Abstract

The development of a laser diode absorption spectrometer that uses a strong water vapor absorption at 1393 nm is reported. Three spectroscopic techniques were compared in ≈0.4 m of laboratory air, namely, frequency modulation, wavelength modulation, and two-tone frequency modulation spectroscopy. The first two techniques use a single-frequency modulation at 9.2 GHz and 1 kHz, respectively, generated either by a phase modulator operating at 9.2 GHz or injection current modulation at 1 kHz. The two-tone method requires modulation at two frequencies, in this case 9.19 and 9.21 GHz. It is shown that the two-tone method should provide the highest sensitivity for a trace moisture detection system.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription