Abstract

We propose to use a Fabry–Perot interferometer (FPI) as a comb frequency filter to isolate pure rotational Raman spectra (PRRS) of nitrogen molecules. In making the FPI’s free spectral range equal to the spectral spacing between the lines of nitrogen PRRS, which are practically equidistant, one obtains a device with a comb transmission function with the same period. However, to match the FPI transmission comb completely with the comb of nitrogen PRRS lines one should tune the wavelength of the radiation used to excite the PRRS of nitrogen exactly to the position of any minimum in the FPI transmission comb. Thus to achieve this task for the case of nitrogen PRRS one must take the FPI’s free spectral range Δν f = 4B N2 and the wavelength of the exciting radiation such that (1/λexc) = 4B N2(k + 1/2), where B N2 is the rotational constant of the nitrogen molecule and k is an arbitrary integer number. In this case all (odd and even) pure rotational Raman lines of nitrogen will pass through the FPI while the line of exciting radiation is being suppressed. Additionally, a FPI cuts out the spectrally continuous sky background light from the spectral gaps between the PRRS lines.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, V. Mitey, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32, 2758–2764 (1993).
    [CrossRef] [PubMed]
  2. J. Zeyn, E. Voss, W. Lahmann, C. Weitkamp, W. Michaelis, “Daytime temperature lidar based on rotational Raman scattering,” presented at the Third International Symposium on Tropospheric Profiling: Needs and Technologies, Geomatikum Universität Hamburg, Hamburg, Germany, 30 August–2 September 1994.
  3. Yu. F. Arshinov, S. M. Bobrovnikov, D. I. Shelefontyuk, V. K. Shumskii, “Observations of the boundary atmospheric layer with a combined Raman lidar,” presented at the Third International Symposium on Tropospheric Profiling: Needs and Technologies, Geomatikum Universität Hamburg, Hamburg, Germany, 30 August–2 September 1994.
  4. J. Zeyn, W. Lahmann, C. Weitkamp, “Remote daytime measurements of tropospheric temperature profiles with a rotational Raman lidar,” Opt. Lett. 21, 1301–1303 (1996).
    [CrossRef] [PubMed]
  5. D. Nedeljkovic, A. Hauchecorne, M.-L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
    [CrossRef]
  6. G. von Cossart, J. Fiedler, U. Zahn, K. H. Fricke, V. Nussbaumer, G. Nelke, F. Huebner, A. Hauchecorne, J. P. Marcovici, F. Fassina, D. Nedeljkovic, D. Rees, N. P. Meredith, “Modern technologies employed in the ALOMAR Rayleigh/Mie/Raman lidar,” in Proceedings of the 12th ESA Symposium on Rocket and Balloon Programmes & Related Research, SP-370 (European Space Agency, Munich, Germany, 1995), pp. 387–394.
  7. U. Wandinger, I. Mattis, A. Ansmann, Yu. Arshinov, S. Bobrovnikov, I. Serikov, “Tropospheric temperature profiling based on detection of Stokes and anti-Stokes rotational Raman Lines at 532 nm,” Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds., NASA/CP-1998-207671/PT2 (NASA, Washington, D.C., 1998), pp. 297–299.
  8. A. Behrendt, J. Reichardt, C. Weitkamp, B. Neidhart, “Sequential tilted interference filter polychromator as a lidar receiver for rotational Raman temperature measurements in the troposphere and stratosphere,” in Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds., NASA/CP-1998-207671/PT2 (NASA, Washington, D.C., 1998), pp. 631–634.
  9. D. Waite, S. Frey, F. Immler, M. Mueller, P. Rairoux, M. Rodriguez, B. Stein, C. Wedekind, H. Wille, L. Woeste, W. Zimmer, “Multiple wavelength rotational Raman lidar for calibration free determination of tropospheric temperatures,” in Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds., NASA/CP-1998-207671/PT2 (NASA, Washington, D.C., 1998), pp. 425–427.
  10. Yu. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, V. M. Mitev, “Atmospheric temperature measurements using a pure rotational Raman lidar,” Appl. Opt. 22, 2984–2990 (1983).
    [CrossRef] [PubMed]
  11. J. J. Barret, “The use of a Fabry–Perot interferometer for studying rotational Raman spectra of gases,” in Laser Raman Gas Diagnostics, M. Lapp, C. M. Penney, eds. (Plenum, New York, 1973), pp. 63–85.
  12. A. Weber, ed., Raman Spectroscopy of Gases and Liquids (Springer-Verlag, Berlin, 1979), Sec. 3.1.8, pp. 84–85.
  13. V. I. Malyshev, Introduction to Experimental Spectroscopy (Nauka, Moscow, 1979; in Russian).
  14. R. J. Butcher, D. V. Willets, W. J. Jones, “On the use of a Fabry–Perot etalon for determination of rotational constants of simple molecules—the pure rotational Raman spectra of oxygen and nitrogen,” Proc. R. Soc. London Ser. A 324, 231–245 (1971).
    [CrossRef]
  15. C. L. Korb, G. K. Schwemmer, J. F. Famiglietti, H. Walden, C. Prasad, “Differential absorption lidars for remote sensing of atmospheric pressure and temperature profiles: final report,” (NASA, Washington, D.C., 1995).

1996 (1)

1993 (2)

D. Nedeljkovic, A. Hauchecorne, M.-L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, V. Mitey, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32, 2758–2764 (1993).
[CrossRef] [PubMed]

1983 (1)

1971 (1)

R. J. Butcher, D. V. Willets, W. J. Jones, “On the use of a Fabry–Perot etalon for determination of rotational constants of simple molecules—the pure rotational Raman spectra of oxygen and nitrogen,” Proc. R. Soc. London Ser. A 324, 231–245 (1971).
[CrossRef]

Ansmann, A.

U. Wandinger, I. Mattis, A. Ansmann, Yu. Arshinov, S. Bobrovnikov, I. Serikov, “Tropospheric temperature profiling based on detection of Stokes and anti-Stokes rotational Raman Lines at 532 nm,” Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds., NASA/CP-1998-207671/PT2 (NASA, Washington, D.C., 1998), pp. 297–299.

Arshinov, Yu.

U. Wandinger, I. Mattis, A. Ansmann, Yu. Arshinov, S. Bobrovnikov, I. Serikov, “Tropospheric temperature profiling based on detection of Stokes and anti-Stokes rotational Raman Lines at 532 nm,” Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds., NASA/CP-1998-207671/PT2 (NASA, Washington, D.C., 1998), pp. 297–299.

Arshinov, Yu. F.

Yu. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, V. M. Mitev, “Atmospheric temperature measurements using a pure rotational Raman lidar,” Appl. Opt. 22, 2984–2990 (1983).
[CrossRef] [PubMed]

Yu. F. Arshinov, S. M. Bobrovnikov, D. I. Shelefontyuk, V. K. Shumskii, “Observations of the boundary atmospheric layer with a combined Raman lidar,” presented at the Third International Symposium on Tropospheric Profiling: Needs and Technologies, Geomatikum Universität Hamburg, Hamburg, Germany, 30 August–2 September 1994.

Barret, J. J.

J. J. Barret, “The use of a Fabry–Perot interferometer for studying rotational Raman spectra of gases,” in Laser Raman Gas Diagnostics, M. Lapp, C. M. Penney, eds. (Plenum, New York, 1973), pp. 63–85.

Behrendt, A.

A. Behrendt, J. Reichardt, C. Weitkamp, B. Neidhart, “Sequential tilted interference filter polychromator as a lidar receiver for rotational Raman temperature measurements in the troposphere and stratosphere,” in Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds., NASA/CP-1998-207671/PT2 (NASA, Washington, D.C., 1998), pp. 631–634.

Bobrovnikov, S.

U. Wandinger, I. Mattis, A. Ansmann, Yu. Arshinov, S. Bobrovnikov, I. Serikov, “Tropospheric temperature profiling based on detection of Stokes and anti-Stokes rotational Raman Lines at 532 nm,” Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds., NASA/CP-1998-207671/PT2 (NASA, Washington, D.C., 1998), pp. 297–299.

Bobrovnikov, S. M.

Yu. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, V. M. Mitev, “Atmospheric temperature measurements using a pure rotational Raman lidar,” Appl. Opt. 22, 2984–2990 (1983).
[CrossRef] [PubMed]

Yu. F. Arshinov, S. M. Bobrovnikov, D. I. Shelefontyuk, V. K. Shumskii, “Observations of the boundary atmospheric layer with a combined Raman lidar,” presented at the Third International Symposium on Tropospheric Profiling: Needs and Technologies, Geomatikum Universität Hamburg, Hamburg, Germany, 30 August–2 September 1994.

Butcher, R. J.

R. J. Butcher, D. V. Willets, W. J. Jones, “On the use of a Fabry–Perot etalon for determination of rotational constants of simple molecules—the pure rotational Raman spectra of oxygen and nitrogen,” Proc. R. Soc. London Ser. A 324, 231–245 (1971).
[CrossRef]

Chanin, M.-L.

D. Nedeljkovic, A. Hauchecorne, M.-L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

Famiglietti, J. F.

C. L. Korb, G. K. Schwemmer, J. F. Famiglietti, H. Walden, C. Prasad, “Differential absorption lidars for remote sensing of atmospheric pressure and temperature profiles: final report,” (NASA, Washington, D.C., 1995).

Fassina, F.

G. von Cossart, J. Fiedler, U. Zahn, K. H. Fricke, V. Nussbaumer, G. Nelke, F. Huebner, A. Hauchecorne, J. P. Marcovici, F. Fassina, D. Nedeljkovic, D. Rees, N. P. Meredith, “Modern technologies employed in the ALOMAR Rayleigh/Mie/Raman lidar,” in Proceedings of the 12th ESA Symposium on Rocket and Balloon Programmes & Related Research, SP-370 (European Space Agency, Munich, Germany, 1995), pp. 387–394.

Fiedler, J.

G. von Cossart, J. Fiedler, U. Zahn, K. H. Fricke, V. Nussbaumer, G. Nelke, F. Huebner, A. Hauchecorne, J. P. Marcovici, F. Fassina, D. Nedeljkovic, D. Rees, N. P. Meredith, “Modern technologies employed in the ALOMAR Rayleigh/Mie/Raman lidar,” in Proceedings of the 12th ESA Symposium on Rocket and Balloon Programmes & Related Research, SP-370 (European Space Agency, Munich, Germany, 1995), pp. 387–394.

Frey, S.

D. Waite, S. Frey, F. Immler, M. Mueller, P. Rairoux, M. Rodriguez, B. Stein, C. Wedekind, H. Wille, L. Woeste, W. Zimmer, “Multiple wavelength rotational Raman lidar for calibration free determination of tropospheric temperatures,” in Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds., NASA/CP-1998-207671/PT2 (NASA, Washington, D.C., 1998), pp. 425–427.

Fricke, K. H.

G. von Cossart, J. Fiedler, U. Zahn, K. H. Fricke, V. Nussbaumer, G. Nelke, F. Huebner, A. Hauchecorne, J. P. Marcovici, F. Fassina, D. Nedeljkovic, D. Rees, N. P. Meredith, “Modern technologies employed in the ALOMAR Rayleigh/Mie/Raman lidar,” in Proceedings of the 12th ESA Symposium on Rocket and Balloon Programmes & Related Research, SP-370 (European Space Agency, Munich, Germany, 1995), pp. 387–394.

Hauchecorne, A.

D. Nedeljkovic, A. Hauchecorne, M.-L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

G. von Cossart, J. Fiedler, U. Zahn, K. H. Fricke, V. Nussbaumer, G. Nelke, F. Huebner, A. Hauchecorne, J. P. Marcovici, F. Fassina, D. Nedeljkovic, D. Rees, N. P. Meredith, “Modern technologies employed in the ALOMAR Rayleigh/Mie/Raman lidar,” in Proceedings of the 12th ESA Symposium on Rocket and Balloon Programmes & Related Research, SP-370 (European Space Agency, Munich, Germany, 1995), pp. 387–394.

Huebner, F.

G. von Cossart, J. Fiedler, U. Zahn, K. H. Fricke, V. Nussbaumer, G. Nelke, F. Huebner, A. Hauchecorne, J. P. Marcovici, F. Fassina, D. Nedeljkovic, D. Rees, N. P. Meredith, “Modern technologies employed in the ALOMAR Rayleigh/Mie/Raman lidar,” in Proceedings of the 12th ESA Symposium on Rocket and Balloon Programmes & Related Research, SP-370 (European Space Agency, Munich, Germany, 1995), pp. 387–394.

Immler, F.

D. Waite, S. Frey, F. Immler, M. Mueller, P. Rairoux, M. Rodriguez, B. Stein, C. Wedekind, H. Wille, L. Woeste, W. Zimmer, “Multiple wavelength rotational Raman lidar for calibration free determination of tropospheric temperatures,” in Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds., NASA/CP-1998-207671/PT2 (NASA, Washington, D.C., 1998), pp. 425–427.

Jones, W. J.

R. J. Butcher, D. V. Willets, W. J. Jones, “On the use of a Fabry–Perot etalon for determination of rotational constants of simple molecules—the pure rotational Raman spectra of oxygen and nitrogen,” Proc. R. Soc. London Ser. A 324, 231–245 (1971).
[CrossRef]

Korb, C. L.

C. L. Korb, G. K. Schwemmer, J. F. Famiglietti, H. Walden, C. Prasad, “Differential absorption lidars for remote sensing of atmospheric pressure and temperature profiles: final report,” (NASA, Washington, D.C., 1995).

Lahmann, W.

J. Zeyn, W. Lahmann, C. Weitkamp, “Remote daytime measurements of tropospheric temperature profiles with a rotational Raman lidar,” Opt. Lett. 21, 1301–1303 (1996).
[CrossRef] [PubMed]

J. Zeyn, E. Voss, W. Lahmann, C. Weitkamp, W. Michaelis, “Daytime temperature lidar based on rotational Raman scattering,” presented at the Third International Symposium on Tropospheric Profiling: Needs and Technologies, Geomatikum Universität Hamburg, Hamburg, Germany, 30 August–2 September 1994.

Malyshev, V. I.

V. I. Malyshev, Introduction to Experimental Spectroscopy (Nauka, Moscow, 1979; in Russian).

Marcovici, J. P.

G. von Cossart, J. Fiedler, U. Zahn, K. H. Fricke, V. Nussbaumer, G. Nelke, F. Huebner, A. Hauchecorne, J. P. Marcovici, F. Fassina, D. Nedeljkovic, D. Rees, N. P. Meredith, “Modern technologies employed in the ALOMAR Rayleigh/Mie/Raman lidar,” in Proceedings of the 12th ESA Symposium on Rocket and Balloon Programmes & Related Research, SP-370 (European Space Agency, Munich, Germany, 1995), pp. 387–394.

Mattis, I.

U. Wandinger, I. Mattis, A. Ansmann, Yu. Arshinov, S. Bobrovnikov, I. Serikov, “Tropospheric temperature profiling based on detection of Stokes and anti-Stokes rotational Raman Lines at 532 nm,” Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds., NASA/CP-1998-207671/PT2 (NASA, Washington, D.C., 1998), pp. 297–299.

Meredith, N. P.

G. von Cossart, J. Fiedler, U. Zahn, K. H. Fricke, V. Nussbaumer, G. Nelke, F. Huebner, A. Hauchecorne, J. P. Marcovici, F. Fassina, D. Nedeljkovic, D. Rees, N. P. Meredith, “Modern technologies employed in the ALOMAR Rayleigh/Mie/Raman lidar,” in Proceedings of the 12th ESA Symposium on Rocket and Balloon Programmes & Related Research, SP-370 (European Space Agency, Munich, Germany, 1995), pp. 387–394.

Michaelis, W.

J. Zeyn, E. Voss, W. Lahmann, C. Weitkamp, W. Michaelis, “Daytime temperature lidar based on rotational Raman scattering,” presented at the Third International Symposium on Tropospheric Profiling: Needs and Technologies, Geomatikum Universität Hamburg, Hamburg, Germany, 30 August–2 September 1994.

Mitev, V. M.

Mitey, V.

Mueller, M.

D. Waite, S. Frey, F. Immler, M. Mueller, P. Rairoux, M. Rodriguez, B. Stein, C. Wedekind, H. Wille, L. Woeste, W. Zimmer, “Multiple wavelength rotational Raman lidar for calibration free determination of tropospheric temperatures,” in Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds., NASA/CP-1998-207671/PT2 (NASA, Washington, D.C., 1998), pp. 425–427.

Nedeljkovic, D.

D. Nedeljkovic, A. Hauchecorne, M.-L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

G. von Cossart, J. Fiedler, U. Zahn, K. H. Fricke, V. Nussbaumer, G. Nelke, F. Huebner, A. Hauchecorne, J. P. Marcovici, F. Fassina, D. Nedeljkovic, D. Rees, N. P. Meredith, “Modern technologies employed in the ALOMAR Rayleigh/Mie/Raman lidar,” in Proceedings of the 12th ESA Symposium on Rocket and Balloon Programmes & Related Research, SP-370 (European Space Agency, Munich, Germany, 1995), pp. 387–394.

Neidhart, B.

A. Behrendt, J. Reichardt, C. Weitkamp, B. Neidhart, “Sequential tilted interference filter polychromator as a lidar receiver for rotational Raman temperature measurements in the troposphere and stratosphere,” in Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds., NASA/CP-1998-207671/PT2 (NASA, Washington, D.C., 1998), pp. 631–634.

Nelke, G.

G. von Cossart, J. Fiedler, U. Zahn, K. H. Fricke, V. Nussbaumer, G. Nelke, F. Huebner, A. Hauchecorne, J. P. Marcovici, F. Fassina, D. Nedeljkovic, D. Rees, N. P. Meredith, “Modern technologies employed in the ALOMAR Rayleigh/Mie/Raman lidar,” in Proceedings of the 12th ESA Symposium on Rocket and Balloon Programmes & Related Research, SP-370 (European Space Agency, Munich, Germany, 1995), pp. 387–394.

Nussbaumer, V.

G. von Cossart, J. Fiedler, U. Zahn, K. H. Fricke, V. Nussbaumer, G. Nelke, F. Huebner, A. Hauchecorne, J. P. Marcovici, F. Fassina, D. Nedeljkovic, D. Rees, N. P. Meredith, “Modern technologies employed in the ALOMAR Rayleigh/Mie/Raman lidar,” in Proceedings of the 12th ESA Symposium on Rocket and Balloon Programmes & Related Research, SP-370 (European Space Agency, Munich, Germany, 1995), pp. 387–394.

Pepler, S. J.

Prasad, C.

C. L. Korb, G. K. Schwemmer, J. F. Famiglietti, H. Walden, C. Prasad, “Differential absorption lidars for remote sensing of atmospheric pressure and temperature profiles: final report,” (NASA, Washington, D.C., 1995).

Rairoux, P.

D. Waite, S. Frey, F. Immler, M. Mueller, P. Rairoux, M. Rodriguez, B. Stein, C. Wedekind, H. Wille, L. Woeste, W. Zimmer, “Multiple wavelength rotational Raman lidar for calibration free determination of tropospheric temperatures,” in Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds., NASA/CP-1998-207671/PT2 (NASA, Washington, D.C., 1998), pp. 425–427.

Rees, D.

G. von Cossart, J. Fiedler, U. Zahn, K. H. Fricke, V. Nussbaumer, G. Nelke, F. Huebner, A. Hauchecorne, J. P. Marcovici, F. Fassina, D. Nedeljkovic, D. Rees, N. P. Meredith, “Modern technologies employed in the ALOMAR Rayleigh/Mie/Raman lidar,” in Proceedings of the 12th ESA Symposium on Rocket and Balloon Programmes & Related Research, SP-370 (European Space Agency, Munich, Germany, 1995), pp. 387–394.

Reichardt, J.

A. Behrendt, J. Reichardt, C. Weitkamp, B. Neidhart, “Sequential tilted interference filter polychromator as a lidar receiver for rotational Raman temperature measurements in the troposphere and stratosphere,” in Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds., NASA/CP-1998-207671/PT2 (NASA, Washington, D.C., 1998), pp. 631–634.

Rodriguez, M.

D. Waite, S. Frey, F. Immler, M. Mueller, P. Rairoux, M. Rodriguez, B. Stein, C. Wedekind, H. Wille, L. Woeste, W. Zimmer, “Multiple wavelength rotational Raman lidar for calibration free determination of tropospheric temperatures,” in Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds., NASA/CP-1998-207671/PT2 (NASA, Washington, D.C., 1998), pp. 425–427.

Schwemmer, G. K.

C. L. Korb, G. K. Schwemmer, J. F. Famiglietti, H. Walden, C. Prasad, “Differential absorption lidars for remote sensing of atmospheric pressure and temperature profiles: final report,” (NASA, Washington, D.C., 1995).

Serikov, I.

U. Wandinger, I. Mattis, A. Ansmann, Yu. Arshinov, S. Bobrovnikov, I. Serikov, “Tropospheric temperature profiling based on detection of Stokes and anti-Stokes rotational Raman Lines at 532 nm,” Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds., NASA/CP-1998-207671/PT2 (NASA, Washington, D.C., 1998), pp. 297–299.

Shelefontyuk, D. I.

Yu. F. Arshinov, S. M. Bobrovnikov, D. I. Shelefontyuk, V. K. Shumskii, “Observations of the boundary atmospheric layer with a combined Raman lidar,” presented at the Third International Symposium on Tropospheric Profiling: Needs and Technologies, Geomatikum Universität Hamburg, Hamburg, Germany, 30 August–2 September 1994.

Shumskii, V. K.

Yu. F. Arshinov, S. M. Bobrovnikov, D. I. Shelefontyuk, V. K. Shumskii, “Observations of the boundary atmospheric layer with a combined Raman lidar,” presented at the Third International Symposium on Tropospheric Profiling: Needs and Technologies, Geomatikum Universität Hamburg, Hamburg, Germany, 30 August–2 September 1994.

Stein, B.

D. Waite, S. Frey, F. Immler, M. Mueller, P. Rairoux, M. Rodriguez, B. Stein, C. Wedekind, H. Wille, L. Woeste, W. Zimmer, “Multiple wavelength rotational Raman lidar for calibration free determination of tropospheric temperatures,” in Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds., NASA/CP-1998-207671/PT2 (NASA, Washington, D.C., 1998), pp. 425–427.

Thomas, L.

Vaughan, G.

von Cossart, G.

G. von Cossart, J. Fiedler, U. Zahn, K. H. Fricke, V. Nussbaumer, G. Nelke, F. Huebner, A. Hauchecorne, J. P. Marcovici, F. Fassina, D. Nedeljkovic, D. Rees, N. P. Meredith, “Modern technologies employed in the ALOMAR Rayleigh/Mie/Raman lidar,” in Proceedings of the 12th ESA Symposium on Rocket and Balloon Programmes & Related Research, SP-370 (European Space Agency, Munich, Germany, 1995), pp. 387–394.

Voss, E.

J. Zeyn, E. Voss, W. Lahmann, C. Weitkamp, W. Michaelis, “Daytime temperature lidar based on rotational Raman scattering,” presented at the Third International Symposium on Tropospheric Profiling: Needs and Technologies, Geomatikum Universität Hamburg, Hamburg, Germany, 30 August–2 September 1994.

Waite, D.

D. Waite, S. Frey, F. Immler, M. Mueller, P. Rairoux, M. Rodriguez, B. Stein, C. Wedekind, H. Wille, L. Woeste, W. Zimmer, “Multiple wavelength rotational Raman lidar for calibration free determination of tropospheric temperatures,” in Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds., NASA/CP-1998-207671/PT2 (NASA, Washington, D.C., 1998), pp. 425–427.

Walden, H.

C. L. Korb, G. K. Schwemmer, J. F. Famiglietti, H. Walden, C. Prasad, “Differential absorption lidars for remote sensing of atmospheric pressure and temperature profiles: final report,” (NASA, Washington, D.C., 1995).

Wandinger, U.

U. Wandinger, I. Mattis, A. Ansmann, Yu. Arshinov, S. Bobrovnikov, I. Serikov, “Tropospheric temperature profiling based on detection of Stokes and anti-Stokes rotational Raman Lines at 532 nm,” Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds., NASA/CP-1998-207671/PT2 (NASA, Washington, D.C., 1998), pp. 297–299.

Wareing, D. P.

Wedekind, C.

D. Waite, S. Frey, F. Immler, M. Mueller, P. Rairoux, M. Rodriguez, B. Stein, C. Wedekind, H. Wille, L. Woeste, W. Zimmer, “Multiple wavelength rotational Raman lidar for calibration free determination of tropospheric temperatures,” in Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds., NASA/CP-1998-207671/PT2 (NASA, Washington, D.C., 1998), pp. 425–427.

Weitkamp, C.

J. Zeyn, W. Lahmann, C. Weitkamp, “Remote daytime measurements of tropospheric temperature profiles with a rotational Raman lidar,” Opt. Lett. 21, 1301–1303 (1996).
[CrossRef] [PubMed]

J. Zeyn, E. Voss, W. Lahmann, C. Weitkamp, W. Michaelis, “Daytime temperature lidar based on rotational Raman scattering,” presented at the Third International Symposium on Tropospheric Profiling: Needs and Technologies, Geomatikum Universität Hamburg, Hamburg, Germany, 30 August–2 September 1994.

A. Behrendt, J. Reichardt, C. Weitkamp, B. Neidhart, “Sequential tilted interference filter polychromator as a lidar receiver for rotational Raman temperature measurements in the troposphere and stratosphere,” in Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds., NASA/CP-1998-207671/PT2 (NASA, Washington, D.C., 1998), pp. 631–634.

Wille, H.

D. Waite, S. Frey, F. Immler, M. Mueller, P. Rairoux, M. Rodriguez, B. Stein, C. Wedekind, H. Wille, L. Woeste, W. Zimmer, “Multiple wavelength rotational Raman lidar for calibration free determination of tropospheric temperatures,” in Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds., NASA/CP-1998-207671/PT2 (NASA, Washington, D.C., 1998), pp. 425–427.

Willets, D. V.

R. J. Butcher, D. V. Willets, W. J. Jones, “On the use of a Fabry–Perot etalon for determination of rotational constants of simple molecules—the pure rotational Raman spectra of oxygen and nitrogen,” Proc. R. Soc. London Ser. A 324, 231–245 (1971).
[CrossRef]

Woeste, L.

D. Waite, S. Frey, F. Immler, M. Mueller, P. Rairoux, M. Rodriguez, B. Stein, C. Wedekind, H. Wille, L. Woeste, W. Zimmer, “Multiple wavelength rotational Raman lidar for calibration free determination of tropospheric temperatures,” in Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds., NASA/CP-1998-207671/PT2 (NASA, Washington, D.C., 1998), pp. 425–427.

Zahn, U.

G. von Cossart, J. Fiedler, U. Zahn, K. H. Fricke, V. Nussbaumer, G. Nelke, F. Huebner, A. Hauchecorne, J. P. Marcovici, F. Fassina, D. Nedeljkovic, D. Rees, N. P. Meredith, “Modern technologies employed in the ALOMAR Rayleigh/Mie/Raman lidar,” in Proceedings of the 12th ESA Symposium on Rocket and Balloon Programmes & Related Research, SP-370 (European Space Agency, Munich, Germany, 1995), pp. 387–394.

Zeyn, J.

J. Zeyn, W. Lahmann, C. Weitkamp, “Remote daytime measurements of tropospheric temperature profiles with a rotational Raman lidar,” Opt. Lett. 21, 1301–1303 (1996).
[CrossRef] [PubMed]

J. Zeyn, E. Voss, W. Lahmann, C. Weitkamp, W. Michaelis, “Daytime temperature lidar based on rotational Raman scattering,” presented at the Third International Symposium on Tropospheric Profiling: Needs and Technologies, Geomatikum Universität Hamburg, Hamburg, Germany, 30 August–2 September 1994.

Zimmer, W.

D. Waite, S. Frey, F. Immler, M. Mueller, P. Rairoux, M. Rodriguez, B. Stein, C. Wedekind, H. Wille, L. Woeste, W. Zimmer, “Multiple wavelength rotational Raman lidar for calibration free determination of tropospheric temperatures,” in Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds., NASA/CP-1998-207671/PT2 (NASA, Washington, D.C., 1998), pp. 425–427.

Zuev, V. E.

Appl. Opt. (2)

IEEE Trans. Geosci. Remote Sens. (1)

D. Nedeljkovic, A. Hauchecorne, M.-L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

Opt. Lett. (1)

Proc. R. Soc. London Ser. A (1)

R. J. Butcher, D. V. Willets, W. J. Jones, “On the use of a Fabry–Perot etalon for determination of rotational constants of simple molecules—the pure rotational Raman spectra of oxygen and nitrogen,” Proc. R. Soc. London Ser. A 324, 231–245 (1971).
[CrossRef]

Other (10)

C. L. Korb, G. K. Schwemmer, J. F. Famiglietti, H. Walden, C. Prasad, “Differential absorption lidars for remote sensing of atmospheric pressure and temperature profiles: final report,” (NASA, Washington, D.C., 1995).

J. Zeyn, E. Voss, W. Lahmann, C. Weitkamp, W. Michaelis, “Daytime temperature lidar based on rotational Raman scattering,” presented at the Third International Symposium on Tropospheric Profiling: Needs and Technologies, Geomatikum Universität Hamburg, Hamburg, Germany, 30 August–2 September 1994.

Yu. F. Arshinov, S. M. Bobrovnikov, D. I. Shelefontyuk, V. K. Shumskii, “Observations of the boundary atmospheric layer with a combined Raman lidar,” presented at the Third International Symposium on Tropospheric Profiling: Needs and Technologies, Geomatikum Universität Hamburg, Hamburg, Germany, 30 August–2 September 1994.

G. von Cossart, J. Fiedler, U. Zahn, K. H. Fricke, V. Nussbaumer, G. Nelke, F. Huebner, A. Hauchecorne, J. P. Marcovici, F. Fassina, D. Nedeljkovic, D. Rees, N. P. Meredith, “Modern technologies employed in the ALOMAR Rayleigh/Mie/Raman lidar,” in Proceedings of the 12th ESA Symposium on Rocket and Balloon Programmes & Related Research, SP-370 (European Space Agency, Munich, Germany, 1995), pp. 387–394.

U. Wandinger, I. Mattis, A. Ansmann, Yu. Arshinov, S. Bobrovnikov, I. Serikov, “Tropospheric temperature profiling based on detection of Stokes and anti-Stokes rotational Raman Lines at 532 nm,” Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds., NASA/CP-1998-207671/PT2 (NASA, Washington, D.C., 1998), pp. 297–299.

A. Behrendt, J. Reichardt, C. Weitkamp, B. Neidhart, “Sequential tilted interference filter polychromator as a lidar receiver for rotational Raman temperature measurements in the troposphere and stratosphere,” in Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds., NASA/CP-1998-207671/PT2 (NASA, Washington, D.C., 1998), pp. 631–634.

D. Waite, S. Frey, F. Immler, M. Mueller, P. Rairoux, M. Rodriguez, B. Stein, C. Wedekind, H. Wille, L. Woeste, W. Zimmer, “Multiple wavelength rotational Raman lidar for calibration free determination of tropospheric temperatures,” in Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds., NASA/CP-1998-207671/PT2 (NASA, Washington, D.C., 1998), pp. 425–427.

J. J. Barret, “The use of a Fabry–Perot interferometer for studying rotational Raman spectra of gases,” in Laser Raman Gas Diagnostics, M. Lapp, C. M. Penney, eds. (Plenum, New York, 1973), pp. 63–85.

A. Weber, ed., Raman Spectroscopy of Gases and Liquids (Springer-Verlag, Berlin, 1979), Sec. 3.1.8, pp. 84–85.

V. I. Malyshev, Introduction to Experimental Spectroscopy (Nauka, Moscow, 1979; in Russian).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Fabry–Perot etalon illuminated with a collimated light beam.

Fig. 2
Fig. 2

Pure rotational Raman spectrum of molecular nitrogen and the transmission comb of a Fabry–Perot interferometer calculated for the exciting radiation at (a) 532.0-nm and (b) 532.118-nm wavelengths.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Aφ=1+4ρ1-ρ2 sin2φ2-1,
Δν˜FSR=1/2d.
Δν˜J=ν˜J-ν˜0=±4BN2J+3/2,
Δν˜FSR=1/2d=δ=4BN2
2dn cos θ=±kλ,
2d=kλ
ν˜k=k4BN2,
ν˜J=ν˜0±4BN2J + 3/2.
ν˜0=4BN2k±J+1+1/2.
ν˜0=4BN2m±1/2,

Metrics