Abstract

The design and application of a novel automated room-temperature laser spectrometer are reported. The compact instrument is based on difference-frequency generation in bulk LiNbO3. The instrument employs a tunable cw external-cavity diode laser (795–825 nm) and a pulsed diode-pumped Nd:YAG laser (1064 nm). The generated mid-IR nanosecond pulses of 50-µW peak power and 6.5-kHz repetition rate, continuously tunable from 3.16 to 3.67 µm, are coupled into a 36-m multipass cell for spectroscopic studies. On-line measurements of methane are performed at concentrations between 200 ppb (parts in 109 by mole fraction) and ≈1%, demonstrating a large dynamic range of 7 orders of magnitude. Furthermore computer-controlled multicomponent analysis of a mixture containing five trace gases and water vapor with an overall response time of 90 s at an averaging time of only ≈30 s is reported. A minimum detectable absorption coefficient of 1.1 × 10-7 cm-1 has been achieved in an averaging time of 60 s, enabling detection limits in the ppb range for many important trace gases, such as CH4, C2H6, H2CO, NO2, N2O, HCl, HBr, CO, and OCS.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. I. Schiff, G. I. Mackay, J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed., Vol. 127 of Chemical Analysis (Wiley, New York, 1994), Chap. 5.
  2. M. Tacke, “New developments and applications of tunable IR lead salt lasers,” Infrared Phys. Technol. 36, 447–463 (1995).
    [CrossRef]
  3. J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
    [CrossRef]
  4. P. Werle, “High sensitivity gas analysis by mid and near infrared diode lasers,” in Proceedings of Fifth International Symposium on Gas Analysis by Tunable Diode Lasers, VDI Berichte 1366 (VDI Verlag GmbH, Düsseldorf, 1998), pp. 1–16.
  5. K. P. Petrov, R. F. Curl, F. K. Tittel, “Compact laser difference-frequency spectrometer for multicomponent trace gas detection,” Appl. Phys. B 66, 531–538 (1998).
    [CrossRef]
  6. B. Sumpf, D. Rehle, T. Kelz, H.-D. Kronfeldt, “A tunable diode-laser spectrometer for the MIR region near 7.2 µm applying difference-frequency generation in AgGaSe2,” Appl. Phys. B 67, 369–373 (1998).
    [CrossRef]
  7. M. Seiter, M. W. Sigrist, “Compact gas sensor using a pulsed difference-frequency laser spectrometer,” Opt. Lett. 24, 110–112 (1999).
    [CrossRef]
  8. W. J. Riedel, R. Grisar, U. Klocke, M. Knothe, H. Wolf, P. Schottka, E. Bessey, N. Pelz, “Analysis of trace gas components in automotive exhaust gas,” in Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Boettner, M. Tacke, G. Restelli, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1992), pp. 319–324.
    [CrossRef]
  9. M. A. Moeckli, C. Hilbes, M. W. Sigrist, “Photoacoustic multicomponent gas analysis using a Levenberg–Marquardt fitting algorithm,” Appl. Phys. B 67, 449–458 (1998).
    [CrossRef]
  10. M. A. Moeckli, M. Fierz, M. W. Sigrist, “Emission factors for ethene and ammonia from a tunnel study with a photoacoustic trace-gas detection system,” Environ. Sci. Technol. 30, 2864–2867 (1996).
    [CrossRef]
  11. M. Seiter, D. Keller, M. W. Sigrist, “Broadly tunable difference-frequency spectrometer for trace gas detection with noncollinear critical phase matching in LiNbO3,” Appl. Phys. B 67, 351–356 (1998).
    [CrossRef]
  12. Th. Toepfer, K. P. Petrov, Y. Mine, D. Jundt, R. F. Curl, F. K. Tittel, “Room-temperature mid-infrared laser sensor for trace gas detection,” Appl. Opt. 36, 8042–8049 (1997).
    [CrossRef]
  13. S. T. Yang, S. P. Velsko, “Frequency-agile kilohertz repetition-rate optical parametric oscillator based on periodically poled lithium niobate,” Opt. Lett. 24, 133–135 (1999).
    [CrossRef]
  14. J.-J. Zondy, “The effects of focusing in type-I and type-II difference-frequency generations,” Opt. Commun. 149, 181–206 (1998).
    [CrossRef]
  15. M. Seiter, M. W. Sigrist, “Pulsed, tunable and narrowband mid-infrared laser source based on difference-frequency generation in LiNbO3,” in Digest of Topical Meeting on Advanced Solid-State Lasers (Optical Society of America, Washington, D.C., 1999), pp. 308–310.
  16. L. Goldberg, W. K. Burns, R. W. McElhanon, “Difference-frequency generation of tunable mid-infrared radiation in bulk periodically poled LiNbO3,” Opt. Lett. 20, 1280–1283 (1995).
    [CrossRef] [PubMed]
  17. L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
    [CrossRef]
  18. G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules (Krieger, Malabar, Fla., 1991).

1999 (2)

1998 (5)

K. P. Petrov, R. F. Curl, F. K. Tittel, “Compact laser difference-frequency spectrometer for multicomponent trace gas detection,” Appl. Phys. B 66, 531–538 (1998).
[CrossRef]

B. Sumpf, D. Rehle, T. Kelz, H.-D. Kronfeldt, “A tunable diode-laser spectrometer for the MIR region near 7.2 µm applying difference-frequency generation in AgGaSe2,” Appl. Phys. B 67, 369–373 (1998).
[CrossRef]

M. A. Moeckli, C. Hilbes, M. W. Sigrist, “Photoacoustic multicomponent gas analysis using a Levenberg–Marquardt fitting algorithm,” Appl. Phys. B 67, 449–458 (1998).
[CrossRef]

M. Seiter, D. Keller, M. W. Sigrist, “Broadly tunable difference-frequency spectrometer for trace gas detection with noncollinear critical phase matching in LiNbO3,” Appl. Phys. B 67, 351–356 (1998).
[CrossRef]

J.-J. Zondy, “The effects of focusing in type-I and type-II difference-frequency generations,” Opt. Commun. 149, 181–206 (1998).
[CrossRef]

1997 (2)

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[CrossRef]

Th. Toepfer, K. P. Petrov, Y. Mine, D. Jundt, R. F. Curl, F. K. Tittel, “Room-temperature mid-infrared laser sensor for trace gas detection,” Appl. Opt. 36, 8042–8049 (1997).
[CrossRef]

1996 (1)

M. A. Moeckli, M. Fierz, M. W. Sigrist, “Emission factors for ethene and ammonia from a tunnel study with a photoacoustic trace-gas detection system,” Environ. Sci. Technol. 30, 2864–2867 (1996).
[CrossRef]

1995 (2)

1992 (1)

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Baillargeon, J. N.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[CrossRef]

Bechara, J.

H. I. Schiff, G. I. Mackay, J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed., Vol. 127 of Chemical Analysis (Wiley, New York, 1994), Chap. 5.

Bessey, E.

W. J. Riedel, R. Grisar, U. Klocke, M. Knothe, H. Wolf, P. Schottka, E. Bessey, N. Pelz, “Analysis of trace gas components in automotive exhaust gas,” in Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Boettner, M. Tacke, G. Restelli, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1992), pp. 319–324.
[CrossRef]

Brown, L. R.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Burns, W. K.

Camy-Peyret, C.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Capasso, F.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[CrossRef]

Cho, A. Y.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[CrossRef]

Chris Benner, D.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Curl, R. F.

K. P. Petrov, R. F. Curl, F. K. Tittel, “Compact laser difference-frequency spectrometer for multicomponent trace gas detection,” Appl. Phys. B 66, 531–538 (1998).
[CrossRef]

Th. Toepfer, K. P. Petrov, Y. Mine, D. Jundt, R. F. Curl, F. K. Tittel, “Room-temperature mid-infrared laser sensor for trace gas detection,” Appl. Opt. 36, 8042–8049 (1997).
[CrossRef]

Faist, J.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[CrossRef]

Fierz, M.

M. A. Moeckli, M. Fierz, M. W. Sigrist, “Emission factors for ethene and ammonia from a tunnel study with a photoacoustic trace-gas detection system,” Environ. Sci. Technol. 30, 2864–2867 (1996).
[CrossRef]

Flaud, J.-M.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Gamache, R. R.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Gmachl, C.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[CrossRef]

Goldberg, L.

Goldman, A.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Grisar, R.

W. J. Riedel, R. Grisar, U. Klocke, M. Knothe, H. Wolf, P. Schottka, E. Bessey, N. Pelz, “Analysis of trace gas components in automotive exhaust gas,” in Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Boettner, M. Tacke, G. Restelli, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1992), pp. 319–324.
[CrossRef]

Herzberg, G.

G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules (Krieger, Malabar, Fla., 1991).

Hilbes, C.

M. A. Moeckli, C. Hilbes, M. W. Sigrist, “Photoacoustic multicomponent gas analysis using a Levenberg–Marquardt fitting algorithm,” Appl. Phys. B 67, 449–458 (1998).
[CrossRef]

Jundt, D.

Keller, D.

M. Seiter, D. Keller, M. W. Sigrist, “Broadly tunable difference-frequency spectrometer for trace gas detection with noncollinear critical phase matching in LiNbO3,” Appl. Phys. B 67, 351–356 (1998).
[CrossRef]

Kelz, T.

B. Sumpf, D. Rehle, T. Kelz, H.-D. Kronfeldt, “A tunable diode-laser spectrometer for the MIR region near 7.2 µm applying difference-frequency generation in AgGaSe2,” Appl. Phys. B 67, 369–373 (1998).
[CrossRef]

Klocke, U.

W. J. Riedel, R. Grisar, U. Klocke, M. Knothe, H. Wolf, P. Schottka, E. Bessey, N. Pelz, “Analysis of trace gas components in automotive exhaust gas,” in Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Boettner, M. Tacke, G. Restelli, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1992), pp. 319–324.
[CrossRef]

Knothe, M.

W. J. Riedel, R. Grisar, U. Klocke, M. Knothe, H. Wolf, P. Schottka, E. Bessey, N. Pelz, “Analysis of trace gas components in automotive exhaust gas,” in Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Boettner, M. Tacke, G. Restelli, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1992), pp. 319–324.
[CrossRef]

Kronfeldt, H.-D.

B. Sumpf, D. Rehle, T. Kelz, H.-D. Kronfeldt, “A tunable diode-laser spectrometer for the MIR region near 7.2 µm applying difference-frequency generation in AgGaSe2,” Appl. Phys. B 67, 369–373 (1998).
[CrossRef]

Mackay, G. I.

H. I. Schiff, G. I. Mackay, J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed., Vol. 127 of Chemical Analysis (Wiley, New York, 1994), Chap. 5.

Malathy Devi, V.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Massie, S. T.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

McElhanon, R. W.

Mine, Y.

Moeckli, M. A.

M. A. Moeckli, C. Hilbes, M. W. Sigrist, “Photoacoustic multicomponent gas analysis using a Levenberg–Marquardt fitting algorithm,” Appl. Phys. B 67, 449–458 (1998).
[CrossRef]

M. A. Moeckli, M. Fierz, M. W. Sigrist, “Emission factors for ethene and ammonia from a tunnel study with a photoacoustic trace-gas detection system,” Environ. Sci. Technol. 30, 2864–2867 (1996).
[CrossRef]

Pelz, N.

W. J. Riedel, R. Grisar, U. Klocke, M. Knothe, H. Wolf, P. Schottka, E. Bessey, N. Pelz, “Analysis of trace gas components in automotive exhaust gas,” in Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Boettner, M. Tacke, G. Restelli, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1992), pp. 319–324.
[CrossRef]

Perrin, A.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Petrov, K. P.

K. P. Petrov, R. F. Curl, F. K. Tittel, “Compact laser difference-frequency spectrometer for multicomponent trace gas detection,” Appl. Phys. B 66, 531–538 (1998).
[CrossRef]

Th. Toepfer, K. P. Petrov, Y. Mine, D. Jundt, R. F. Curl, F. K. Tittel, “Room-temperature mid-infrared laser sensor for trace gas detection,” Appl. Opt. 36, 8042–8049 (1997).
[CrossRef]

Rehle, D.

B. Sumpf, D. Rehle, T. Kelz, H.-D. Kronfeldt, “A tunable diode-laser spectrometer for the MIR region near 7.2 µm applying difference-frequency generation in AgGaSe2,” Appl. Phys. B 67, 369–373 (1998).
[CrossRef]

Riedel, W. J.

W. J. Riedel, R. Grisar, U. Klocke, M. Knothe, H. Wolf, P. Schottka, E. Bessey, N. Pelz, “Analysis of trace gas components in automotive exhaust gas,” in Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Boettner, M. Tacke, G. Restelli, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1992), pp. 319–324.
[CrossRef]

Rinsland, C. P.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Rothman, L. S.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Schiff, H. I.

H. I. Schiff, G. I. Mackay, J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed., Vol. 127 of Chemical Analysis (Wiley, New York, 1994), Chap. 5.

Schottka, P.

W. J. Riedel, R. Grisar, U. Klocke, M. Knothe, H. Wolf, P. Schottka, E. Bessey, N. Pelz, “Analysis of trace gas components in automotive exhaust gas,” in Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Boettner, M. Tacke, G. Restelli, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1992), pp. 319–324.
[CrossRef]

Seiter, M.

M. Seiter, M. W. Sigrist, “Compact gas sensor using a pulsed difference-frequency laser spectrometer,” Opt. Lett. 24, 110–112 (1999).
[CrossRef]

M. Seiter, D. Keller, M. W. Sigrist, “Broadly tunable difference-frequency spectrometer for trace gas detection with noncollinear critical phase matching in LiNbO3,” Appl. Phys. B 67, 351–356 (1998).
[CrossRef]

M. Seiter, M. W. Sigrist, “Pulsed, tunable and narrowband mid-infrared laser source based on difference-frequency generation in LiNbO3,” in Digest of Topical Meeting on Advanced Solid-State Lasers (Optical Society of America, Washington, D.C., 1999), pp. 308–310.

Sigrist, M. W.

M. Seiter, M. W. Sigrist, “Compact gas sensor using a pulsed difference-frequency laser spectrometer,” Opt. Lett. 24, 110–112 (1999).
[CrossRef]

M. A. Moeckli, C. Hilbes, M. W. Sigrist, “Photoacoustic multicomponent gas analysis using a Levenberg–Marquardt fitting algorithm,” Appl. Phys. B 67, 449–458 (1998).
[CrossRef]

M. Seiter, D. Keller, M. W. Sigrist, “Broadly tunable difference-frequency spectrometer for trace gas detection with noncollinear critical phase matching in LiNbO3,” Appl. Phys. B 67, 351–356 (1998).
[CrossRef]

M. A. Moeckli, M. Fierz, M. W. Sigrist, “Emission factors for ethene and ammonia from a tunnel study with a photoacoustic trace-gas detection system,” Environ. Sci. Technol. 30, 2864–2867 (1996).
[CrossRef]

M. Seiter, M. W. Sigrist, “Pulsed, tunable and narrowband mid-infrared laser source based on difference-frequency generation in LiNbO3,” in Digest of Topical Meeting on Advanced Solid-State Lasers (Optical Society of America, Washington, D.C., 1999), pp. 308–310.

Sirtori, C.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[CrossRef]

Sivco, D. L.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[CrossRef]

Smith, M. A. H.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Sumpf, B.

B. Sumpf, D. Rehle, T. Kelz, H.-D. Kronfeldt, “A tunable diode-laser spectrometer for the MIR region near 7.2 µm applying difference-frequency generation in AgGaSe2,” Appl. Phys. B 67, 369–373 (1998).
[CrossRef]

Tacke, M.

M. Tacke, “New developments and applications of tunable IR lead salt lasers,” Infrared Phys. Technol. 36, 447–463 (1995).
[CrossRef]

Tipping, R. H.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Tittel, F. K.

K. P. Petrov, R. F. Curl, F. K. Tittel, “Compact laser difference-frequency spectrometer for multicomponent trace gas detection,” Appl. Phys. B 66, 531–538 (1998).
[CrossRef]

Th. Toepfer, K. P. Petrov, Y. Mine, D. Jundt, R. F. Curl, F. K. Tittel, “Room-temperature mid-infrared laser sensor for trace gas detection,” Appl. Opt. 36, 8042–8049 (1997).
[CrossRef]

Toepfer, Th.

Toth, R. A.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Velsko, S. P.

Werle, P.

P. Werle, “High sensitivity gas analysis by mid and near infrared diode lasers,” in Proceedings of Fifth International Symposium on Gas Analysis by Tunable Diode Lasers, VDI Berichte 1366 (VDI Verlag GmbH, Düsseldorf, 1998), pp. 1–16.

Wolf, H.

W. J. Riedel, R. Grisar, U. Klocke, M. Knothe, H. Wolf, P. Schottka, E. Bessey, N. Pelz, “Analysis of trace gas components in automotive exhaust gas,” in Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Boettner, M. Tacke, G. Restelli, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1992), pp. 319–324.
[CrossRef]

Yang, S. T.

Zondy, J.-J.

J.-J. Zondy, “The effects of focusing in type-I and type-II difference-frequency generations,” Opt. Commun. 149, 181–206 (1998).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (4)

M. Seiter, D. Keller, M. W. Sigrist, “Broadly tunable difference-frequency spectrometer for trace gas detection with noncollinear critical phase matching in LiNbO3,” Appl. Phys. B 67, 351–356 (1998).
[CrossRef]

K. P. Petrov, R. F. Curl, F. K. Tittel, “Compact laser difference-frequency spectrometer for multicomponent trace gas detection,” Appl. Phys. B 66, 531–538 (1998).
[CrossRef]

B. Sumpf, D. Rehle, T. Kelz, H.-D. Kronfeldt, “A tunable diode-laser spectrometer for the MIR region near 7.2 µm applying difference-frequency generation in AgGaSe2,” Appl. Phys. B 67, 369–373 (1998).
[CrossRef]

M. A. Moeckli, C. Hilbes, M. W. Sigrist, “Photoacoustic multicomponent gas analysis using a Levenberg–Marquardt fitting algorithm,” Appl. Phys. B 67, 449–458 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[CrossRef]

Environ. Sci. Technol. (1)

M. A. Moeckli, M. Fierz, M. W. Sigrist, “Emission factors for ethene and ammonia from a tunnel study with a photoacoustic trace-gas detection system,” Environ. Sci. Technol. 30, 2864–2867 (1996).
[CrossRef]

Infrared Phys. Technol. (1)

M. Tacke, “New developments and applications of tunable IR lead salt lasers,” Infrared Phys. Technol. 36, 447–463 (1995).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Opt. Commun. (1)

J.-J. Zondy, “The effects of focusing in type-I and type-II difference-frequency generations,” Opt. Commun. 149, 181–206 (1998).
[CrossRef]

Opt. Lett. (3)

Other (5)

M. Seiter, M. W. Sigrist, “Pulsed, tunable and narrowband mid-infrared laser source based on difference-frequency generation in LiNbO3,” in Digest of Topical Meeting on Advanced Solid-State Lasers (Optical Society of America, Washington, D.C., 1999), pp. 308–310.

G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules (Krieger, Malabar, Fla., 1991).

H. I. Schiff, G. I. Mackay, J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed., Vol. 127 of Chemical Analysis (Wiley, New York, 1994), Chap. 5.

P. Werle, “High sensitivity gas analysis by mid and near infrared diode lasers,” in Proceedings of Fifth International Symposium on Gas Analysis by Tunable Diode Lasers, VDI Berichte 1366 (VDI Verlag GmbH, Düsseldorf, 1998), pp. 1–16.

W. J. Riedel, R. Grisar, U. Klocke, M. Knothe, H. Wolf, P. Schottka, E. Bessey, N. Pelz, “Analysis of trace gas components in automotive exhaust gas,” in Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Boettner, M. Tacke, G. Restelli, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1992), pp. 319–324.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Diagram of the automated laser spectrometer that consists of a Pulsed DFG Laser Source, a Gas Sensor, and a Control and Data Acquisition Unit. Each part is framed by dotted rectangles. In the laser-source setup, lenses and other optical elements have been omitted for simplification. For a more detailed description see Ref. 7. Optical traces are illustrated by dashed–dotted lines. Coaxial cables and GPIB cables are represented by solid lines and triple solid lines, respectively. BS1, BS2, beam-splitter plates; BS3, polarizing beam-splitter cube; Ge, Ge filter; A1, A2, amplifier; PM, parabolic mirror; PD1, PD2, Si photodiodes.

Fig. 2
Fig. 2

On-line measurement of methane at trace concentrations of 10, 5, 1, 0.5, and 0.2 ppm, all buffered in 0.95 atm of synthetic air at room temperature. The spectra were recorded with the transition at 3038.4985 cm-1 with an averaging time of 5 s (0.5–10 ppm) and 10 s (0.2 ppm). The inset shows a zoom of the calculated data for a 200-ppb concentration setting. Error bars represent rms fit residuals of ±27 ppb.

Fig. 3
Fig. 3

The 20-sweep average of the measured methane transmission signal (dots) at 3038.4985 cm-1 and the Lorentzian fit (solid curve). The dashed curve represents a spectrum that is not corrected for absorption by methane in ambient air outside the multipass cell.

Fig. 4
Fig. 4

On-line measurement of methane (2869.4734 cm-1) at concentrations between 0.1% and 0.9% buffered in 0.94-atm nitrogen. The averaging time was 5 s, data were updated every 13 s. Error bars represent rms fit residuals of ±90 ppm.

Fig. 5
Fig. 5

Spectrum of methane at 2869.4734 cm-1 buffered in 0.61-atm nitrogen. The two-sweep average of measured transmission signal (dots) and Lorentzian fit (solid curve).

Fig. 6
Fig. 6

Computed HITRAN spectrum17 of 357-ppb CH4, 357-ppb C2H6, 2.14-ppm H2CO, 3.49-ppm NO2, 53.6-ppm N2O, and 0.25% H2O. Path length and total pressure were 36.2 m and 0.52 atm, respectively. The solid triangles indicate spectral positions of transitions of the assigned species without interferences among one another.

Fig. 7
Fig. 7

Multicomponent trace-gas analysis by means of recording characteristic transmission signals at different spectral regions. Baseline-corrected measured spectra (dots) and Lorentzian fits (solid curves) of (a) CH4, (b) C2H6, (c) H2CO, (d) NO2, (e) N2O, and (f) H2O, all buffered in synthetic air, are depicted. Expected and measured concentrations, including their uncertainties, as well as the considered transitions of each species are listed in Table 1.

Tables (2)

Tables Icon

Table 1 Multicomponent Trace-Gas Analysis

Tables Icon

Table 2 Detection Limits of Measurable Gases by Use of the Pulsed DFG Laser Spectrometer

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

λi=1/λp-1/λs-1.
Pν=P0νexp-ανL,
Vx=exp-i=1N Aigxi, Δxip4x.
gxi, Δxi=1πΔxi2x-xi2+Δxi2,

Metrics