Abstract

Signal-induced bias (SIB) superimposed on the tail of lidar signals detected by photomultiplier tubes (PMT’s) has long been recognized as significant interference in lidar data retrieval. Analysis of the data from a lidar transmitting in the horizontal direction revealed that SIB is a well-shaped pulse and is thus called a signal-induced pulse (SIP). The SIP starts near the end of the signal and has an exponentially decaying tail. The decay time constant is negatively correlated with the pulse rise time. The origins of afterpulses discussed in the literature could not explain the cause of the SIP. This research leads to the hypothesis that the SIP is the fluorescence emitted from the PMT wall that is impinged by ions in the PMT. A model was developed, and the results show good agreement with the data. This model is applied to remove SIP’s during processing of data from an ozone-profiling lidar.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Shimizu, Y. Sassano, H. Nakane, N. Sugimoto, I. Matui, N. Takeuchi, “Large scale laser radar for measuring aerosol distribution over a wide area,” Appl. Opt. 24, 617–626 (1985).
    [CrossRef] [PubMed]
  2. W. H. Hunt, S. K. Poultney, “Testing the linearity of response of gated photomultipliers in wide dynamic range laser radar systems,” IEEE Trans. Nucl. Sci. NS-22, 116–120 (1975).
    [CrossRef]
  3. Y. Likura, N. Sugimoto, Y. Sassano, H. Shimizu, “Improvement on lidar data processing for stratospheric aerosol measurements,” Appl. Opt. 26, 5299–5306 (1987).
    [CrossRef] [PubMed]
  4. J. A. Sunesson, A. Apituley, D. P. J. Swart, “Differential absorption lidar system for routine monitoring of tropospheric ozone,” Appl. Opt. 33, 7045–7058 (1994).
    [CrossRef] [PubMed]
  5. H. S. Lee, G. K. Schwemmer, C. L. Korb, M. Dombrowski, C. Prasad, “Gated photomultiplier response characterization for DIAL measurements,” Appl. Opt. 29, 3303–3315 (1990).
    [CrossRef] [PubMed]
  6. J. Bösenburg, Max Planck Institut für Meteorologie (MPI), Hanburg, Germany (when visiting NOAA ETL) (personal communications, summer1993).
  7. M. P. Bristow, D. H. Bundy, A. G. Wright, “Signal linearity, gain stability, and gating in photomultipliers: application to differential absorption lidars,” Appl. Opt. 34, 4437–4452 (1995).
    [CrossRef] [PubMed]
  8. M. De Vincenzi, G. Penso, A. Sciubba, A. Sposito, “Experimental study of nonlinear effects on photomultiplier gain,” Nucl. Instrum. Methods Phys. Res. 225, 104–112 (1984).
    [CrossRef]
  9. J. P. Boutot, J. Nussli, D. Vallat, “Recent trends in photomultipliers for nuclear physics,” Adv. Electron. Electron Phys. 60, 223–305 (1983).
    [CrossRef]
  10. Photomultiplier Handbook (formerly RCA Photomultiplier Handbook) (Burle Industries, Inc., Lancaster, Pa., 1989), p. 57.
  11. Y. Zhao, J. Howell, R. M. Hardesty, “Transportable lidar for the measurement of ozone concentration and aerosol profiles in the lower troposphere,” in Tunalbe Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Killinger, H. I. Schiff, eds., Proc. SPIE2112, 310–320 (1993).
    [CrossRef]
  12. Y. Zhao, R. M. Hardesty, M. J. Post, “Multibeam transmitter for signal dynamic range reduction in incoherent lidar systems,” Appl. Opt. 31, 7623–7632 (1992).
    [CrossRef] [PubMed]
  13. Photomultiplier Tubes, Principles and Applications (Philips Photonics, Brive, France, 1994), pp. 4.40–4.41.
  14. Photomultiplier Tube, Principle to Application (Hamamatsu Photonics K. K., San Jose, Calif., 1994), p. 175.
  15. L. Campbell, “Afterpulse measurement and correction,” Rev. Sci. Instrum. 63, 5794–5798 (1992).
    [CrossRef]
  16. H. R. Krall, “Extraneous light emission from photomultipliers,” IEEE Trans. Nucl. Sci. NS-14, 455–459 (1967).
    [CrossRef]
  17. P. B. Coates, “The origin of afterpulses in photomultipliers,” J. Phys. D 6, 1159–1166 (1973).
    [CrossRef]
  18. P. B. Coates, “A theory of afterpulse formation in photomultipliers and the pulse height distribution,” J. Phys. D 6, 1862–1869 (1973).
    [CrossRef]
  19. M. Yamashita, O. Yura, Y. Kawada, “Probability and time distribution of afterpulses in GaP first dynode photomultiplier tubes,” Nucl. Instrum. Methods 196, 199–202 (1982).
    [CrossRef]
  20. R. J. Riley, A. G. Wright, “The effect of photomultiplier afterpulses in coincidence systems,” J. Phys. E 10, 873–874 (1977).
    [CrossRef]
  21. J. H. Stathis, M. A. Kastner, “Time-resolved photoluminescence in amorphous silicon dioxide,” Phys. Rev. B 35, 2972–2979 (1987).
    [CrossRef]
  22. D. L. Griscom, “Optical properties and structure of defects in silica glass,” in The Centennial Memorial Issue, Ceram. Soc. Jpn.99(10), 923–942 (1991).
  23. G. H. Siegel, “Ultraviolet spectra of silicate glasses: a review of some experimental evidence,” J. Non-Cryst. Solids 13, 372–398 (1973/1974).
    [CrossRef]
  24. K. Tanimura, T. Tanaka, N. Itoh, “Creation of quasi-stable lattice defects by electronic excitation in SiO2,” Phys. Rev. Lett. 51, 423–426 (1983).
    [CrossRef]

1995 (1)

1994 (1)

1992 (2)

1990 (1)

1987 (2)

Y. Likura, N. Sugimoto, Y. Sassano, H. Shimizu, “Improvement on lidar data processing for stratospheric aerosol measurements,” Appl. Opt. 26, 5299–5306 (1987).
[CrossRef] [PubMed]

J. H. Stathis, M. A. Kastner, “Time-resolved photoluminescence in amorphous silicon dioxide,” Phys. Rev. B 35, 2972–2979 (1987).
[CrossRef]

1985 (1)

1984 (1)

M. De Vincenzi, G. Penso, A. Sciubba, A. Sposito, “Experimental study of nonlinear effects on photomultiplier gain,” Nucl. Instrum. Methods Phys. Res. 225, 104–112 (1984).
[CrossRef]

1983 (2)

J. P. Boutot, J. Nussli, D. Vallat, “Recent trends in photomultipliers for nuclear physics,” Adv. Electron. Electron Phys. 60, 223–305 (1983).
[CrossRef]

K. Tanimura, T. Tanaka, N. Itoh, “Creation of quasi-stable lattice defects by electronic excitation in SiO2,” Phys. Rev. Lett. 51, 423–426 (1983).
[CrossRef]

1982 (1)

M. Yamashita, O. Yura, Y. Kawada, “Probability and time distribution of afterpulses in GaP first dynode photomultiplier tubes,” Nucl. Instrum. Methods 196, 199–202 (1982).
[CrossRef]

1977 (1)

R. J. Riley, A. G. Wright, “The effect of photomultiplier afterpulses in coincidence systems,” J. Phys. E 10, 873–874 (1977).
[CrossRef]

1975 (1)

W. H. Hunt, S. K. Poultney, “Testing the linearity of response of gated photomultipliers in wide dynamic range laser radar systems,” IEEE Trans. Nucl. Sci. NS-22, 116–120 (1975).
[CrossRef]

1973 (2)

P. B. Coates, “The origin of afterpulses in photomultipliers,” J. Phys. D 6, 1159–1166 (1973).
[CrossRef]

P. B. Coates, “A theory of afterpulse formation in photomultipliers and the pulse height distribution,” J. Phys. D 6, 1862–1869 (1973).
[CrossRef]

1967 (1)

H. R. Krall, “Extraneous light emission from photomultipliers,” IEEE Trans. Nucl. Sci. NS-14, 455–459 (1967).
[CrossRef]

Apituley, A.

Bösenburg, J.

J. Bösenburg, Max Planck Institut für Meteorologie (MPI), Hanburg, Germany (when visiting NOAA ETL) (personal communications, summer1993).

Boutot, J. P.

J. P. Boutot, J. Nussli, D. Vallat, “Recent trends in photomultipliers for nuclear physics,” Adv. Electron. Electron Phys. 60, 223–305 (1983).
[CrossRef]

Bristow, M. P.

Bundy, D. H.

Campbell, L.

L. Campbell, “Afterpulse measurement and correction,” Rev. Sci. Instrum. 63, 5794–5798 (1992).
[CrossRef]

Coates, P. B.

P. B. Coates, “A theory of afterpulse formation in photomultipliers and the pulse height distribution,” J. Phys. D 6, 1862–1869 (1973).
[CrossRef]

P. B. Coates, “The origin of afterpulses in photomultipliers,” J. Phys. D 6, 1159–1166 (1973).
[CrossRef]

De Vincenzi, M.

M. De Vincenzi, G. Penso, A. Sciubba, A. Sposito, “Experimental study of nonlinear effects on photomultiplier gain,” Nucl. Instrum. Methods Phys. Res. 225, 104–112 (1984).
[CrossRef]

Dombrowski, M.

Griscom, D. L.

D. L. Griscom, “Optical properties and structure of defects in silica glass,” in The Centennial Memorial Issue, Ceram. Soc. Jpn.99(10), 923–942 (1991).

Hardesty, R. M.

Y. Zhao, R. M. Hardesty, M. J. Post, “Multibeam transmitter for signal dynamic range reduction in incoherent lidar systems,” Appl. Opt. 31, 7623–7632 (1992).
[CrossRef] [PubMed]

Y. Zhao, J. Howell, R. M. Hardesty, “Transportable lidar for the measurement of ozone concentration and aerosol profiles in the lower troposphere,” in Tunalbe Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Killinger, H. I. Schiff, eds., Proc. SPIE2112, 310–320 (1993).
[CrossRef]

Howell, J.

Y. Zhao, J. Howell, R. M. Hardesty, “Transportable lidar for the measurement of ozone concentration and aerosol profiles in the lower troposphere,” in Tunalbe Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Killinger, H. I. Schiff, eds., Proc. SPIE2112, 310–320 (1993).
[CrossRef]

Hunt, W. H.

W. H. Hunt, S. K. Poultney, “Testing the linearity of response of gated photomultipliers in wide dynamic range laser radar systems,” IEEE Trans. Nucl. Sci. NS-22, 116–120 (1975).
[CrossRef]

Itoh, N.

K. Tanimura, T. Tanaka, N. Itoh, “Creation of quasi-stable lattice defects by electronic excitation in SiO2,” Phys. Rev. Lett. 51, 423–426 (1983).
[CrossRef]

Kastner, M. A.

J. H. Stathis, M. A. Kastner, “Time-resolved photoluminescence in amorphous silicon dioxide,” Phys. Rev. B 35, 2972–2979 (1987).
[CrossRef]

Kawada, Y.

M. Yamashita, O. Yura, Y. Kawada, “Probability and time distribution of afterpulses in GaP first dynode photomultiplier tubes,” Nucl. Instrum. Methods 196, 199–202 (1982).
[CrossRef]

Korb, C. L.

Krall, H. R.

H. R. Krall, “Extraneous light emission from photomultipliers,” IEEE Trans. Nucl. Sci. NS-14, 455–459 (1967).
[CrossRef]

Lee, H. S.

Likura, Y.

Matui, I.

Nakane, H.

Nussli, J.

J. P. Boutot, J. Nussli, D. Vallat, “Recent trends in photomultipliers for nuclear physics,” Adv. Electron. Electron Phys. 60, 223–305 (1983).
[CrossRef]

Penso, G.

M. De Vincenzi, G. Penso, A. Sciubba, A. Sposito, “Experimental study of nonlinear effects on photomultiplier gain,” Nucl. Instrum. Methods Phys. Res. 225, 104–112 (1984).
[CrossRef]

Post, M. J.

Poultney, S. K.

W. H. Hunt, S. K. Poultney, “Testing the linearity of response of gated photomultipliers in wide dynamic range laser radar systems,” IEEE Trans. Nucl. Sci. NS-22, 116–120 (1975).
[CrossRef]

Prasad, C.

Riley, R. J.

R. J. Riley, A. G. Wright, “The effect of photomultiplier afterpulses in coincidence systems,” J. Phys. E 10, 873–874 (1977).
[CrossRef]

Sassano, Y.

Schwemmer, G. K.

Sciubba, A.

M. De Vincenzi, G. Penso, A. Sciubba, A. Sposito, “Experimental study of nonlinear effects on photomultiplier gain,” Nucl. Instrum. Methods Phys. Res. 225, 104–112 (1984).
[CrossRef]

Shimizu, H.

Siegel, G. H.

G. H. Siegel, “Ultraviolet spectra of silicate glasses: a review of some experimental evidence,” J. Non-Cryst. Solids 13, 372–398 (1973/1974).
[CrossRef]

Sposito, A.

M. De Vincenzi, G. Penso, A. Sciubba, A. Sposito, “Experimental study of nonlinear effects on photomultiplier gain,” Nucl. Instrum. Methods Phys. Res. 225, 104–112 (1984).
[CrossRef]

Stathis, J. H.

J. H. Stathis, M. A. Kastner, “Time-resolved photoluminescence in amorphous silicon dioxide,” Phys. Rev. B 35, 2972–2979 (1987).
[CrossRef]

Sugimoto, N.

Sunesson, J. A.

Swart, D. P. J.

Takeuchi, N.

Tanaka, T.

K. Tanimura, T. Tanaka, N. Itoh, “Creation of quasi-stable lattice defects by electronic excitation in SiO2,” Phys. Rev. Lett. 51, 423–426 (1983).
[CrossRef]

Tanimura, K.

K. Tanimura, T. Tanaka, N. Itoh, “Creation of quasi-stable lattice defects by electronic excitation in SiO2,” Phys. Rev. Lett. 51, 423–426 (1983).
[CrossRef]

Vallat, D.

J. P. Boutot, J. Nussli, D. Vallat, “Recent trends in photomultipliers for nuclear physics,” Adv. Electron. Electron Phys. 60, 223–305 (1983).
[CrossRef]

Wright, A. G.

Yamashita, M.

M. Yamashita, O. Yura, Y. Kawada, “Probability and time distribution of afterpulses in GaP first dynode photomultiplier tubes,” Nucl. Instrum. Methods 196, 199–202 (1982).
[CrossRef]

Yura, O.

M. Yamashita, O. Yura, Y. Kawada, “Probability and time distribution of afterpulses in GaP first dynode photomultiplier tubes,” Nucl. Instrum. Methods 196, 199–202 (1982).
[CrossRef]

Zhao, Y.

Y. Zhao, R. M. Hardesty, M. J. Post, “Multibeam transmitter for signal dynamic range reduction in incoherent lidar systems,” Appl. Opt. 31, 7623–7632 (1992).
[CrossRef] [PubMed]

Y. Zhao, J. Howell, R. M. Hardesty, “Transportable lidar for the measurement of ozone concentration and aerosol profiles in the lower troposphere,” in Tunalbe Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Killinger, H. I. Schiff, eds., Proc. SPIE2112, 310–320 (1993).
[CrossRef]

Adv. Electron. Electron Phys. (1)

J. P. Boutot, J. Nussli, D. Vallat, “Recent trends in photomultipliers for nuclear physics,” Adv. Electron. Electron Phys. 60, 223–305 (1983).
[CrossRef]

Appl. Opt. (6)

IEEE Trans. Nucl. Sci. (2)

W. H. Hunt, S. K. Poultney, “Testing the linearity of response of gated photomultipliers in wide dynamic range laser radar systems,” IEEE Trans. Nucl. Sci. NS-22, 116–120 (1975).
[CrossRef]

H. R. Krall, “Extraneous light emission from photomultipliers,” IEEE Trans. Nucl. Sci. NS-14, 455–459 (1967).
[CrossRef]

J. Non-Cryst. Solids (1)

G. H. Siegel, “Ultraviolet spectra of silicate glasses: a review of some experimental evidence,” J. Non-Cryst. Solids 13, 372–398 (1973/1974).
[CrossRef]

J. Phys. D (2)

P. B. Coates, “The origin of afterpulses in photomultipliers,” J. Phys. D 6, 1159–1166 (1973).
[CrossRef]

P. B. Coates, “A theory of afterpulse formation in photomultipliers and the pulse height distribution,” J. Phys. D 6, 1862–1869 (1973).
[CrossRef]

J. Phys. E (1)

R. J. Riley, A. G. Wright, “The effect of photomultiplier afterpulses in coincidence systems,” J. Phys. E 10, 873–874 (1977).
[CrossRef]

Nucl. Instrum. Methods (1)

M. Yamashita, O. Yura, Y. Kawada, “Probability and time distribution of afterpulses in GaP first dynode photomultiplier tubes,” Nucl. Instrum. Methods 196, 199–202 (1982).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. (1)

M. De Vincenzi, G. Penso, A. Sciubba, A. Sposito, “Experimental study of nonlinear effects on photomultiplier gain,” Nucl. Instrum. Methods Phys. Res. 225, 104–112 (1984).
[CrossRef]

Phys. Rev. B (1)

J. H. Stathis, M. A. Kastner, “Time-resolved photoluminescence in amorphous silicon dioxide,” Phys. Rev. B 35, 2972–2979 (1987).
[CrossRef]

Phys. Rev. Lett. (1)

K. Tanimura, T. Tanaka, N. Itoh, “Creation of quasi-stable lattice defects by electronic excitation in SiO2,” Phys. Rev. Lett. 51, 423–426 (1983).
[CrossRef]

Rev. Sci. Instrum. (1)

L. Campbell, “Afterpulse measurement and correction,” Rev. Sci. Instrum. 63, 5794–5798 (1992).
[CrossRef]

Other (6)

D. L. Griscom, “Optical properties and structure of defects in silica glass,” in The Centennial Memorial Issue, Ceram. Soc. Jpn.99(10), 923–942 (1991).

J. Bösenburg, Max Planck Institut für Meteorologie (MPI), Hanburg, Germany (when visiting NOAA ETL) (personal communications, summer1993).

Photomultiplier Tubes, Principles and Applications (Philips Photonics, Brive, France, 1994), pp. 4.40–4.41.

Photomultiplier Tube, Principle to Application (Hamamatsu Photonics K. K., San Jose, Calif., 1994), p. 175.

Photomultiplier Handbook (formerly RCA Photomultiplier Handbook) (Burle Industries, Inc., Lancaster, Pa., 1989), p. 57.

Y. Zhao, J. Howell, R. M. Hardesty, “Transportable lidar for the measurement of ozone concentration and aerosol profiles in the lower troposphere,” in Tunalbe Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Killinger, H. I. Schiff, eds., Proc. SPIE2112, 310–320 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Example of the OPAL signals at 266 and 289 nm (dc noise and digitizer noise subtracted). Data were taken at 1355 MST (Midwest Standard Time) on 20 October 1995 at Table Mountain, Boulder, Colo: 1, 266 nm; 2, 289 nm.

Fig. 2
Fig. 2

Logarithm of the range-normalized signals of the same data set as in Fig. 1: 1, 266 nm; 2, 289 nm; 3, linear least-squares fit of curve 1 from 1.2 to 2 km; 4, linear least-squares fit of the portion of curve 2 from 1.5 to 3 km.

Fig. 3
Fig. 3

Signal-induced pulse at 266 nm derived from the difference between curves 1 and 3 in Fig. 2. The little spikes at ∼47 µs are terrain-backscattered returns.

Fig. 4
Fig. 4

OPAL signals at 266 and 289 nm (dc noise and digitizer noise subtracted). Data were taken at 1253 PST (Pacific Standard Time) on 11 June 1997 at El Monte Airport, Calif.: 1, 266 nm; 2, 289 nm.

Fig. 5
Fig. 5

Logarithm of the range-normalized signals of the same data set as in Fig. 4: 1, 266 nm; 2, 289 nm; 3, linear least-squares fit of curve 1 from 0.8 to 1.1 km; 4, linear least-squares fit of the portion of curve 2 from 0.85 to 1.4 km.

Fig. 6
Fig. 6

Signal-induced pulse at 266 nm derived from the difference between curves 1 and 3 in Fig. 5.

Fig. 7
Fig. 7

Hypothesis: ions escaping from the space between the anode and the last dynodes strike the glass tube and cause fluorescence from the wall.

Fig. 8
Fig. 8

Signal-induced pulse at 266 nm. Data in Fig. 3, the curve from the model, and the difference between them are shown.

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

Pr=Csηrβrr2 exp-2 0rσmr+σar+ρrαrdr,
Pr=Csηrβ0r2 exp-2rσm0+σa0+αρ0,
sr=lnPrr2,
sr=lnCs+lnηr-0rσmr+σardr-0r αρrdr,
sr=lnCs+lnηr-2rσm0+σa0+αρ0.
Lr=lnP0rr2,
νr=Pr-P0r=Pr-expLr/r2=Pr-explnP0rr2r2.
0t0 Ptdt0.99 0 Ptdt,
νt=Aexp-κat-t0-exp-κbt-t0,
κb=c1κa exp-c2κa,
Net  MNst,
dNidt=kiNetNg-krNetNi-kcNit-ketNit,
dNidtkiNetNg.
Nit=KiNg0t Netdt=kiNgqt,
Nit0=kiNg0t0 NetdtkiNg0 Netdt=kiNgq0,
Nit=Nit0exp-kmaxt,
T1/ke.
dn2dt=Qt-k2n2,  dn1dt=k2n2-k1n1,
Qt=0,tt0,Q0,t0<tt0+T,0,t>T+t0.
n2t=Q0k21-exp-k2t-t0,t0tt0+T,B exp-k2t-t0,t>T+t0,
B=Q0k2expk2T-1,
n1t=Q0k11-k2k2-k1 exp-k1t-t0+k1k2-k1 exp-k2t-t0,t0<tt0+T,C exp-k1t-t0-D exp-k2t-t0,t>t0+T,
C=Q0k2k1k2-k1expk1T-1,
D=Q0k2-k1expk2T-1.
Ft=χn1t.
Ft=χn1t=χ Q0k11-k2k2-k1 exp-k1t-t0+k1k2-k1 exp-k2t-t0,t0<tt0+T,A1 exp-k1t-t0-A2 exp-k2t-t0,t>t0+T,
Ft1=k2k1k2-k1expk1T-1exp-k1t1-t0-1k2-k1expk2T-1exp-k2t1-t0.

Metrics