Abstract

The development of a laser diode absorption spectrometer that uses a strong water vapor absorption at 1393 nm is reported. Three spectroscopic techniques were compared in ≈0.4 m of laboratory air, namely, frequency modulation, wavelength modulation, and two-tone frequency modulation spectroscopy. The first two techniques use a single-frequency modulation at 9.2 GHz and 1 kHz, respectively, generated either by a phase modulator operating at 9.2 GHz or injection current modulation at 1 kHz. The two-tone method requires modulation at two frequencies, in this case 9.19 and 9.21 GHz. It is shown that the two-tone method should provide the highest sensitivity for a trace moisture detection system.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. R. Stallard, L. H. Espinoza, R. K. Rowe, M. J. Garcia, T. M. Niemczyk, “Trace water vapor detection in nitrogen and corrosive gases by FTIR spectroscopy,” J. Electrochem. Soc. 142, 2777–2782 (1995).
    [CrossRef]
  2. J. T. Hodges, J. P. Looney, R. D. van Zee, “Response of a ring-down cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10,278–10,288 (1996).
    [CrossRef]
  3. S.-Q. Wu, H. Masusaki, Y. Ishihara, K. Matsumoto, T. Kimishima, J. Morishita, H. Huze, N. Takeuchi, “Quantitative analysis of trace moisture in N2 and NH3 gases with dual-cell near-infrared diode laser absorption spectroscopy,” Anal. Chem. 70, 3315–3321 (1998).
    [CrossRef] [PubMed]
  4. P. Kauranen, I. Harwigsson, B. Jönsson, “Relative vapor pressure measurements using a frequency-modulated tunable diode laser, a tool for water activity determination in solutions,” J. Phys. Chem. 98, 1411–1415 (1994).
    [CrossRef]
  5. D. C. Hovde, C. A. Parsons, “Wavelength modulation detection of water vapor with a vertical cavity surface-emitting laser,” Appl. Opt. 36, 1135–1138 (1997).
    [CrossRef] [PubMed]
  6. D. T. Cassidy, “Trace gas detection using 1.3-µm InGaAsP diode laser transmitter modules,” Appl. Opt. 27, 610–614 (1988).
    [CrossRef] [PubMed]
  7. C. B. Carlisle, D. E. Cooper, “Tunable diode laser frequency modulation spectroscopy through an optical fiber: high-sensitivity detection of water vapor,” Appl. Phys. Lett. 56, 805–807 (1990).
    [CrossRef]
  8. T. J. Johnson, F. G. Wienhold, J. P. Burrows, G. W. Harris, “Frequency modulation spectroscopy at 1.3 µm using InGaAsP lasers: a prototype field instrument for atmospheric chemistry research,” Appl. Opt. 30, 407–413 (1991).
    [CrossRef] [PubMed]
  9. N. Goldstein, S. Adler-Golden, J. Lee, F. Bien, “Measurements of molecular concentrations and line parameters using line-locked second harmonic spectroscopy with an AlGaAs diode laser,” Appl. Opt. 31, 3409–3415 (1992).
    [CrossRef] [PubMed]
  10. J. A. Silver, D. C. Hovde, “Near-infrared diode laser airborne hygrometer,” Rev. Sci. Instrum. 65, 1691–1694 (1994).
    [CrossRef]
  11. Z. Bozóki, J. Sneider, G. Szabó, A. Miklós, M. Serényi, G. Nagy, M. Fehér, “Intracavity photoacoustic gas detection with an external cavity diode laser,” Appl. Phys. B 63, 399–401 (1996).
    [CrossRef]
  12. J. Roths, R. Busen, “Development of a laser in situ airborne hygrometer (LISAH),” Infrared Phys. Technol. 37, 33–38 (1996).
    [CrossRef]
  13. J. A. Silver, D. C. Hovde, “Near-infrared diode laser hygrometer for airborne measurements,” in Proceedings of the Ninth Symposium on Meteorological Observations and Instrumentation (American Meteorological Society, 46 Beacon Street, Boston, Mass., 1995), pp. 311–316.
  14. J. A. Silver, D. C. Hovde, “A comparison of near-infrared diode laser techniques for airborne hygrometry,” J. Atmos. Ocean. Technol. 15, 29–35 (1998).
    [CrossRef]
  15. D. M. Sonnenfroh, W. J. Kessler, J. C. Magill, B. L. Upschulte, M. G. Allen, J. D. W. Barrick, “In-situ sensing of tropospheric water vapor using an airborne near IR diode laser hygrometer,” Appl. Phys. B 67, 275–282 (1998).
    [CrossRef]
  16. G. C. Bjorklund, “Frequency modulation spectroscopy,” Opt. Lett. 5, 15–17 (1980).
    [CrossRef]
  17. J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers: comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
    [CrossRef]
  18. G. R. Janik, C. B. Carlisle, T. F. Gallagher, “Two-tone frequency modulation spectroscopy,” J. Opt. Soc. Am. B 3, 1070–1074 (1986).
    [CrossRef]
  19. L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynterm, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
    [CrossRef] [PubMed]
  20. R. Kästle, R. Grisar, M. Tacke, D. Dornisch, C. Scholz, “Using diode laser spectroscopy to monitor gas purity,” Microcontamination 9(11), 27–31 (1991).
  21. W. J. Kessler, M. G. Allen, S. J. Davis, P. A. Mulhall, J. A. Polex, “Near-IR diode-laser-based sensor for parts-per-billion-level water vapor in industrial gases,” in Electro-Optic, Integrated Optic, and Electronic Technologies for Online Chemical Process Monitoring, M. Fallaki, N. F. Hartman, R. J. Nordstrom, J. M. Cobb, T. R. Todd, J. G. Edwards, eds., Proc. SPIE3537, 139–149 (1999).
    [CrossRef]
  22. J. L. Hall, H. G. Robinson, T. Baer, L. Hollberg, “The lineshapes of sub-Doppler resonances observable with FM side-band (optical heterodyne) laser techniques,” in Advances in Laser Spectroscopy, F. T. Arrechi, F. Strumia, H. Walther, eds., NATO Advanced Science Institutes Series (Plenum, New York, 1983).
    [CrossRef]
  23. H. Wahlquist, “Modulation broadening of unsaturated Lorentzian lines,” J. Chem. Phys. 35, 1708–1710 (1961).
    [CrossRef]
  24. R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965).
    [CrossRef]
  25. X. Zhu, D. T. Cassidy, “Modulation spectroscopy with a semiconductor diode laser by injection-current modulation,” J. Opt. Soc. Am. B 14, 1945–1950 (1997).
    [CrossRef]
  26. D. E. Cooper, R. E. Warren, “Two-tone optical heterodyne spectroscopy with diode lasers: theory of line shapes and experimental results,” J. Opt. Soc. Am. B 4, 470–480 (1987).
    [CrossRef]
  27. P. Werle, F. Slemr, “Signal-to-noise ratio analysis in laser absorption spectrometers using optical multipass cells,” Appl. Opt. 30, 430–434 (1991).
    [CrossRef] [PubMed]
  28. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992).
    [CrossRef] [PubMed]
  29. F. S. Pavone, M. Inguscio, “Frequency- and wavelength-modulation spectroscopies: comparison of experimental methods using an AlGaAs diode laser,” Appl. Phys. B. 56, 118–122 (1993).
    [CrossRef]
  30. D. E. Cooper, R. E. Warren, “Frequency modulation with lead-salt diode lasers: a comparison of single-tone and two-tone methods,” Appl. Opt. 26, 3726–3732 (1987).
    [CrossRef] [PubMed]

1998

S.-Q. Wu, H. Masusaki, Y. Ishihara, K. Matsumoto, T. Kimishima, J. Morishita, H. Huze, N. Takeuchi, “Quantitative analysis of trace moisture in N2 and NH3 gases with dual-cell near-infrared diode laser absorption spectroscopy,” Anal. Chem. 70, 3315–3321 (1998).
[CrossRef] [PubMed]

J. A. Silver, D. C. Hovde, “A comparison of near-infrared diode laser techniques for airborne hygrometry,” J. Atmos. Ocean. Technol. 15, 29–35 (1998).
[CrossRef]

D. M. Sonnenfroh, W. J. Kessler, J. C. Magill, B. L. Upschulte, M. G. Allen, J. D. W. Barrick, “In-situ sensing of tropospheric water vapor using an airborne near IR diode laser hygrometer,” Appl. Phys. B 67, 275–282 (1998).
[CrossRef]

1997

1996

J. T. Hodges, J. P. Looney, R. D. van Zee, “Response of a ring-down cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10,278–10,288 (1996).
[CrossRef]

Z. Bozóki, J. Sneider, G. Szabó, A. Miklós, M. Serényi, G. Nagy, M. Fehér, “Intracavity photoacoustic gas detection with an external cavity diode laser,” Appl. Phys. B 63, 399–401 (1996).
[CrossRef]

J. Roths, R. Busen, “Development of a laser in situ airborne hygrometer (LISAH),” Infrared Phys. Technol. 37, 33–38 (1996).
[CrossRef]

1995

B. R. Stallard, L. H. Espinoza, R. K. Rowe, M. J. Garcia, T. M. Niemczyk, “Trace water vapor detection in nitrogen and corrosive gases by FTIR spectroscopy,” J. Electrochem. Soc. 142, 2777–2782 (1995).
[CrossRef]

1994

P. Kauranen, I. Harwigsson, B. Jönsson, “Relative vapor pressure measurements using a frequency-modulated tunable diode laser, a tool for water activity determination in solutions,” J. Phys. Chem. 98, 1411–1415 (1994).
[CrossRef]

J. A. Silver, D. C. Hovde, “Near-infrared diode laser airborne hygrometer,” Rev. Sci. Instrum. 65, 1691–1694 (1994).
[CrossRef]

1993

F. S. Pavone, M. Inguscio, “Frequency- and wavelength-modulation spectroscopies: comparison of experimental methods using an AlGaAs diode laser,” Appl. Phys. B. 56, 118–122 (1993).
[CrossRef]

1992

1991

1990

C. B. Carlisle, D. E. Cooper, “Tunable diode laser frequency modulation spectroscopy through an optical fiber: high-sensitivity detection of water vapor,” Appl. Phys. Lett. 56, 805–807 (1990).
[CrossRef]

1988

1987

1986

1981

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers: comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

1980

1965

R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965).
[CrossRef]

1961

H. Wahlquist, “Modulation broadening of unsaturated Lorentzian lines,” J. Chem. Phys. 35, 1708–1710 (1961).
[CrossRef]

Adler-Golden, S.

Allen, M. G.

D. M. Sonnenfroh, W. J. Kessler, J. C. Magill, B. L. Upschulte, M. G. Allen, J. D. W. Barrick, “In-situ sensing of tropospheric water vapor using an airborne near IR diode laser hygrometer,” Appl. Phys. B 67, 275–282 (1998).
[CrossRef]

W. J. Kessler, M. G. Allen, S. J. Davis, P. A. Mulhall, J. A. Polex, “Near-IR diode-laser-based sensor for parts-per-billion-level water vapor in industrial gases,” in Electro-Optic, Integrated Optic, and Electronic Technologies for Online Chemical Process Monitoring, M. Fallaki, N. F. Hartman, R. J. Nordstrom, J. M. Cobb, T. R. Todd, J. G. Edwards, eds., Proc. SPIE3537, 139–149 (1999).
[CrossRef]

Arndt, R.

R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965).
[CrossRef]

Baer, T.

J. L. Hall, H. G. Robinson, T. Baer, L. Hollberg, “The lineshapes of sub-Doppler resonances observable with FM side-band (optical heterodyne) laser techniques,” in Advances in Laser Spectroscopy, F. T. Arrechi, F. Strumia, H. Walther, eds., NATO Advanced Science Institutes Series (Plenum, New York, 1983).
[CrossRef]

Barbe, A.

Barrick, J. D. W.

D. M. Sonnenfroh, W. J. Kessler, J. C. Magill, B. L. Upschulte, M. G. Allen, J. D. W. Barrick, “In-situ sensing of tropospheric water vapor using an airborne near IR diode laser hygrometer,” Appl. Phys. B 67, 275–282 (1998).
[CrossRef]

Bien, F.

Bjorklund, G. C.

Bozóki, Z.

Z. Bozóki, J. Sneider, G. Szabó, A. Miklós, M. Serényi, G. Nagy, M. Fehér, “Intracavity photoacoustic gas detection with an external cavity diode laser,” Appl. Phys. B 63, 399–401 (1996).
[CrossRef]

Brown, L. R.

Burrows, J. P.

Busen, R.

J. Roths, R. Busen, “Development of a laser in situ airborne hygrometer (LISAH),” Infrared Phys. Technol. 37, 33–38 (1996).
[CrossRef]

Camy-Peyret, C.

Carlisle, C. B.

C. B. Carlisle, D. E. Cooper, “Tunable diode laser frequency modulation spectroscopy through an optical fiber: high-sensitivity detection of water vapor,” Appl. Phys. Lett. 56, 805–807 (1990).
[CrossRef]

G. R. Janik, C. B. Carlisle, T. F. Gallagher, “Two-tone frequency modulation spectroscopy,” J. Opt. Soc. Am. B 3, 1070–1074 (1986).
[CrossRef]

Cassidy, D. T.

Cooper, D. E.

Davis, S. J.

W. J. Kessler, M. G. Allen, S. J. Davis, P. A. Mulhall, J. A. Polex, “Near-IR diode-laser-based sensor for parts-per-billion-level water vapor in industrial gases,” in Electro-Optic, Integrated Optic, and Electronic Technologies for Online Chemical Process Monitoring, M. Fallaki, N. F. Hartman, R. J. Nordstrom, J. M. Cobb, T. R. Todd, J. G. Edwards, eds., Proc. SPIE3537, 139–149 (1999).
[CrossRef]

Dornisch, D.

R. Kästle, R. Grisar, M. Tacke, D. Dornisch, C. Scholz, “Using diode laser spectroscopy to monitor gas purity,” Microcontamination 9(11), 27–31 (1991).

Espinoza, L. H.

B. R. Stallard, L. H. Espinoza, R. K. Rowe, M. J. Garcia, T. M. Niemczyk, “Trace water vapor detection in nitrogen and corrosive gases by FTIR spectroscopy,” J. Electrochem. Soc. 142, 2777–2782 (1995).
[CrossRef]

Fehér, M.

Z. Bozóki, J. Sneider, G. Szabó, A. Miklós, M. Serényi, G. Nagy, M. Fehér, “Intracavity photoacoustic gas detection with an external cavity diode laser,” Appl. Phys. B 63, 399–401 (1996).
[CrossRef]

Flaud, J.-M.

Gallagher, T. F.

Gamache, R. R.

Garcia, M. J.

B. R. Stallard, L. H. Espinoza, R. K. Rowe, M. J. Garcia, T. M. Niemczyk, “Trace water vapor detection in nitrogen and corrosive gases by FTIR spectroscopy,” J. Electrochem. Soc. 142, 2777–2782 (1995).
[CrossRef]

Goldman, A.

Goldstein, N.

Grisar, R.

R. Kästle, R. Grisar, M. Tacke, D. Dornisch, C. Scholz, “Using diode laser spectroscopy to monitor gas purity,” Microcontamination 9(11), 27–31 (1991).

Hall, J. L.

J. L. Hall, H. G. Robinson, T. Baer, L. Hollberg, “The lineshapes of sub-Doppler resonances observable with FM side-band (optical heterodyne) laser techniques,” in Advances in Laser Spectroscopy, F. T. Arrechi, F. Strumia, H. Walther, eds., NATO Advanced Science Institutes Series (Plenum, New York, 1983).
[CrossRef]

Harris, G. W.

Harwigsson, I.

P. Kauranen, I. Harwigsson, B. Jönsson, “Relative vapor pressure measurements using a frequency-modulated tunable diode laser, a tool for water activity determination in solutions,” J. Phys. Chem. 98, 1411–1415 (1994).
[CrossRef]

Hodges, J. T.

J. T. Hodges, J. P. Looney, R. D. van Zee, “Response of a ring-down cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10,278–10,288 (1996).
[CrossRef]

Hollberg, L.

J. L. Hall, H. G. Robinson, T. Baer, L. Hollberg, “The lineshapes of sub-Doppler resonances observable with FM side-band (optical heterodyne) laser techniques,” in Advances in Laser Spectroscopy, F. T. Arrechi, F. Strumia, H. Walther, eds., NATO Advanced Science Institutes Series (Plenum, New York, 1983).
[CrossRef]

Hovde, D. C.

J. A. Silver, D. C. Hovde, “A comparison of near-infrared diode laser techniques for airborne hygrometry,” J. Atmos. Ocean. Technol. 15, 29–35 (1998).
[CrossRef]

D. C. Hovde, C. A. Parsons, “Wavelength modulation detection of water vapor with a vertical cavity surface-emitting laser,” Appl. Opt. 36, 1135–1138 (1997).
[CrossRef] [PubMed]

J. A. Silver, D. C. Hovde, “Near-infrared diode laser airborne hygrometer,” Rev. Sci. Instrum. 65, 1691–1694 (1994).
[CrossRef]

J. A. Silver, D. C. Hovde, “Near-infrared diode laser hygrometer for airborne measurements,” in Proceedings of the Ninth Symposium on Meteorological Observations and Instrumentation (American Meteorological Society, 46 Beacon Street, Boston, Mass., 1995), pp. 311–316.

Husson, N.

Huze, H.

S.-Q. Wu, H. Masusaki, Y. Ishihara, K. Matsumoto, T. Kimishima, J. Morishita, H. Huze, N. Takeuchi, “Quantitative analysis of trace moisture in N2 and NH3 gases with dual-cell near-infrared diode laser absorption spectroscopy,” Anal. Chem. 70, 3315–3321 (1998).
[CrossRef] [PubMed]

Inguscio, M.

F. S. Pavone, M. Inguscio, “Frequency- and wavelength-modulation spectroscopies: comparison of experimental methods using an AlGaAs diode laser,” Appl. Phys. B. 56, 118–122 (1993).
[CrossRef]

Ishihara, Y.

S.-Q. Wu, H. Masusaki, Y. Ishihara, K. Matsumoto, T. Kimishima, J. Morishita, H. Huze, N. Takeuchi, “Quantitative analysis of trace moisture in N2 and NH3 gases with dual-cell near-infrared diode laser absorption spectroscopy,” Anal. Chem. 70, 3315–3321 (1998).
[CrossRef] [PubMed]

Janik, G. R.

Johnson, T. J.

Jönsson, B.

P. Kauranen, I. Harwigsson, B. Jönsson, “Relative vapor pressure measurements using a frequency-modulated tunable diode laser, a tool for water activity determination in solutions,” J. Phys. Chem. 98, 1411–1415 (1994).
[CrossRef]

Kästle, R.

R. Kästle, R. Grisar, M. Tacke, D. Dornisch, C. Scholz, “Using diode laser spectroscopy to monitor gas purity,” Microcontamination 9(11), 27–31 (1991).

Kauranen, P.

P. Kauranen, I. Harwigsson, B. Jönsson, “Relative vapor pressure measurements using a frequency-modulated tunable diode laser, a tool for water activity determination in solutions,” J. Phys. Chem. 98, 1411–1415 (1994).
[CrossRef]

Kessler, W. J.

D. M. Sonnenfroh, W. J. Kessler, J. C. Magill, B. L. Upschulte, M. G. Allen, J. D. W. Barrick, “In-situ sensing of tropospheric water vapor using an airborne near IR diode laser hygrometer,” Appl. Phys. B 67, 275–282 (1998).
[CrossRef]

W. J. Kessler, M. G. Allen, S. J. Davis, P. A. Mulhall, J. A. Polex, “Near-IR diode-laser-based sensor for parts-per-billion-level water vapor in industrial gases,” in Electro-Optic, Integrated Optic, and Electronic Technologies for Online Chemical Process Monitoring, M. Fallaki, N. F. Hartman, R. J. Nordstrom, J. M. Cobb, T. R. Todd, J. G. Edwards, eds., Proc. SPIE3537, 139–149 (1999).
[CrossRef]

Kimishima, T.

S.-Q. Wu, H. Masusaki, Y. Ishihara, K. Matsumoto, T. Kimishima, J. Morishita, H. Huze, N. Takeuchi, “Quantitative analysis of trace moisture in N2 and NH3 gases with dual-cell near-infrared diode laser absorption spectroscopy,” Anal. Chem. 70, 3315–3321 (1998).
[CrossRef] [PubMed]

Labrie, D.

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers: comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Lee, J.

Looney, J. P.

J. T. Hodges, J. P. Looney, R. D. van Zee, “Response of a ring-down cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10,278–10,288 (1996).
[CrossRef]

Magill, J. C.

D. M. Sonnenfroh, W. J. Kessler, J. C. Magill, B. L. Upschulte, M. G. Allen, J. D. W. Barrick, “In-situ sensing of tropospheric water vapor using an airborne near IR diode laser hygrometer,” Appl. Phys. B 67, 275–282 (1998).
[CrossRef]

Masusaki, H.

S.-Q. Wu, H. Masusaki, Y. Ishihara, K. Matsumoto, T. Kimishima, J. Morishita, H. Huze, N. Takeuchi, “Quantitative analysis of trace moisture in N2 and NH3 gases with dual-cell near-infrared diode laser absorption spectroscopy,” Anal. Chem. 70, 3315–3321 (1998).
[CrossRef] [PubMed]

Matsumoto, K.

S.-Q. Wu, H. Masusaki, Y. Ishihara, K. Matsumoto, T. Kimishima, J. Morishita, H. Huze, N. Takeuchi, “Quantitative analysis of trace moisture in N2 and NH3 gases with dual-cell near-infrared diode laser absorption spectroscopy,” Anal. Chem. 70, 3315–3321 (1998).
[CrossRef] [PubMed]

Miklós, A.

Z. Bozóki, J. Sneider, G. Szabó, A. Miklós, M. Serényi, G. Nagy, M. Fehér, “Intracavity photoacoustic gas detection with an external cavity diode laser,” Appl. Phys. B 63, 399–401 (1996).
[CrossRef]

Morishita, J.

S.-Q. Wu, H. Masusaki, Y. Ishihara, K. Matsumoto, T. Kimishima, J. Morishita, H. Huze, N. Takeuchi, “Quantitative analysis of trace moisture in N2 and NH3 gases with dual-cell near-infrared diode laser absorption spectroscopy,” Anal. Chem. 70, 3315–3321 (1998).
[CrossRef] [PubMed]

Mulhall, P. A.

W. J. Kessler, M. G. Allen, S. J. Davis, P. A. Mulhall, J. A. Polex, “Near-IR diode-laser-based sensor for parts-per-billion-level water vapor in industrial gases,” in Electro-Optic, Integrated Optic, and Electronic Technologies for Online Chemical Process Monitoring, M. Fallaki, N. F. Hartman, R. J. Nordstrom, J. M. Cobb, T. R. Todd, J. G. Edwards, eds., Proc. SPIE3537, 139–149 (1999).
[CrossRef]

Nagy, G.

Z. Bozóki, J. Sneider, G. Szabó, A. Miklós, M. Serényi, G. Nagy, M. Fehér, “Intracavity photoacoustic gas detection with an external cavity diode laser,” Appl. Phys. B 63, 399–401 (1996).
[CrossRef]

Niemczyk, T. M.

B. R. Stallard, L. H. Espinoza, R. K. Rowe, M. J. Garcia, T. M. Niemczyk, “Trace water vapor detection in nitrogen and corrosive gases by FTIR spectroscopy,” J. Electrochem. Soc. 142, 2777–2782 (1995).
[CrossRef]

Parsons, C. A.

Pavone, F. S.

F. S. Pavone, M. Inguscio, “Frequency- and wavelength-modulation spectroscopies: comparison of experimental methods using an AlGaAs diode laser,” Appl. Phys. B. 56, 118–122 (1993).
[CrossRef]

Pickett, H. M.

Polex, J. A.

W. J. Kessler, M. G. Allen, S. J. Davis, P. A. Mulhall, J. A. Polex, “Near-IR diode-laser-based sensor for parts-per-billion-level water vapor in industrial gases,” in Electro-Optic, Integrated Optic, and Electronic Technologies for Online Chemical Process Monitoring, M. Fallaki, N. F. Hartman, R. J. Nordstrom, J. M. Cobb, T. R. Todd, J. G. Edwards, eds., Proc. SPIE3537, 139–149 (1999).
[CrossRef]

Poynterm, R. L.

Reid, J.

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers: comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Rinsland, C. P.

Robinson, H. G.

J. L. Hall, H. G. Robinson, T. Baer, L. Hollberg, “The lineshapes of sub-Doppler resonances observable with FM side-band (optical heterodyne) laser techniques,” in Advances in Laser Spectroscopy, F. T. Arrechi, F. Strumia, H. Walther, eds., NATO Advanced Science Institutes Series (Plenum, New York, 1983).
[CrossRef]

Rothman, L. S.

Roths, J.

J. Roths, R. Busen, “Development of a laser in situ airborne hygrometer (LISAH),” Infrared Phys. Technol. 37, 33–38 (1996).
[CrossRef]

Rowe, R. K.

B. R. Stallard, L. H. Espinoza, R. K. Rowe, M. J. Garcia, T. M. Niemczyk, “Trace water vapor detection in nitrogen and corrosive gases by FTIR spectroscopy,” J. Electrochem. Soc. 142, 2777–2782 (1995).
[CrossRef]

Scholz, C.

R. Kästle, R. Grisar, M. Tacke, D. Dornisch, C. Scholz, “Using diode laser spectroscopy to monitor gas purity,” Microcontamination 9(11), 27–31 (1991).

Serényi, M.

Z. Bozóki, J. Sneider, G. Szabó, A. Miklós, M. Serényi, G. Nagy, M. Fehér, “Intracavity photoacoustic gas detection with an external cavity diode laser,” Appl. Phys. B 63, 399–401 (1996).
[CrossRef]

Silver, J. A.

J. A. Silver, D. C. Hovde, “A comparison of near-infrared diode laser techniques for airborne hygrometry,” J. Atmos. Ocean. Technol. 15, 29–35 (1998).
[CrossRef]

J. A. Silver, D. C. Hovde, “Near-infrared diode laser airborne hygrometer,” Rev. Sci. Instrum. 65, 1691–1694 (1994).
[CrossRef]

J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992).
[CrossRef] [PubMed]

J. A. Silver, D. C. Hovde, “Near-infrared diode laser hygrometer for airborne measurements,” in Proceedings of the Ninth Symposium on Meteorological Observations and Instrumentation (American Meteorological Society, 46 Beacon Street, Boston, Mass., 1995), pp. 311–316.

Slemr, F.

Smith, M. A. H.

Sneider, J.

Z. Bozóki, J. Sneider, G. Szabó, A. Miklós, M. Serényi, G. Nagy, M. Fehér, “Intracavity photoacoustic gas detection with an external cavity diode laser,” Appl. Phys. B 63, 399–401 (1996).
[CrossRef]

Sonnenfroh, D. M.

D. M. Sonnenfroh, W. J. Kessler, J. C. Magill, B. L. Upschulte, M. G. Allen, J. D. W. Barrick, “In-situ sensing of tropospheric water vapor using an airborne near IR diode laser hygrometer,” Appl. Phys. B 67, 275–282 (1998).
[CrossRef]

Stallard, B. R.

B. R. Stallard, L. H. Espinoza, R. K. Rowe, M. J. Garcia, T. M. Niemczyk, “Trace water vapor detection in nitrogen and corrosive gases by FTIR spectroscopy,” J. Electrochem. Soc. 142, 2777–2782 (1995).
[CrossRef]

Szabó, G.

Z. Bozóki, J. Sneider, G. Szabó, A. Miklós, M. Serényi, G. Nagy, M. Fehér, “Intracavity photoacoustic gas detection with an external cavity diode laser,” Appl. Phys. B 63, 399–401 (1996).
[CrossRef]

Tacke, M.

R. Kästle, R. Grisar, M. Tacke, D. Dornisch, C. Scholz, “Using diode laser spectroscopy to monitor gas purity,” Microcontamination 9(11), 27–31 (1991).

Takeuchi, N.

S.-Q. Wu, H. Masusaki, Y. Ishihara, K. Matsumoto, T. Kimishima, J. Morishita, H. Huze, N. Takeuchi, “Quantitative analysis of trace moisture in N2 and NH3 gases with dual-cell near-infrared diode laser absorption spectroscopy,” Anal. Chem. 70, 3315–3321 (1998).
[CrossRef] [PubMed]

Toth, R. A.

Upschulte, B. L.

D. M. Sonnenfroh, W. J. Kessler, J. C. Magill, B. L. Upschulte, M. G. Allen, J. D. W. Barrick, “In-situ sensing of tropospheric water vapor using an airborne near IR diode laser hygrometer,” Appl. Phys. B 67, 275–282 (1998).
[CrossRef]

van Zee, R. D.

J. T. Hodges, J. P. Looney, R. D. van Zee, “Response of a ring-down cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10,278–10,288 (1996).
[CrossRef]

Wahlquist, H.

H. Wahlquist, “Modulation broadening of unsaturated Lorentzian lines,” J. Chem. Phys. 35, 1708–1710 (1961).
[CrossRef]

Warren, R. E.

Werle, P.

Wienhold, F. G.

Wu, S.-Q.

S.-Q. Wu, H. Masusaki, Y. Ishihara, K. Matsumoto, T. Kimishima, J. Morishita, H. Huze, N. Takeuchi, “Quantitative analysis of trace moisture in N2 and NH3 gases with dual-cell near-infrared diode laser absorption spectroscopy,” Anal. Chem. 70, 3315–3321 (1998).
[CrossRef] [PubMed]

Zhu, X.

Anal. Chem.

S.-Q. Wu, H. Masusaki, Y. Ishihara, K. Matsumoto, T. Kimishima, J. Morishita, H. Huze, N. Takeuchi, “Quantitative analysis of trace moisture in N2 and NH3 gases with dual-cell near-infrared diode laser absorption spectroscopy,” Anal. Chem. 70, 3315–3321 (1998).
[CrossRef] [PubMed]

Appl. Opt.

D. C. Hovde, C. A. Parsons, “Wavelength modulation detection of water vapor with a vertical cavity surface-emitting laser,” Appl. Opt. 36, 1135–1138 (1997).
[CrossRef] [PubMed]

D. T. Cassidy, “Trace gas detection using 1.3-µm InGaAsP diode laser transmitter modules,” Appl. Opt. 27, 610–614 (1988).
[CrossRef] [PubMed]

T. J. Johnson, F. G. Wienhold, J. P. Burrows, G. W. Harris, “Frequency modulation spectroscopy at 1.3 µm using InGaAsP lasers: a prototype field instrument for atmospheric chemistry research,” Appl. Opt. 30, 407–413 (1991).
[CrossRef] [PubMed]

N. Goldstein, S. Adler-Golden, J. Lee, F. Bien, “Measurements of molecular concentrations and line parameters using line-locked second harmonic spectroscopy with an AlGaAs diode laser,” Appl. Opt. 31, 3409–3415 (1992).
[CrossRef] [PubMed]

L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynterm, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

P. Werle, F. Slemr, “Signal-to-noise ratio analysis in laser absorption spectrometers using optical multipass cells,” Appl. Opt. 30, 430–434 (1991).
[CrossRef] [PubMed]

J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992).
[CrossRef] [PubMed]

D. E. Cooper, R. E. Warren, “Frequency modulation with lead-salt diode lasers: a comparison of single-tone and two-tone methods,” Appl. Opt. 26, 3726–3732 (1987).
[CrossRef] [PubMed]

Appl. Phys. B

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers: comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Z. Bozóki, J. Sneider, G. Szabó, A. Miklós, M. Serényi, G. Nagy, M. Fehér, “Intracavity photoacoustic gas detection with an external cavity diode laser,” Appl. Phys. B 63, 399–401 (1996).
[CrossRef]

D. M. Sonnenfroh, W. J. Kessler, J. C. Magill, B. L. Upschulte, M. G. Allen, J. D. W. Barrick, “In-situ sensing of tropospheric water vapor using an airborne near IR diode laser hygrometer,” Appl. Phys. B 67, 275–282 (1998).
[CrossRef]

Appl. Phys. B.

F. S. Pavone, M. Inguscio, “Frequency- and wavelength-modulation spectroscopies: comparison of experimental methods using an AlGaAs diode laser,” Appl. Phys. B. 56, 118–122 (1993).
[CrossRef]

Appl. Phys. Lett.

C. B. Carlisle, D. E. Cooper, “Tunable diode laser frequency modulation spectroscopy through an optical fiber: high-sensitivity detection of water vapor,” Appl. Phys. Lett. 56, 805–807 (1990).
[CrossRef]

Infrared Phys. Technol.

J. Roths, R. Busen, “Development of a laser in situ airborne hygrometer (LISAH),” Infrared Phys. Technol. 37, 33–38 (1996).
[CrossRef]

J. Appl. Phys.

R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965).
[CrossRef]

J. Atmos. Ocean. Technol.

J. A. Silver, D. C. Hovde, “A comparison of near-infrared diode laser techniques for airborne hygrometry,” J. Atmos. Ocean. Technol. 15, 29–35 (1998).
[CrossRef]

J. Chem. Phys.

H. Wahlquist, “Modulation broadening of unsaturated Lorentzian lines,” J. Chem. Phys. 35, 1708–1710 (1961).
[CrossRef]

J. T. Hodges, J. P. Looney, R. D. van Zee, “Response of a ring-down cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10,278–10,288 (1996).
[CrossRef]

J. Electrochem. Soc.

B. R. Stallard, L. H. Espinoza, R. K. Rowe, M. J. Garcia, T. M. Niemczyk, “Trace water vapor detection in nitrogen and corrosive gases by FTIR spectroscopy,” J. Electrochem. Soc. 142, 2777–2782 (1995).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem.

P. Kauranen, I. Harwigsson, B. Jönsson, “Relative vapor pressure measurements using a frequency-modulated tunable diode laser, a tool for water activity determination in solutions,” J. Phys. Chem. 98, 1411–1415 (1994).
[CrossRef]

Microcontamination

R. Kästle, R. Grisar, M. Tacke, D. Dornisch, C. Scholz, “Using diode laser spectroscopy to monitor gas purity,” Microcontamination 9(11), 27–31 (1991).

Opt. Lett.

Rev. Sci. Instrum.

J. A. Silver, D. C. Hovde, “Near-infrared diode laser airborne hygrometer,” Rev. Sci. Instrum. 65, 1691–1694 (1994).
[CrossRef]

Other

J. A. Silver, D. C. Hovde, “Near-infrared diode laser hygrometer for airborne measurements,” in Proceedings of the Ninth Symposium on Meteorological Observations and Instrumentation (American Meteorological Society, 46 Beacon Street, Boston, Mass., 1995), pp. 311–316.

W. J. Kessler, M. G. Allen, S. J. Davis, P. A. Mulhall, J. A. Polex, “Near-IR diode-laser-based sensor for parts-per-billion-level water vapor in industrial gases,” in Electro-Optic, Integrated Optic, and Electronic Technologies for Online Chemical Process Monitoring, M. Fallaki, N. F. Hartman, R. J. Nordstrom, J. M. Cobb, T. R. Todd, J. G. Edwards, eds., Proc. SPIE3537, 139–149 (1999).
[CrossRef]

J. L. Hall, H. G. Robinson, T. Baer, L. Hollberg, “The lineshapes of sub-Doppler resonances observable with FM side-band (optical heterodyne) laser techniques,” in Advances in Laser Spectroscopy, F. T. Arrechi, F. Strumia, H. Walther, eds., NATO Advanced Science Institutes Series (Plenum, New York, 1983).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Scan over ≈150 GHz showing the linear absorption of water vapor in a low-pressure cell of 250-mm length at a pressure of 400 Pa. The numbers correspond to the lines in Table 1 taken from the HITRAN database.

Fig. 2
Fig. 2

Experimental arrangement for single-tone FMS: DFB, distributed feedback laser; IF, intermediate frequency; LO, local oscillator, and rf input.

Fig. 3
Fig. 3

Scan over ≈150 GHz near the strong water vapor line obtained by use of single-tone FMS in 0.4 m of air at ambient humidity and atmospheric pressure. The numbers refer to Table 1, which lists that part of the HITRAN database that shows these lines.

Fig. 4
Fig. 4

Experimental arrangement for WMS that uses either first-harmonic or second-harmonic detection: PSD, phase-sensitive detector; DFB, distributed feedback laser.

Fig. 5
Fig. 5

Scan over the water vapor lines near 1393 nm obtained by use of second-harmonic WMS.

Fig. 6
Fig. 6

Experimental arrangement for TTFMS. See Fig. 2 for definitions of the abbreviations.

Fig. 7
Fig. 7

Repeat of the scan over ≈150 GHz of Fig. 3 obtained by use of TTFMS.

Tables (1)

Tables Icon

Table 1 Water Vapor Lines near 1393 nm as Listed in the HITRAN Database and Observed in Fig. 1

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

α=Nσ.
σ=Sγπγ2+ν-ν02,
σ0=S/πγ.
γ  pT-n.
N=cp/kT.
α0p, T  cpkTSTpT-n.
IνI01-M cos Ωmt1-αν-ν0+νa cos ΩmtL,
n=0 SnνcosnΩt.
Sν  2M2+2β2-M2αν-ν0-β+M2αν-ν0+νm-β-M2αν-ν0-νm,

Metrics