Abstract

Quantitative hydroxyl concentration time-series measurements have been obtained by picosecond time-resolved laser-induced fluorescence in a series of methane–air and hydrogen–argon–air nonpremixed flames. The recovery of a quantitative time series is complicated by the need to account for fluctuations in the fluorescence lifetime. We have recently developed instrumentation that enables the simultaneous measurement of fluorescence signal and lifetime. The present research represents the first application of this technique to turbulent flames. The correction for hydroxyl lifetime fluctuations is shown to be significant for mean concentrations and thus probability density functions but negligible for power spectral densities (PSD’s). The hydroxyl PSD’s were found to vary slightly with radial and axial location in the flames and to vary significantly with Reynolds number. However, the PSD’s in the H2–Ar–air flames are nearly identical to those in the CH4–air flames.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. B. Pope, “PDF methods for turbulent reactive flows,” Prog. Energy Combust. Sci. 11, 119–192 (1985).
    [CrossRef]
  2. N. Peters, “Laminar flamelet concepts in turbulent combustion,” in the Twenty-First Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1986), pp. 1231–1250.
  3. M. G. Allen, R. D. Howe, R. K. Hanson, “Digital imaging of reaction zones in hydrocarbon-air flames using planar laser-induced fluorescence of CH and C2,” Opt. Lett. 11, 126–128 (1986).
    [CrossRef]
  4. N. T. Clemens, P. H. Paul, M. G. Mungal, “The structure of OH fields in high Reynolds number turbulent jet diffusion flames,” Combust. Sci. Technol. 129, 165–184 (1997).
    [CrossRef]
  5. M. C. Drake, R. W. Pitz, “Comparison of turbulent diffusion flame measurements of OH by planar fluorescence and saturated fluorescence,” Exp. Fluids 3, 283–292 (1985).
  6. J. E. de Vries, Th. H. van der Meer, C. J. Hoogendoorn, “OH concentration fluctuations in turbulent natural gas jet flames,” Chem. Eng. J. 53, 39–46 (1993).
  7. A. W. Johnson, K. R. Sreenivasan, M. Winter, “The thickness distribution of OH regions in a turbulent diffusion flame,” Combust. Sci. Technol. 89, 1–7 (1993).
    [CrossRef]
  8. S. H. Stårner, R. W. Bilger, R. W. Dibble, R. S. Barlow, D. C. Fourguette, M. B. Long, “Joint planar CH and OH LIF imaging in piloted turbulent jet diffusion flames near extinction,” in Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 341–349.
    [CrossRef]
  9. N. T. Clemens, P. H. Paul, “Effects of heat release on the near field flow structure of hydrogen jet diffusion flames,” Combust. Flame 102, 271–284 (1995).
    [CrossRef]
  10. R. S. Barlow, R. W. Dibble, J.-Y. Chen, R. P. Lucht, “Effect of Damköhler number on superequilibrium OH concentration in turbulent nonpremixed jet flames,” Combust. Flame 82, 235–251 (1990).
    [CrossRef]
  11. R. S. Barlow, C. D. Carter, “Raman/Rayleigh/LIF measurements of nitric oxide formation in turbulent hydrogen jet flames,” Combust. Flame 97, 261–280 (1994).
    [CrossRef]
  12. H. Tennekes, J. L. Lumley, A First Course in Turbulence (MIT, Cambridge, Mass., 1972).
  13. L. Mydlarski, Z. Warhaft, “On the onset of high-Reynolds-number grid-generated wind tunnel turbulence,” J. Fluid Mech. 320, 331–368 (1996).
    [CrossRef]
  14. I. Gökalp, I. G. Shepherd, R. K. Cheng, “Spectral behavior of velocity fluctuations in premixed turbulent flames,” Combust. Flame 71, 313–323 (1988).
    [CrossRef]
  15. J. D. Li, R. J. Brown, R. W. Bilger, “Spectral measurement of reactive and conserved scalars in a turbulent reactive-scalar-mixing layer,” in Turbulent Shear Flows 9, F. Durst, N. Kasagi, B. E. Launder, F. W. Schmidt, K. Suzuki, J. H. Whitelaw, eds. (Springer-Verlag, Berlin, 1993), pp. 411–425.
  16. S. M. Masutani, C. T. Bowman, “The structure of a chemically reacting plane mixing layer,” J. Fluid Mech. 172, 93–126 (1986).
    [CrossRef]
  17. S. Corrsin, “Further generalization of Onsager’s cascade model for turbulent spectra,” Phys. Fluids 7, 1156–1159 (1964).
    [CrossRef]
  18. Y.-H. Pao, “Statistical behavior of a turbulent multicomponent mixture with first-order reactions,” AIAA J. 2, 1550–1559 (1964).
    [CrossRef]
  19. M. Q. McQuay, S. M. Cannon, “Time-resolved temperature measurements in the developing region of an elliptic, jet diffusion flame at Reynolds number of 6000,” Combust. Sci. Technol. 119, 13–33 (1996).
    [CrossRef]
  20. M. E. Kounalakis, J. P. Gore, G. M. Faeth, “Turbulence/radiation interactions in nonpremixed hydrogen/air flames,” in Twenty-Second Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1988), pp. 1281–1290.
  21. M. W. Renfro, M. S. Klassen, G. B. King, N. M. Laurendeau, “Time-series measurements of CH concentration in turbulent CH4/air flames by use of picosecond time-resolved laser-induced fluorescence,” Opt. Lett. 22, 175–177 (1997).
    [CrossRef] [PubMed]
  22. M. W. Renfro, S. D. Pack, G. B. King, N. M. Laurendeau, “Hydroxyl time-series measurements in laminar and moderately turbulent methane/air diffusion flames,” Combust. Flame 115, 443–455 (1998).
    [CrossRef]
  23. S. D. Pack, M. W. Renfro, G. B. King, N. M. Laurendeau, “Photon-counting technique for rapid fluorescence-decay measurement,” Opt. Lett. 23, 1215–1217 (1998).
    [CrossRef]
  24. S. D. Pack, M. W. Renfro, G. B. King, N. M. Laurendeau, “Laser-induced fluorescence triple-integration method applied to hydroxyl concentration and fluorescence lifetime measurements,” Combust. Sci. Technol. 140, 405–425 (1999).
    [CrossRef]
  25. M. W. Renfro, S. D. Pack, G. B. King, N. M. Laurendeau, “A pulse-pileup correction procedure for rapid measurements of hydroxyl concentrations using picosecond time-resolved laser-induced fluorescence,” App. Phys. B (to be published).
  26. J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Measurements and modeling of OH and NO in premixed C2H6/O2/N2 flames at atmospheric pressure,” Energy Fuels 11, 1092–1100 (1997).
    [CrossRef]
  27. R. J. Kee, J. F. Grcar, M. D. Smooke, J. A. Miller, “A fortran program for modeling steady laminar one-dimensional premixed flames,” (Sandia National Laboratories, Livermore, Calif., 1985).
  28. C. T. Bowman, R. K. Hanson, D. F. Davidson, W. C. Gardiner, V. Lissianski, G. P. Smith, D. M. Golden, M. Frenklach, M. Goldenberg, GRI-Mech Home Page, Internet address: http://www.me.berkeley.edu/gri_mech/ (1995).
  29. G. E. P. Box, G. M. Jenkins, Time Series Analysis (Holden-Day, San Francisco, Calif., 1976).
  30. S. Gaskey, P. Vacus, R. David, J. Villermaux, J. C. André, “A method for the study of turbulent mixing using fluorescence spectroscopy,” Exp. Fluids 9, 137–147 (1990).
    [CrossRef]
  31. M. W. Renfro, “Time-series measurements of laser-induced OH and CH fluorescence in laminar and turbulent flames,” M.S. thesis (Purdue University, West Lafayette, Ind., 1997).
  32. P. H. Paul, “A model for temperature-dependent collisional quenching of OH A2Σ+,” J. Quant. Spectrosc. Radiat. Transfer 51, 511–524 (1994).
    [CrossRef]
  33. M. C. Drake, R. W. Pitz, M. Lapp, C. P. Fenimore, R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Measurements of superequilibrium hydroxyl concentrations in turbulent nonpremixed flames using saturated fluorescence,” in Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 327–335.
  34. T. S. Cheng, J. A. Wehrmeyer, R. W. Pitz, “Simultaneous temperature and multispecies measurement in a lifted hydrogen diffusion flame,” Combust. Flame 91, 323–345 (1992).
    [CrossRef]
  35. M. S. Klassen, B. D. Thompson, T. A. Reichardt, G. B. King, N. M. Laurendeau, “Flame concentration measurements using picosecond time-resolved laser-induced fluorescence,” Combust. Sci. Technol. 97, 391–403 (1994).
    [CrossRef]
  36. M. W. Renfro, Y. R. Sivathanu, J. P. Gore, G. B. King, N. M. Laurendeau, “Time-series analysis and measurements of intermediate species concentration spectra in turbulent nonpremixed flames,” in Twenty-Seventh Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1998), pp. 1015–1022.
    [CrossRef]

1999 (1)

S. D. Pack, M. W. Renfro, G. B. King, N. M. Laurendeau, “Laser-induced fluorescence triple-integration method applied to hydroxyl concentration and fluorescence lifetime measurements,” Combust. Sci. Technol. 140, 405–425 (1999).
[CrossRef]

1998 (2)

M. W. Renfro, S. D. Pack, G. B. King, N. M. Laurendeau, “Hydroxyl time-series measurements in laminar and moderately turbulent methane/air diffusion flames,” Combust. Flame 115, 443–455 (1998).
[CrossRef]

S. D. Pack, M. W. Renfro, G. B. King, N. M. Laurendeau, “Photon-counting technique for rapid fluorescence-decay measurement,” Opt. Lett. 23, 1215–1217 (1998).
[CrossRef]

1997 (3)

M. W. Renfro, M. S. Klassen, G. B. King, N. M. Laurendeau, “Time-series measurements of CH concentration in turbulent CH4/air flames by use of picosecond time-resolved laser-induced fluorescence,” Opt. Lett. 22, 175–177 (1997).
[CrossRef] [PubMed]

J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Measurements and modeling of OH and NO in premixed C2H6/O2/N2 flames at atmospheric pressure,” Energy Fuels 11, 1092–1100 (1997).
[CrossRef]

N. T. Clemens, P. H. Paul, M. G. Mungal, “The structure of OH fields in high Reynolds number turbulent jet diffusion flames,” Combust. Sci. Technol. 129, 165–184 (1997).
[CrossRef]

1996 (2)

L. Mydlarski, Z. Warhaft, “On the onset of high-Reynolds-number grid-generated wind tunnel turbulence,” J. Fluid Mech. 320, 331–368 (1996).
[CrossRef]

M. Q. McQuay, S. M. Cannon, “Time-resolved temperature measurements in the developing region of an elliptic, jet diffusion flame at Reynolds number of 6000,” Combust. Sci. Technol. 119, 13–33 (1996).
[CrossRef]

1995 (1)

N. T. Clemens, P. H. Paul, “Effects of heat release on the near field flow structure of hydrogen jet diffusion flames,” Combust. Flame 102, 271–284 (1995).
[CrossRef]

1994 (3)

R. S. Barlow, C. D. Carter, “Raman/Rayleigh/LIF measurements of nitric oxide formation in turbulent hydrogen jet flames,” Combust. Flame 97, 261–280 (1994).
[CrossRef]

P. H. Paul, “A model for temperature-dependent collisional quenching of OH A2Σ+,” J. Quant. Spectrosc. Radiat. Transfer 51, 511–524 (1994).
[CrossRef]

M. S. Klassen, B. D. Thompson, T. A. Reichardt, G. B. King, N. M. Laurendeau, “Flame concentration measurements using picosecond time-resolved laser-induced fluorescence,” Combust. Sci. Technol. 97, 391–403 (1994).
[CrossRef]

1993 (2)

J. E. de Vries, Th. H. van der Meer, C. J. Hoogendoorn, “OH concentration fluctuations in turbulent natural gas jet flames,” Chem. Eng. J. 53, 39–46 (1993).

A. W. Johnson, K. R. Sreenivasan, M. Winter, “The thickness distribution of OH regions in a turbulent diffusion flame,” Combust. Sci. Technol. 89, 1–7 (1993).
[CrossRef]

1992 (1)

T. S. Cheng, J. A. Wehrmeyer, R. W. Pitz, “Simultaneous temperature and multispecies measurement in a lifted hydrogen diffusion flame,” Combust. Flame 91, 323–345 (1992).
[CrossRef]

1990 (2)

S. Gaskey, P. Vacus, R. David, J. Villermaux, J. C. André, “A method for the study of turbulent mixing using fluorescence spectroscopy,” Exp. Fluids 9, 137–147 (1990).
[CrossRef]

R. S. Barlow, R. W. Dibble, J.-Y. Chen, R. P. Lucht, “Effect of Damköhler number on superequilibrium OH concentration in turbulent nonpremixed jet flames,” Combust. Flame 82, 235–251 (1990).
[CrossRef]

1988 (1)

I. Gökalp, I. G. Shepherd, R. K. Cheng, “Spectral behavior of velocity fluctuations in premixed turbulent flames,” Combust. Flame 71, 313–323 (1988).
[CrossRef]

1986 (2)

1985 (2)

M. C. Drake, R. W. Pitz, “Comparison of turbulent diffusion flame measurements of OH by planar fluorescence and saturated fluorescence,” Exp. Fluids 3, 283–292 (1985).

S. B. Pope, “PDF methods for turbulent reactive flows,” Prog. Energy Combust. Sci. 11, 119–192 (1985).
[CrossRef]

1964 (2)

S. Corrsin, “Further generalization of Onsager’s cascade model for turbulent spectra,” Phys. Fluids 7, 1156–1159 (1964).
[CrossRef]

Y.-H. Pao, “Statistical behavior of a turbulent multicomponent mixture with first-order reactions,” AIAA J. 2, 1550–1559 (1964).
[CrossRef]

Allen, M. G.

André, J. C.

S. Gaskey, P. Vacus, R. David, J. Villermaux, J. C. André, “A method for the study of turbulent mixing using fluorescence spectroscopy,” Exp. Fluids 9, 137–147 (1990).
[CrossRef]

Barlow, R. S.

R. S. Barlow, C. D. Carter, “Raman/Rayleigh/LIF measurements of nitric oxide formation in turbulent hydrogen jet flames,” Combust. Flame 97, 261–280 (1994).
[CrossRef]

R. S. Barlow, R. W. Dibble, J.-Y. Chen, R. P. Lucht, “Effect of Damköhler number on superequilibrium OH concentration in turbulent nonpremixed jet flames,” Combust. Flame 82, 235–251 (1990).
[CrossRef]

S. H. Stårner, R. W. Bilger, R. W. Dibble, R. S. Barlow, D. C. Fourguette, M. B. Long, “Joint planar CH and OH LIF imaging in piloted turbulent jet diffusion flames near extinction,” in Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 341–349.
[CrossRef]

Bilger, R. W.

S. H. Stårner, R. W. Bilger, R. W. Dibble, R. S. Barlow, D. C. Fourguette, M. B. Long, “Joint planar CH and OH LIF imaging in piloted turbulent jet diffusion flames near extinction,” in Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 341–349.
[CrossRef]

J. D. Li, R. J. Brown, R. W. Bilger, “Spectral measurement of reactive and conserved scalars in a turbulent reactive-scalar-mixing layer,” in Turbulent Shear Flows 9, F. Durst, N. Kasagi, B. E. Launder, F. W. Schmidt, K. Suzuki, J. H. Whitelaw, eds. (Springer-Verlag, Berlin, 1993), pp. 411–425.

Bowman, C. T.

S. M. Masutani, C. T. Bowman, “The structure of a chemically reacting plane mixing layer,” J. Fluid Mech. 172, 93–126 (1986).
[CrossRef]

C. T. Bowman, R. K. Hanson, D. F. Davidson, W. C. Gardiner, V. Lissianski, G. P. Smith, D. M. Golden, M. Frenklach, M. Goldenberg, GRI-Mech Home Page, Internet address: http://www.me.berkeley.edu/gri_mech/ (1995).

Box, G. E. P.

G. E. P. Box, G. M. Jenkins, Time Series Analysis (Holden-Day, San Francisco, Calif., 1976).

Brown, R. J.

J. D. Li, R. J. Brown, R. W. Bilger, “Spectral measurement of reactive and conserved scalars in a turbulent reactive-scalar-mixing layer,” in Turbulent Shear Flows 9, F. Durst, N. Kasagi, B. E. Launder, F. W. Schmidt, K. Suzuki, J. H. Whitelaw, eds. (Springer-Verlag, Berlin, 1993), pp. 411–425.

Cannon, S. M.

M. Q. McQuay, S. M. Cannon, “Time-resolved temperature measurements in the developing region of an elliptic, jet diffusion flame at Reynolds number of 6000,” Combust. Sci. Technol. 119, 13–33 (1996).
[CrossRef]

Carter, C. D.

J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Measurements and modeling of OH and NO in premixed C2H6/O2/N2 flames at atmospheric pressure,” Energy Fuels 11, 1092–1100 (1997).
[CrossRef]

R. S. Barlow, C. D. Carter, “Raman/Rayleigh/LIF measurements of nitric oxide formation in turbulent hydrogen jet flames,” Combust. Flame 97, 261–280 (1994).
[CrossRef]

Chen, J.-Y.

R. S. Barlow, R. W. Dibble, J.-Y. Chen, R. P. Lucht, “Effect of Damköhler number on superequilibrium OH concentration in turbulent nonpremixed jet flames,” Combust. Flame 82, 235–251 (1990).
[CrossRef]

Cheng, R. K.

I. Gökalp, I. G. Shepherd, R. K. Cheng, “Spectral behavior of velocity fluctuations in premixed turbulent flames,” Combust. Flame 71, 313–323 (1988).
[CrossRef]

Cheng, T. S.

T. S. Cheng, J. A. Wehrmeyer, R. W. Pitz, “Simultaneous temperature and multispecies measurement in a lifted hydrogen diffusion flame,” Combust. Flame 91, 323–345 (1992).
[CrossRef]

Clemens, N. T.

N. T. Clemens, P. H. Paul, M. G. Mungal, “The structure of OH fields in high Reynolds number turbulent jet diffusion flames,” Combust. Sci. Technol. 129, 165–184 (1997).
[CrossRef]

N. T. Clemens, P. H. Paul, “Effects of heat release on the near field flow structure of hydrogen jet diffusion flames,” Combust. Flame 102, 271–284 (1995).
[CrossRef]

Corrsin, S.

S. Corrsin, “Further generalization of Onsager’s cascade model for turbulent spectra,” Phys. Fluids 7, 1156–1159 (1964).
[CrossRef]

David, R.

S. Gaskey, P. Vacus, R. David, J. Villermaux, J. C. André, “A method for the study of turbulent mixing using fluorescence spectroscopy,” Exp. Fluids 9, 137–147 (1990).
[CrossRef]

Davidson, D. F.

C. T. Bowman, R. K. Hanson, D. F. Davidson, W. C. Gardiner, V. Lissianski, G. P. Smith, D. M. Golden, M. Frenklach, M. Goldenberg, GRI-Mech Home Page, Internet address: http://www.me.berkeley.edu/gri_mech/ (1995).

de Vries, J. E.

J. E. de Vries, Th. H. van der Meer, C. J. Hoogendoorn, “OH concentration fluctuations in turbulent natural gas jet flames,” Chem. Eng. J. 53, 39–46 (1993).

Dibble, R. W.

R. S. Barlow, R. W. Dibble, J.-Y. Chen, R. P. Lucht, “Effect of Damköhler number on superequilibrium OH concentration in turbulent nonpremixed jet flames,” Combust. Flame 82, 235–251 (1990).
[CrossRef]

S. H. Stårner, R. W. Bilger, R. W. Dibble, R. S. Barlow, D. C. Fourguette, M. B. Long, “Joint planar CH and OH LIF imaging in piloted turbulent jet diffusion flames near extinction,” in Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 341–349.
[CrossRef]

Drake, M. C.

M. C. Drake, R. W. Pitz, “Comparison of turbulent diffusion flame measurements of OH by planar fluorescence and saturated fluorescence,” Exp. Fluids 3, 283–292 (1985).

M. C. Drake, R. W. Pitz, M. Lapp, C. P. Fenimore, R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Measurements of superequilibrium hydroxyl concentrations in turbulent nonpremixed flames using saturated fluorescence,” in Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 327–335.

Faeth, G. M.

M. E. Kounalakis, J. P. Gore, G. M. Faeth, “Turbulence/radiation interactions in nonpremixed hydrogen/air flames,” in Twenty-Second Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1988), pp. 1281–1290.

Fenimore, C. P.

M. C. Drake, R. W. Pitz, M. Lapp, C. P. Fenimore, R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Measurements of superequilibrium hydroxyl concentrations in turbulent nonpremixed flames using saturated fluorescence,” in Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 327–335.

Fourguette, D. C.

S. H. Stårner, R. W. Bilger, R. W. Dibble, R. S. Barlow, D. C. Fourguette, M. B. Long, “Joint planar CH and OH LIF imaging in piloted turbulent jet diffusion flames near extinction,” in Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 341–349.
[CrossRef]

Frenklach, M.

C. T. Bowman, R. K. Hanson, D. F. Davidson, W. C. Gardiner, V. Lissianski, G. P. Smith, D. M. Golden, M. Frenklach, M. Goldenberg, GRI-Mech Home Page, Internet address: http://www.me.berkeley.edu/gri_mech/ (1995).

Gardiner, W. C.

C. T. Bowman, R. K. Hanson, D. F. Davidson, W. C. Gardiner, V. Lissianski, G. P. Smith, D. M. Golden, M. Frenklach, M. Goldenberg, GRI-Mech Home Page, Internet address: http://www.me.berkeley.edu/gri_mech/ (1995).

Gaskey, S.

S. Gaskey, P. Vacus, R. David, J. Villermaux, J. C. André, “A method for the study of turbulent mixing using fluorescence spectroscopy,” Exp. Fluids 9, 137–147 (1990).
[CrossRef]

Gökalp, I.

I. Gökalp, I. G. Shepherd, R. K. Cheng, “Spectral behavior of velocity fluctuations in premixed turbulent flames,” Combust. Flame 71, 313–323 (1988).
[CrossRef]

Golden, D. M.

C. T. Bowman, R. K. Hanson, D. F. Davidson, W. C. Gardiner, V. Lissianski, G. P. Smith, D. M. Golden, M. Frenklach, M. Goldenberg, GRI-Mech Home Page, Internet address: http://www.me.berkeley.edu/gri_mech/ (1995).

Goldenberg, M.

C. T. Bowman, R. K. Hanson, D. F. Davidson, W. C. Gardiner, V. Lissianski, G. P. Smith, D. M. Golden, M. Frenklach, M. Goldenberg, GRI-Mech Home Page, Internet address: http://www.me.berkeley.edu/gri_mech/ (1995).

Gore, J. P.

M. W. Renfro, Y. R. Sivathanu, J. P. Gore, G. B. King, N. M. Laurendeau, “Time-series analysis and measurements of intermediate species concentration spectra in turbulent nonpremixed flames,” in Twenty-Seventh Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1998), pp. 1015–1022.
[CrossRef]

M. E. Kounalakis, J. P. Gore, G. M. Faeth, “Turbulence/radiation interactions in nonpremixed hydrogen/air flames,” in Twenty-Second Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1988), pp. 1281–1290.

Grcar, J. F.

R. J. Kee, J. F. Grcar, M. D. Smooke, J. A. Miller, “A fortran program for modeling steady laminar one-dimensional premixed flames,” (Sandia National Laboratories, Livermore, Calif., 1985).

Hanson, R. K.

M. G. Allen, R. D. Howe, R. K. Hanson, “Digital imaging of reaction zones in hydrocarbon-air flames using planar laser-induced fluorescence of CH and C2,” Opt. Lett. 11, 126–128 (1986).
[CrossRef]

C. T. Bowman, R. K. Hanson, D. F. Davidson, W. C. Gardiner, V. Lissianski, G. P. Smith, D. M. Golden, M. Frenklach, M. Goldenberg, GRI-Mech Home Page, Internet address: http://www.me.berkeley.edu/gri_mech/ (1995).

Hoogendoorn, C. J.

J. E. de Vries, Th. H. van der Meer, C. J. Hoogendoorn, “OH concentration fluctuations in turbulent natural gas jet flames,” Chem. Eng. J. 53, 39–46 (1993).

Howe, R. D.

Jenkins, G. M.

G. E. P. Box, G. M. Jenkins, Time Series Analysis (Holden-Day, San Francisco, Calif., 1976).

Johnson, A. W.

A. W. Johnson, K. R. Sreenivasan, M. Winter, “The thickness distribution of OH regions in a turbulent diffusion flame,” Combust. Sci. Technol. 89, 1–7 (1993).
[CrossRef]

Kee, R. J.

R. J. Kee, J. F. Grcar, M. D. Smooke, J. A. Miller, “A fortran program for modeling steady laminar one-dimensional premixed flames,” (Sandia National Laboratories, Livermore, Calif., 1985).

King, G. B.

S. D. Pack, M. W. Renfro, G. B. King, N. M. Laurendeau, “Laser-induced fluorescence triple-integration method applied to hydroxyl concentration and fluorescence lifetime measurements,” Combust. Sci. Technol. 140, 405–425 (1999).
[CrossRef]

M. W. Renfro, S. D. Pack, G. B. King, N. M. Laurendeau, “Hydroxyl time-series measurements in laminar and moderately turbulent methane/air diffusion flames,” Combust. Flame 115, 443–455 (1998).
[CrossRef]

S. D. Pack, M. W. Renfro, G. B. King, N. M. Laurendeau, “Photon-counting technique for rapid fluorescence-decay measurement,” Opt. Lett. 23, 1215–1217 (1998).
[CrossRef]

M. W. Renfro, M. S. Klassen, G. B. King, N. M. Laurendeau, “Time-series measurements of CH concentration in turbulent CH4/air flames by use of picosecond time-resolved laser-induced fluorescence,” Opt. Lett. 22, 175–177 (1997).
[CrossRef] [PubMed]

M. S. Klassen, B. D. Thompson, T. A. Reichardt, G. B. King, N. M. Laurendeau, “Flame concentration measurements using picosecond time-resolved laser-induced fluorescence,” Combust. Sci. Technol. 97, 391–403 (1994).
[CrossRef]

M. W. Renfro, Y. R. Sivathanu, J. P. Gore, G. B. King, N. M. Laurendeau, “Time-series analysis and measurements of intermediate species concentration spectra in turbulent nonpremixed flames,” in Twenty-Seventh Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1998), pp. 1015–1022.
[CrossRef]

M. W. Renfro, S. D. Pack, G. B. King, N. M. Laurendeau, “A pulse-pileup correction procedure for rapid measurements of hydroxyl concentrations using picosecond time-resolved laser-induced fluorescence,” App. Phys. B (to be published).

Klassen, M. S.

M. W. Renfro, M. S. Klassen, G. B. King, N. M. Laurendeau, “Time-series measurements of CH concentration in turbulent CH4/air flames by use of picosecond time-resolved laser-induced fluorescence,” Opt. Lett. 22, 175–177 (1997).
[CrossRef] [PubMed]

M. S. Klassen, B. D. Thompson, T. A. Reichardt, G. B. King, N. M. Laurendeau, “Flame concentration measurements using picosecond time-resolved laser-induced fluorescence,” Combust. Sci. Technol. 97, 391–403 (1994).
[CrossRef]

Kounalakis, M. E.

M. E. Kounalakis, J. P. Gore, G. M. Faeth, “Turbulence/radiation interactions in nonpremixed hydrogen/air flames,” in Twenty-Second Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1988), pp. 1281–1290.

Lapp, M.

M. C. Drake, R. W. Pitz, M. Lapp, C. P. Fenimore, R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Measurements of superequilibrium hydroxyl concentrations in turbulent nonpremixed flames using saturated fluorescence,” in Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 327–335.

Laurendeau, N. M.

S. D. Pack, M. W. Renfro, G. B. King, N. M. Laurendeau, “Laser-induced fluorescence triple-integration method applied to hydroxyl concentration and fluorescence lifetime measurements,” Combust. Sci. Technol. 140, 405–425 (1999).
[CrossRef]

M. W. Renfro, S. D. Pack, G. B. King, N. M. Laurendeau, “Hydroxyl time-series measurements in laminar and moderately turbulent methane/air diffusion flames,” Combust. Flame 115, 443–455 (1998).
[CrossRef]

S. D. Pack, M. W. Renfro, G. B. King, N. M. Laurendeau, “Photon-counting technique for rapid fluorescence-decay measurement,” Opt. Lett. 23, 1215–1217 (1998).
[CrossRef]

M. W. Renfro, M. S. Klassen, G. B. King, N. M. Laurendeau, “Time-series measurements of CH concentration in turbulent CH4/air flames by use of picosecond time-resolved laser-induced fluorescence,” Opt. Lett. 22, 175–177 (1997).
[CrossRef] [PubMed]

J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Measurements and modeling of OH and NO in premixed C2H6/O2/N2 flames at atmospheric pressure,” Energy Fuels 11, 1092–1100 (1997).
[CrossRef]

M. S. Klassen, B. D. Thompson, T. A. Reichardt, G. B. King, N. M. Laurendeau, “Flame concentration measurements using picosecond time-resolved laser-induced fluorescence,” Combust. Sci. Technol. 97, 391–403 (1994).
[CrossRef]

M. W. Renfro, S. D. Pack, G. B. King, N. M. Laurendeau, “A pulse-pileup correction procedure for rapid measurements of hydroxyl concentrations using picosecond time-resolved laser-induced fluorescence,” App. Phys. B (to be published).

M. W. Renfro, Y. R. Sivathanu, J. P. Gore, G. B. King, N. M. Laurendeau, “Time-series analysis and measurements of intermediate species concentration spectra in turbulent nonpremixed flames,” in Twenty-Seventh Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1998), pp. 1015–1022.
[CrossRef]

M. C. Drake, R. W. Pitz, M. Lapp, C. P. Fenimore, R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Measurements of superequilibrium hydroxyl concentrations in turbulent nonpremixed flames using saturated fluorescence,” in Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 327–335.

Li, J. D.

J. D. Li, R. J. Brown, R. W. Bilger, “Spectral measurement of reactive and conserved scalars in a turbulent reactive-scalar-mixing layer,” in Turbulent Shear Flows 9, F. Durst, N. Kasagi, B. E. Launder, F. W. Schmidt, K. Suzuki, J. H. Whitelaw, eds. (Springer-Verlag, Berlin, 1993), pp. 411–425.

Lissianski, V.

C. T. Bowman, R. K. Hanson, D. F. Davidson, W. C. Gardiner, V. Lissianski, G. P. Smith, D. M. Golden, M. Frenklach, M. Goldenberg, GRI-Mech Home Page, Internet address: http://www.me.berkeley.edu/gri_mech/ (1995).

Long, M. B.

S. H. Stårner, R. W. Bilger, R. W. Dibble, R. S. Barlow, D. C. Fourguette, M. B. Long, “Joint planar CH and OH LIF imaging in piloted turbulent jet diffusion flames near extinction,” in Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 341–349.
[CrossRef]

Lucht, R. P.

R. S. Barlow, R. W. Dibble, J.-Y. Chen, R. P. Lucht, “Effect of Damköhler number on superequilibrium OH concentration in turbulent nonpremixed jet flames,” Combust. Flame 82, 235–251 (1990).
[CrossRef]

M. C. Drake, R. W. Pitz, M. Lapp, C. P. Fenimore, R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Measurements of superequilibrium hydroxyl concentrations in turbulent nonpremixed flames using saturated fluorescence,” in Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 327–335.

Lumley, J. L.

H. Tennekes, J. L. Lumley, A First Course in Turbulence (MIT, Cambridge, Mass., 1972).

Masutani, S. M.

S. M. Masutani, C. T. Bowman, “The structure of a chemically reacting plane mixing layer,” J. Fluid Mech. 172, 93–126 (1986).
[CrossRef]

McQuay, M. Q.

M. Q. McQuay, S. M. Cannon, “Time-resolved temperature measurements in the developing region of an elliptic, jet diffusion flame at Reynolds number of 6000,” Combust. Sci. Technol. 119, 13–33 (1996).
[CrossRef]

Miller, J. A.

R. J. Kee, J. F. Grcar, M. D. Smooke, J. A. Miller, “A fortran program for modeling steady laminar one-dimensional premixed flames,” (Sandia National Laboratories, Livermore, Calif., 1985).

Mungal, M. G.

N. T. Clemens, P. H. Paul, M. G. Mungal, “The structure of OH fields in high Reynolds number turbulent jet diffusion flames,” Combust. Sci. Technol. 129, 165–184 (1997).
[CrossRef]

Mydlarski, L.

L. Mydlarski, Z. Warhaft, “On the onset of high-Reynolds-number grid-generated wind tunnel turbulence,” J. Fluid Mech. 320, 331–368 (1996).
[CrossRef]

Pack, S. D.

S. D. Pack, M. W. Renfro, G. B. King, N. M. Laurendeau, “Laser-induced fluorescence triple-integration method applied to hydroxyl concentration and fluorescence lifetime measurements,” Combust. Sci. Technol. 140, 405–425 (1999).
[CrossRef]

M. W. Renfro, S. D. Pack, G. B. King, N. M. Laurendeau, “Hydroxyl time-series measurements in laminar and moderately turbulent methane/air diffusion flames,” Combust. Flame 115, 443–455 (1998).
[CrossRef]

S. D. Pack, M. W. Renfro, G. B. King, N. M. Laurendeau, “Photon-counting technique for rapid fluorescence-decay measurement,” Opt. Lett. 23, 1215–1217 (1998).
[CrossRef]

M. W. Renfro, S. D. Pack, G. B. King, N. M. Laurendeau, “A pulse-pileup correction procedure for rapid measurements of hydroxyl concentrations using picosecond time-resolved laser-induced fluorescence,” App. Phys. B (to be published).

Pao, Y.-H.

Y.-H. Pao, “Statistical behavior of a turbulent multicomponent mixture with first-order reactions,” AIAA J. 2, 1550–1559 (1964).
[CrossRef]

Paul, P. H.

N. T. Clemens, P. H. Paul, M. G. Mungal, “The structure of OH fields in high Reynolds number turbulent jet diffusion flames,” Combust. Sci. Technol. 129, 165–184 (1997).
[CrossRef]

N. T. Clemens, P. H. Paul, “Effects of heat release on the near field flow structure of hydrogen jet diffusion flames,” Combust. Flame 102, 271–284 (1995).
[CrossRef]

P. H. Paul, “A model for temperature-dependent collisional quenching of OH A2Σ+,” J. Quant. Spectrosc. Radiat. Transfer 51, 511–524 (1994).
[CrossRef]

Peters, N.

N. Peters, “Laminar flamelet concepts in turbulent combustion,” in the Twenty-First Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1986), pp. 1231–1250.

Pitz, R. W.

T. S. Cheng, J. A. Wehrmeyer, R. W. Pitz, “Simultaneous temperature and multispecies measurement in a lifted hydrogen diffusion flame,” Combust. Flame 91, 323–345 (1992).
[CrossRef]

M. C. Drake, R. W. Pitz, “Comparison of turbulent diffusion flame measurements of OH by planar fluorescence and saturated fluorescence,” Exp. Fluids 3, 283–292 (1985).

M. C. Drake, R. W. Pitz, M. Lapp, C. P. Fenimore, R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Measurements of superequilibrium hydroxyl concentrations in turbulent nonpremixed flames using saturated fluorescence,” in Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 327–335.

Pope, S. B.

S. B. Pope, “PDF methods for turbulent reactive flows,” Prog. Energy Combust. Sci. 11, 119–192 (1985).
[CrossRef]

Reichardt, T. A.

M. S. Klassen, B. D. Thompson, T. A. Reichardt, G. B. King, N. M. Laurendeau, “Flame concentration measurements using picosecond time-resolved laser-induced fluorescence,” Combust. Sci. Technol. 97, 391–403 (1994).
[CrossRef]

Reisel, J. R.

J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Measurements and modeling of OH and NO in premixed C2H6/O2/N2 flames at atmospheric pressure,” Energy Fuels 11, 1092–1100 (1997).
[CrossRef]

Renfro, M. W.

S. D. Pack, M. W. Renfro, G. B. King, N. M. Laurendeau, “Laser-induced fluorescence triple-integration method applied to hydroxyl concentration and fluorescence lifetime measurements,” Combust. Sci. Technol. 140, 405–425 (1999).
[CrossRef]

M. W. Renfro, S. D. Pack, G. B. King, N. M. Laurendeau, “Hydroxyl time-series measurements in laminar and moderately turbulent methane/air diffusion flames,” Combust. Flame 115, 443–455 (1998).
[CrossRef]

S. D. Pack, M. W. Renfro, G. B. King, N. M. Laurendeau, “Photon-counting technique for rapid fluorescence-decay measurement,” Opt. Lett. 23, 1215–1217 (1998).
[CrossRef]

M. W. Renfro, M. S. Klassen, G. B. King, N. M. Laurendeau, “Time-series measurements of CH concentration in turbulent CH4/air flames by use of picosecond time-resolved laser-induced fluorescence,” Opt. Lett. 22, 175–177 (1997).
[CrossRef] [PubMed]

M. W. Renfro, Y. R. Sivathanu, J. P. Gore, G. B. King, N. M. Laurendeau, “Time-series analysis and measurements of intermediate species concentration spectra in turbulent nonpremixed flames,” in Twenty-Seventh Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1998), pp. 1015–1022.
[CrossRef]

M. W. Renfro, S. D. Pack, G. B. King, N. M. Laurendeau, “A pulse-pileup correction procedure for rapid measurements of hydroxyl concentrations using picosecond time-resolved laser-induced fluorescence,” App. Phys. B (to be published).

M. W. Renfro, “Time-series measurements of laser-induced OH and CH fluorescence in laminar and turbulent flames,” M.S. thesis (Purdue University, West Lafayette, Ind., 1997).

Shepherd, I. G.

I. Gökalp, I. G. Shepherd, R. K. Cheng, “Spectral behavior of velocity fluctuations in premixed turbulent flames,” Combust. Flame 71, 313–323 (1988).
[CrossRef]

Sivathanu, Y. R.

M. W. Renfro, Y. R. Sivathanu, J. P. Gore, G. B. King, N. M. Laurendeau, “Time-series analysis and measurements of intermediate species concentration spectra in turbulent nonpremixed flames,” in Twenty-Seventh Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1998), pp. 1015–1022.
[CrossRef]

Smith, G. P.

C. T. Bowman, R. K. Hanson, D. F. Davidson, W. C. Gardiner, V. Lissianski, G. P. Smith, D. M. Golden, M. Frenklach, M. Goldenberg, GRI-Mech Home Page, Internet address: http://www.me.berkeley.edu/gri_mech/ (1995).

Smooke, M. D.

R. J. Kee, J. F. Grcar, M. D. Smooke, J. A. Miller, “A fortran program for modeling steady laminar one-dimensional premixed flames,” (Sandia National Laboratories, Livermore, Calif., 1985).

Sreenivasan, K. R.

A. W. Johnson, K. R. Sreenivasan, M. Winter, “The thickness distribution of OH regions in a turbulent diffusion flame,” Combust. Sci. Technol. 89, 1–7 (1993).
[CrossRef]

Stårner, S. H.

S. H. Stårner, R. W. Bilger, R. W. Dibble, R. S. Barlow, D. C. Fourguette, M. B. Long, “Joint planar CH and OH LIF imaging in piloted turbulent jet diffusion flames near extinction,” in Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 341–349.
[CrossRef]

Sweeney, D. W.

M. C. Drake, R. W. Pitz, M. Lapp, C. P. Fenimore, R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Measurements of superequilibrium hydroxyl concentrations in turbulent nonpremixed flames using saturated fluorescence,” in Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 327–335.

Tennekes, H.

H. Tennekes, J. L. Lumley, A First Course in Turbulence (MIT, Cambridge, Mass., 1972).

Thompson, B. D.

M. S. Klassen, B. D. Thompson, T. A. Reichardt, G. B. King, N. M. Laurendeau, “Flame concentration measurements using picosecond time-resolved laser-induced fluorescence,” Combust. Sci. Technol. 97, 391–403 (1994).
[CrossRef]

Vacus, P.

S. Gaskey, P. Vacus, R. David, J. Villermaux, J. C. André, “A method for the study of turbulent mixing using fluorescence spectroscopy,” Exp. Fluids 9, 137–147 (1990).
[CrossRef]

van der Meer, Th. H.

J. E. de Vries, Th. H. van der Meer, C. J. Hoogendoorn, “OH concentration fluctuations in turbulent natural gas jet flames,” Chem. Eng. J. 53, 39–46 (1993).

Villermaux, J.

S. Gaskey, P. Vacus, R. David, J. Villermaux, J. C. André, “A method for the study of turbulent mixing using fluorescence spectroscopy,” Exp. Fluids 9, 137–147 (1990).
[CrossRef]

Warhaft, Z.

L. Mydlarski, Z. Warhaft, “On the onset of high-Reynolds-number grid-generated wind tunnel turbulence,” J. Fluid Mech. 320, 331–368 (1996).
[CrossRef]

Wehrmeyer, J. A.

T. S. Cheng, J. A. Wehrmeyer, R. W. Pitz, “Simultaneous temperature and multispecies measurement in a lifted hydrogen diffusion flame,” Combust. Flame 91, 323–345 (1992).
[CrossRef]

Winter, M.

A. W. Johnson, K. R. Sreenivasan, M. Winter, “The thickness distribution of OH regions in a turbulent diffusion flame,” Combust. Sci. Technol. 89, 1–7 (1993).
[CrossRef]

AIAA J. (1)

Y.-H. Pao, “Statistical behavior of a turbulent multicomponent mixture with first-order reactions,” AIAA J. 2, 1550–1559 (1964).
[CrossRef]

Chem. Eng. J. (1)

J. E. de Vries, Th. H. van der Meer, C. J. Hoogendoorn, “OH concentration fluctuations in turbulent natural gas jet flames,” Chem. Eng. J. 53, 39–46 (1993).

Combust. Flame (6)

N. T. Clemens, P. H. Paul, “Effects of heat release on the near field flow structure of hydrogen jet diffusion flames,” Combust. Flame 102, 271–284 (1995).
[CrossRef]

R. S. Barlow, R. W. Dibble, J.-Y. Chen, R. P. Lucht, “Effect of Damköhler number on superequilibrium OH concentration in turbulent nonpremixed jet flames,” Combust. Flame 82, 235–251 (1990).
[CrossRef]

R. S. Barlow, C. D. Carter, “Raman/Rayleigh/LIF measurements of nitric oxide formation in turbulent hydrogen jet flames,” Combust. Flame 97, 261–280 (1994).
[CrossRef]

I. Gökalp, I. G. Shepherd, R. K. Cheng, “Spectral behavior of velocity fluctuations in premixed turbulent flames,” Combust. Flame 71, 313–323 (1988).
[CrossRef]

T. S. Cheng, J. A. Wehrmeyer, R. W. Pitz, “Simultaneous temperature and multispecies measurement in a lifted hydrogen diffusion flame,” Combust. Flame 91, 323–345 (1992).
[CrossRef]

M. W. Renfro, S. D. Pack, G. B. King, N. M. Laurendeau, “Hydroxyl time-series measurements in laminar and moderately turbulent methane/air diffusion flames,” Combust. Flame 115, 443–455 (1998).
[CrossRef]

Combust. Sci. Technol. (5)

M. S. Klassen, B. D. Thompson, T. A. Reichardt, G. B. King, N. M. Laurendeau, “Flame concentration measurements using picosecond time-resolved laser-induced fluorescence,” Combust. Sci. Technol. 97, 391–403 (1994).
[CrossRef]

M. Q. McQuay, S. M. Cannon, “Time-resolved temperature measurements in the developing region of an elliptic, jet diffusion flame at Reynolds number of 6000,” Combust. Sci. Technol. 119, 13–33 (1996).
[CrossRef]

S. D. Pack, M. W. Renfro, G. B. King, N. M. Laurendeau, “Laser-induced fluorescence triple-integration method applied to hydroxyl concentration and fluorescence lifetime measurements,” Combust. Sci. Technol. 140, 405–425 (1999).
[CrossRef]

A. W. Johnson, K. R. Sreenivasan, M. Winter, “The thickness distribution of OH regions in a turbulent diffusion flame,” Combust. Sci. Technol. 89, 1–7 (1993).
[CrossRef]

N. T. Clemens, P. H. Paul, M. G. Mungal, “The structure of OH fields in high Reynolds number turbulent jet diffusion flames,” Combust. Sci. Technol. 129, 165–184 (1997).
[CrossRef]

Energy Fuels (1)

J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Measurements and modeling of OH and NO in premixed C2H6/O2/N2 flames at atmospheric pressure,” Energy Fuels 11, 1092–1100 (1997).
[CrossRef]

Exp. Fluids (2)

S. Gaskey, P. Vacus, R. David, J. Villermaux, J. C. André, “A method for the study of turbulent mixing using fluorescence spectroscopy,” Exp. Fluids 9, 137–147 (1990).
[CrossRef]

M. C. Drake, R. W. Pitz, “Comparison of turbulent diffusion flame measurements of OH by planar fluorescence and saturated fluorescence,” Exp. Fluids 3, 283–292 (1985).

J. Fluid Mech. (2)

S. M. Masutani, C. T. Bowman, “The structure of a chemically reacting plane mixing layer,” J. Fluid Mech. 172, 93–126 (1986).
[CrossRef]

L. Mydlarski, Z. Warhaft, “On the onset of high-Reynolds-number grid-generated wind tunnel turbulence,” J. Fluid Mech. 320, 331–368 (1996).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

P. H. Paul, “A model for temperature-dependent collisional quenching of OH A2Σ+,” J. Quant. Spectrosc. Radiat. Transfer 51, 511–524 (1994).
[CrossRef]

Opt. Lett. (3)

Phys. Fluids (1)

S. Corrsin, “Further generalization of Onsager’s cascade model for turbulent spectra,” Phys. Fluids 7, 1156–1159 (1964).
[CrossRef]

Prog. Energy Combust. Sci. (1)

S. B. Pope, “PDF methods for turbulent reactive flows,” Prog. Energy Combust. Sci. 11, 119–192 (1985).
[CrossRef]

Other (12)

N. Peters, “Laminar flamelet concepts in turbulent combustion,” in the Twenty-First Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1986), pp. 1231–1250.

M. W. Renfro, Y. R. Sivathanu, J. P. Gore, G. B. King, N. M. Laurendeau, “Time-series analysis and measurements of intermediate species concentration spectra in turbulent nonpremixed flames,” in Twenty-Seventh Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1998), pp. 1015–1022.
[CrossRef]

M. C. Drake, R. W. Pitz, M. Lapp, C. P. Fenimore, R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Measurements of superequilibrium hydroxyl concentrations in turbulent nonpremixed flames using saturated fluorescence,” in Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 327–335.

M. W. Renfro, “Time-series measurements of laser-induced OH and CH fluorescence in laminar and turbulent flames,” M.S. thesis (Purdue University, West Lafayette, Ind., 1997).

R. J. Kee, J. F. Grcar, M. D. Smooke, J. A. Miller, “A fortran program for modeling steady laminar one-dimensional premixed flames,” (Sandia National Laboratories, Livermore, Calif., 1985).

C. T. Bowman, R. K. Hanson, D. F. Davidson, W. C. Gardiner, V. Lissianski, G. P. Smith, D. M. Golden, M. Frenklach, M. Goldenberg, GRI-Mech Home Page, Internet address: http://www.me.berkeley.edu/gri_mech/ (1995).

G. E. P. Box, G. M. Jenkins, Time Series Analysis (Holden-Day, San Francisco, Calif., 1976).

J. D. Li, R. J. Brown, R. W. Bilger, “Spectral measurement of reactive and conserved scalars in a turbulent reactive-scalar-mixing layer,” in Turbulent Shear Flows 9, F. Durst, N. Kasagi, B. E. Launder, F. W. Schmidt, K. Suzuki, J. H. Whitelaw, eds. (Springer-Verlag, Berlin, 1993), pp. 411–425.

M. W. Renfro, S. D. Pack, G. B. King, N. M. Laurendeau, “A pulse-pileup correction procedure for rapid measurements of hydroxyl concentrations using picosecond time-resolved laser-induced fluorescence,” App. Phys. B (to be published).

M. E. Kounalakis, J. P. Gore, G. M. Faeth, “Turbulence/radiation interactions in nonpremixed hydrogen/air flames,” in Twenty-Second Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1988), pp. 1281–1290.

S. H. Stårner, R. W. Bilger, R. W. Dibble, R. S. Barlow, D. C. Fourguette, M. B. Long, “Joint planar CH and OH LIF imaging in piloted turbulent jet diffusion flames near extinction,” in Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 341–349.
[CrossRef]

H. Tennekes, J. L. Lumley, A First Course in Turbulence (MIT, Cambridge, Mass., 1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Experimental setup for the laser system: R, polarization rotator; M, 0.25-m monochromator; PD, photodiode; PD-gate, photodiode trigger from the laser to the discriminators.

Fig. 2
Fig. 2

PMT impulse response function as compared with a typical fluorescence decay. The areas D 2, D 3, and D 4 represent the integrated measurements of the gated photon-counting system. D 1 represents the total integrated fluorescence signal (ungated). The background B is typical of flame emission, and the amplitude A is proportional to concentration.

Fig. 3
Fig. 3

PSD’s measured in the Re = 2800 CH4 flame at an axial height of 5 mm and the radial location of peak [OH]. The lock-in amplifier measurements are from Renfro et al.22 To correct the PSD’s for shot noise, the average of the PSD’s from 1950 to 2000 Hz was subtracted and the resulting PSD’s were renormalized with Eq. (2). A five-point moving average was applied to each PSD to smooth the data.

Fig. 4
Fig. 4

Radial profiles of mean [OH] and fluorescence lifetime in the Re = 5000 H2–Ar flame. The error bars represent the repeatability of the measurements (2σ). The total accuracy for each measured concentration is ±18.5% (95% confidence interval of the mean), including repeatability, laboratory temperature fluctuations (which affect the discriminators), and the uncertainty of the calibration. The burner centerline is at r = 0 mm.

Fig. 5
Fig. 5

Radial profiles of mean [OH] and fluorescence lifetime in each flame at x/D = 5. Error bars are not plotted to avoid clutter, but the accuracy of each point is approximately the same as shown in Fig. 4. The repeatability for the Re = 2800 flames is approximately twice that of the higher Reynolds number cases because of room-air fluctuations.

Fig. 6
Fig. 6

PSD’s measured at x/D = 5, 1 mm to the air side of the radial [OH] peak in the Re = 13,000 H2–Ar flame. A five-point moving average was applied to each PSD to smooth the data.

Fig. 7
Fig. 7

PSD’s measured at the radial location of peak [OH] in the Re = 9000 H2–Ar flame. The PSD for x/D = 2 is not shown but is nearly identical to that for x/D = 1. Likewise, the PSD at x/D = 10 lies between those for x/D = 5 and x/D = 20. A five-point moving average was applied to each PSD to smooth the data.

Fig. 8
Fig. 8

PSD’s measured at x/D = 20 as a function of Reynolds number at the radial location of peak [OH] in the H2–Ar flames. A five-point moving average was applied to each PSD to smooth the data.

Fig. 9
Fig. 9

PSD’s measured in the two Re = 2800 flames at x/D = 5 and the radial location of maximum [OH]. A five-point moving average was applied to each PSD to smooth the data.

Fig. 10
Fig. 10

Comparison of present concentration and fluorescence measurements with the lock-in amplifier measurements of Renfro et al.36 in the Re = 13,000 hydrogen–argon flame at the radial location of peak [OH]. The fluorescence PDF’s were normalized to obtain the same mean as the concentration PDF’s.

Fig. 11
Fig. 11

PDF’s measured in the Re = 13,000 hydrogen–argon flame at the radial location of maximum OH concentration.

Fig. 12
Fig. 12

Comparison of PDF’s of [OH] at three axial heights in each hydrogen–argon flame. All measurements are made at the radial location of maximum OH concentration.

Tables (1)

Tables Icon

Table 1 Mean and Standard Deviation of OH Concentration and Fluorescence Lifetime Determined from 200,000 Measurementsa

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

PSDOHf=OHt*OHtOHrms2,
PSDf=σOH/σ2PSDOHf+σSN/σ2PSDSNf,
σ=σOH2+σSN21/2.
PSDfσSN/σ2/fc.
St=COH¯+OHtτ¯+τt+B¯+Bt=COH¯τ¯+OH¯τ+OHτ¯+OHτ+B¯+B,
zOHt=OHtσOHOH¯,
zτt=τtσττ¯,
zBt=BtσBB¯,
St=COH¯τ¯1+στzτ+σOHzOH+σOHστzOHzτ+1SBR1+σBzB,
PSDS=σOHσ2PSDOH+στσ2PSDτ+σBσSBR2PSDB.

Metrics