. Chem. 88, 1271–1273 (1984).
[CrossRef]

Wu, D.

Yueh, F. Y.

Zachwieja, M.

J. Danielak, U. Domin, R. Kepa, M. Rytel, M. Zachwieja, “Reinvestigation of the emission γ band system (A2Σ+ → X2Π) of the NO molecule,” J. Mol. Spectrosc. 181, 394–402 (1997).
[CrossRef]

Zhang, R.

R. Zhang, D. R. Crosley, “Temperature dependent quenching of A2Σ+ NO between 215 and 300 K,” J. Chem. Phys. 102, 7418–7424 (1995).
[CrossRef]

Anal. Chem. (1)

G. W. Lemire, J. B. Simeonsson, R. C. Sausa, “Monitoring of vapor-phase nitro compounds using 226 nm radiation: fragmentation with subsequent NO resonance-enhanced multiphoton ionization,” Anal. Chem. 65, 529–533 (1993).
[CrossRef]

Appl. Opt. (1)

Appl. Spectrosc. (1)

Appl. Spectrosc. Rev. (1)

J. B. Simeonsson, R. C. Sausa, “A critical review of laser photofragmentation/fragment detection techniques for gas-phase chemical analysis,” Appl. Spectrosc. Rev. 31, 1–72 (1996).
[CrossRef]

Ber. Bunsenges. Phys. Chem. (1)

H. I. Schiff, “Ground based measurements of atmospheric gases by spectroscopic methods,” Ber. Bunsenges. Phys. Chem. 96, 296–306 (1992).
[CrossRef]

Int. J. Mass Spectrom. Ion Processes (2)

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singhal, “Laser ionisation studies of nitroaromatic and NOx (x = 1 or 2) molecules in the region 224–238 nm,” Int. J. Mass Spectrom. Ion Processes 125, R21–R26 (1993).
[CrossRef]

C. Kosmidis, K. W. D. Ledingham, A. Clark, A. Marshall, R. Jennings, J. Sander, R. P. Singhal, “On the dissociation pathways of nitrobenzene,” Int. J. Mass Spectrom. Ion Processes 135, 229–242 (1994).
[CrossRef]

J. Chem. Phys. (3)

D. B. Galloway, J. A. Bartz, L. G. Huey, F. F. Crim, “Pathways and kinetic energy disposal in the photodissociation of nitrobenzene,” J. Chem. Phys. 98, 2107–2114 (1993).
[CrossRef]

R. Zhang, D. R. Crosley, “Temperature dependent quenching of A2Σ+ NO between 215 and 300 K,” J. Chem. Phys. 102, 7418–7424 (1995).
[CrossRef]

M. C. Drake, J. W. Ratcliffe, “High temperature quenching cross sections for nitric oxide laser-induced fluorescence measurements,” J. Chem. Phys. 98, 3850–3865 (1993).
[CrossRef]

J. Geophys. Res. (2)

J. D. Bradshaw, M. O. Rodgers, S. T. Sandholm, S. Kesheng, D. D. Davis, “A two-photon laser-induced fluorescence field instrument for ground-based and airborne measurements of atmospheric NO,” J. Geophys. Res. 90, 12,861–12,873 (1985).
[CrossRef]

S. T. Sandholm, J. D. Bradshaw, K. S. Dorris, M. O. Rodgers, D. D. Davis, “An airborne compatible photofragmentation two-photon laser induced fluorescence instrument for measuring background tropospheric levels of NO, NOx, and NO2,” J. Geophys. Res. 95, 10,155–10,161 (1990).
[CrossRef]

J. Mol. Spectrosc. (1)

J. Danielak, U. Domin, R. Kepa, M. Rytel, M. Zachwieja, “Reinvestigation of the emission γ band system (A2Σ+ → X2Π) of the NO molecule,” J. Mol. Spectrosc. 181, 394–402 (1997).
[CrossRef]

J. Phys. Chem. (1)

L. Bigio, R. S. Tapper, E. R. Grant, “The role of near-resonant intermediate states in the two-photon excitation of NO2: the distinct dynamics of two-photon photofragmentation,” J. Phys. Chem. 88, 1271–1273 (1984).
[CrossRef]

Phys. Scr. T (1)

K. W. D. Ledingham, “The use of lasers to detect strategic and environmentally sensitive materials,” Phys. Scr. T 58, 100–103 (1995).
[CrossRef]

Proc. R. Soc. London Ser. A (1)

M. Godfrey, J. N. Murrell, “Substituent effects on the electronic spectra of aromatic hydrocarbons. III. An analysis of the spectra of amino- and nitrobenzenes in terms of the localized-orbital model,” Proc. R. Soc. London Ser. A 278, 71–90 (1964).
[CrossRef]

Other (4)

T. E. Daubert, R. P. Danner, Physical and Thermodynamic Properties of Pure Chemicals: Data Compilation, National Standard Reference Data System and American Institute of Chemical Engineers, Part 3 (Taylor & Francis, Washington, D.C., 1994).

J. Luque, D. R. Crosley, “lifbase: database and spectral simulation program (version 1.4),” (SRI International, 333 Ravenswood Ave., Menlo Park, Calif. 94025-3493, 1998).

C. N. R. Rao, “Spectroscopy of the nitro group,” in Chemistry of the Nitro and Nitroso Groups, H. Feuer, ed. (Interscience, New York, 1969), pp. 79–137.

J. Pfab, “Laser-induced fluorescence and ionization spectroscopy of gas phase species,” in Spectroscopy in Environmental Science, R. J. H. Clark, R. E. Hester, eds. (Wiley, New York, 1995), pp. 149–222.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) LP–LIF spectrum of NO resulting from a flowing sample of 0.025 mTorr of DNB in 100 Torr of Ar, obtained by excitation with a 0.5-mJ, 4-mm-diameter laser beam through the A 2Σ+(v′ = 0) ← X 2Π1/2,3/2 (v″ = 0) transition and detection through A 2Σ+(v′ = 0) → X 2Π1/2,3/2 (v″ = 1, 0). The signal intensity was attenuated ten times with a neutral density filter. (b) The simulation computed with the lifbase program12 and standard parameters. The insets show an expanded portion of the spectrum for relatively high J″s.

Fig. 2
Fig. 2

(a) LP–LIF spectrum of NO resulting from a flowing sample of 0.025 mTorr of DNB in 100 Torr of Ar, obtained by excitation with a 0.5-mJ, 4-mm-diameter laser beam through the A 2Σ+(v′ = 0) ← X 2Π1/2,3/2 (v″ = 2) transition and detection through A 2Σ+(v′ = 0) → X 2Π1/2,3/2 (v″ = 1, 0). (b) The simulation computed with the lifbase program12 and standard parameters. The insets show an expanded portion of the spectrum for relatively low J″s. The intensity scale is similar to that of Fig. 1.

Fig. 3
Fig. 3

NO (v″ = 0–2) signal dependence on laser energy. The LP–LIF signals were obtained with one-color experiments with 0.025 mTorr of DNB in 100 Torr of Ar by excitation with a 4-mm-diameter laser beam through J″ = 47.5 of Q 11 + P 21 of the A 2Σ+(v′ = 0) ← X 2Π1/2,3/2 (v″ = 0 - 2) transitions and detection through A 2Σ+(v′ = 0) → X 2Π1/2,3/2 (v″ = 1, 0).

Fig. 4
Fig. 4

P 12 bandhead of NO obtained from photodissociation of 255 ppb by weight of DNB in air at 100 Torr (dashed curve) and 500 Torr (solid curve). The signals were monitored by excitation of the A 2Σ+(v′ = 0) ← X 2Π3/2 (v″ = 2) transition and detection of A 2Σ+ (v′ = 0) → X 2Π1/2,3/2 (v″ = 0, 1) by applying 0.5-mJ pulse energy with a 4-mm-diameter laser beam.

Fig. 5
Fig. 5

NO LIF signal intensity dependence on concentration of NB and DNB diluted in air. The signal was monitored by excitation of the P 12 bandhead of A 2Σ+(v′ = 0) ← X 2Π3/2 (v″ = 2) and detection of A 2Σ+(v′ = 0) → X 2Π1/2,3/2 (v″ = 0, 1) transitions by applying 0.5-mJ pulse energy with a 4-mm-diameter laser beam. The solid lines represent the least-squares fit of the data for 100-Torr (triangles) and 500-Torr (squares) DNB samples and 500-Torr (circles) NB samples, including 10% error bars.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

NO2C6H4NO2  OC6H4NO2 + NO,
NO2C6H4NO2  C6H4NO2 + NO2.

Metrics