Abstract

AgGaS2 has been found to be 90° phase matchable at 192 °C for sum-frequency mixing between the output of the KTP parametric oscillator at 3.2627 µm and its pump source at 1.0642 µm. The thermo-optic dispersion formula that can be used for good reproduction of the temperature-dependent phase-matching conditions thus far reported in the literature as well as our new data for second-harmonic generation of a CO2 laser and its harmonics at 1.7652–5.2955 µm is presented.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. C. Bhar, D. K. Ghosh, P. S. Ghosh, D. Schmitt, “Temperature effects in AgGaS2 nonlinear devices,” Appl. Opt. 22, 2492–2494 (1983).
    [CrossRef] [PubMed]
  2. G. C. Bhar, S. Das, U. Chatterjee, R. S. Feigelson, R. K. Route, “Synchronous and non-linear infrared upconversion in AgGaS2,” Appl. Phys. Lett. 54, 1489–1491 (1989).
    [CrossRef]
  3. G. C. Bhar, U. Chatterjee, P. K. Datta, S. Das, R. S. Feigelson, R. K. Route, “Noncritical detection of tunable CO2 laser radiation into the green by upconversion in silver thiogallate,” Appl. Phys. B 53, 19–22 (1991).
    [CrossRef]
  4. G. C. Bhar, S. Das, P. K. Datta, “Tangentially phase-matched infrared detection in AgGaS2,” J. Phys. D 27, 228–230 (1994).
    [CrossRef]
  5. P. Canarelli, Z. Benko, A. H. Hielscher, R. F. Curl, F. K. Tittel, “Measurements of nonlinear coefficient and phase-matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 28, 52–55 (1992).
    [CrossRef]
  6. J. J. Zondy, D. Touahri, “Updated thermo-optic coefficients of AgGaS2 from temperature-tuned noncritical 3ω - ω → 2ω infrared parametric amplifier,” J. Opt. Soc. Am. B 14, 1331–1338 (1997).
    [CrossRef]
  7. L. M. Suslikov, Yu. A. Khazitarkhanov, Z. P. Gadmashi, “Effect of temperature on birefringence of silver thiogallate single crystal,” Opt. Spectrosc. 74, 336–340 (1993).
  8. K. Kato, “Parametric oscillation at 3.2 µm in KTP pumped at 1.064 µm,” IEEE J. Quantum Electron. 27, 2043–2046 (1991).
    [CrossRef]
  9. G. C. Bhar, R. C. Smith, “Silver thiogallate (AgGaS2)-Part II: Linear optical properties,” IEEE J. Quantum Electron. QE-10, 546–550 (1974).
    [CrossRef]
  10. K. Kato, H. Shirahata, “Nonlinear IR generation in AgGaS2,” Jpn. J. Appl. Phys. 35, 4645–4648 (1996).
    [CrossRef]
  11. U. Simon, F. K. Tittel, L. Goldberg, “Difference-frequency mixing in AgGaS2 by use of a high-power GaAlAs tapered semiconductor amplifier at 860 nm,” Opt. Lett. 15, 1931–1933 (1993).
    [CrossRef]
  12. U. Simon, C. E. Miller, C. C. Bradley, R. G. Hulet, F. R. Curl, F. K. Tittel, “Difference-frequency generation in AgGaS2 by use of single-mode diode-laser pump sources,” Opt. Lett. 18, 1062–1064 (1993).
    [CrossRef]
  13. K. P. Petrov, D. A. Roberts, “Dispersion equations of nonlinear optical crystals: KDP, AgGaSe2, and AgGaS2,” Appl. Opt. 35, 4677–4688 (1996), see Table 15.
    [CrossRef]
  14. A. Harasaki, J. Sakuma, T. Itoh, T. Satoh, M. Sugii, K. Kato, “High-average-power mid-IR laser obtained by frequency-doubling a TEA CO2 MOPA system by using AgGaS2 crystals,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest (Optical Society of America, Washington, D.C., 1995), paper CTuO3.
  15. J. Sakuma, T. Itoh, A. Harasaki, T. Satoh, M. Sugii, “Development of a high power mid-IR source using TEA CO2 laser MOPA system with AgGaSe2 crystals,” Rev. Laser Engineer. 25, 61–66 (1997), in Japanese.
    [CrossRef]
  16. E. Takaoka, K. Kato, “Thermo-optic dispersion formula of AgGaSe2 and its practical applications,” Appl. Opt. 37, 561–564 (1998).
    [CrossRef]

1998 (1)

1997 (2)

J. Sakuma, T. Itoh, A. Harasaki, T. Satoh, M. Sugii, “Development of a high power mid-IR source using TEA CO2 laser MOPA system with AgGaSe2 crystals,” Rev. Laser Engineer. 25, 61–66 (1997), in Japanese.
[CrossRef]

J. J. Zondy, D. Touahri, “Updated thermo-optic coefficients of AgGaS2 from temperature-tuned noncritical 3ω - ω → 2ω infrared parametric amplifier,” J. Opt. Soc. Am. B 14, 1331–1338 (1997).
[CrossRef]

1996 (2)

1994 (1)

G. C. Bhar, S. Das, P. K. Datta, “Tangentially phase-matched infrared detection in AgGaS2,” J. Phys. D 27, 228–230 (1994).
[CrossRef]

1993 (3)

U. Simon, F. K. Tittel, L. Goldberg, “Difference-frequency mixing in AgGaS2 by use of a high-power GaAlAs tapered semiconductor amplifier at 860 nm,” Opt. Lett. 15, 1931–1933 (1993).
[CrossRef]

L. M. Suslikov, Yu. A. Khazitarkhanov, Z. P. Gadmashi, “Effect of temperature on birefringence of silver thiogallate single crystal,” Opt. Spectrosc. 74, 336–340 (1993).

U. Simon, C. E. Miller, C. C. Bradley, R. G. Hulet, F. R. Curl, F. K. Tittel, “Difference-frequency generation in AgGaS2 by use of single-mode diode-laser pump sources,” Opt. Lett. 18, 1062–1064 (1993).
[CrossRef]

1992 (1)

P. Canarelli, Z. Benko, A. H. Hielscher, R. F. Curl, F. K. Tittel, “Measurements of nonlinear coefficient and phase-matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 28, 52–55 (1992).
[CrossRef]

1991 (2)

G. C. Bhar, U. Chatterjee, P. K. Datta, S. Das, R. S. Feigelson, R. K. Route, “Noncritical detection of tunable CO2 laser radiation into the green by upconversion in silver thiogallate,” Appl. Phys. B 53, 19–22 (1991).
[CrossRef]

K. Kato, “Parametric oscillation at 3.2 µm in KTP pumped at 1.064 µm,” IEEE J. Quantum Electron. 27, 2043–2046 (1991).
[CrossRef]

1989 (1)

G. C. Bhar, S. Das, U. Chatterjee, R. S. Feigelson, R. K. Route, “Synchronous and non-linear infrared upconversion in AgGaS2,” Appl. Phys. Lett. 54, 1489–1491 (1989).
[CrossRef]

1983 (1)

1974 (1)

G. C. Bhar, R. C. Smith, “Silver thiogallate (AgGaS2)-Part II: Linear optical properties,” IEEE J. Quantum Electron. QE-10, 546–550 (1974).
[CrossRef]

Benko, Z.

P. Canarelli, Z. Benko, A. H. Hielscher, R. F. Curl, F. K. Tittel, “Measurements of nonlinear coefficient and phase-matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 28, 52–55 (1992).
[CrossRef]

Bhar, G. C.

G. C. Bhar, S. Das, P. K. Datta, “Tangentially phase-matched infrared detection in AgGaS2,” J. Phys. D 27, 228–230 (1994).
[CrossRef]

G. C. Bhar, U. Chatterjee, P. K. Datta, S. Das, R. S. Feigelson, R. K. Route, “Noncritical detection of tunable CO2 laser radiation into the green by upconversion in silver thiogallate,” Appl. Phys. B 53, 19–22 (1991).
[CrossRef]

G. C. Bhar, S. Das, U. Chatterjee, R. S. Feigelson, R. K. Route, “Synchronous and non-linear infrared upconversion in AgGaS2,” Appl. Phys. Lett. 54, 1489–1491 (1989).
[CrossRef]

G. C. Bhar, D. K. Ghosh, P. S. Ghosh, D. Schmitt, “Temperature effects in AgGaS2 nonlinear devices,” Appl. Opt. 22, 2492–2494 (1983).
[CrossRef] [PubMed]

G. C. Bhar, R. C. Smith, “Silver thiogallate (AgGaS2)-Part II: Linear optical properties,” IEEE J. Quantum Electron. QE-10, 546–550 (1974).
[CrossRef]

Bradley, C. C.

Canarelli, P.

P. Canarelli, Z. Benko, A. H. Hielscher, R. F. Curl, F. K. Tittel, “Measurements of nonlinear coefficient and phase-matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 28, 52–55 (1992).
[CrossRef]

Chatterjee, U.

G. C. Bhar, U. Chatterjee, P. K. Datta, S. Das, R. S. Feigelson, R. K. Route, “Noncritical detection of tunable CO2 laser radiation into the green by upconversion in silver thiogallate,” Appl. Phys. B 53, 19–22 (1991).
[CrossRef]

G. C. Bhar, S. Das, U. Chatterjee, R. S. Feigelson, R. K. Route, “Synchronous and non-linear infrared upconversion in AgGaS2,” Appl. Phys. Lett. 54, 1489–1491 (1989).
[CrossRef]

Curl, F. R.

Curl, R. F.

P. Canarelli, Z. Benko, A. H. Hielscher, R. F. Curl, F. K. Tittel, “Measurements of nonlinear coefficient and phase-matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 28, 52–55 (1992).
[CrossRef]

Das, S.

G. C. Bhar, S. Das, P. K. Datta, “Tangentially phase-matched infrared detection in AgGaS2,” J. Phys. D 27, 228–230 (1994).
[CrossRef]

G. C. Bhar, U. Chatterjee, P. K. Datta, S. Das, R. S. Feigelson, R. K. Route, “Noncritical detection of tunable CO2 laser radiation into the green by upconversion in silver thiogallate,” Appl. Phys. B 53, 19–22 (1991).
[CrossRef]

G. C. Bhar, S. Das, U. Chatterjee, R. S. Feigelson, R. K. Route, “Synchronous and non-linear infrared upconversion in AgGaS2,” Appl. Phys. Lett. 54, 1489–1491 (1989).
[CrossRef]

Datta, P. K.

G. C. Bhar, S. Das, P. K. Datta, “Tangentially phase-matched infrared detection in AgGaS2,” J. Phys. D 27, 228–230 (1994).
[CrossRef]

G. C. Bhar, U. Chatterjee, P. K. Datta, S. Das, R. S. Feigelson, R. K. Route, “Noncritical detection of tunable CO2 laser radiation into the green by upconversion in silver thiogallate,” Appl. Phys. B 53, 19–22 (1991).
[CrossRef]

Feigelson, R. S.

G. C. Bhar, U. Chatterjee, P. K. Datta, S. Das, R. S. Feigelson, R. K. Route, “Noncritical detection of tunable CO2 laser radiation into the green by upconversion in silver thiogallate,” Appl. Phys. B 53, 19–22 (1991).
[CrossRef]

G. C. Bhar, S. Das, U. Chatterjee, R. S. Feigelson, R. K. Route, “Synchronous and non-linear infrared upconversion in AgGaS2,” Appl. Phys. Lett. 54, 1489–1491 (1989).
[CrossRef]

Gadmashi, Z. P.

L. M. Suslikov, Yu. A. Khazitarkhanov, Z. P. Gadmashi, “Effect of temperature on birefringence of silver thiogallate single crystal,” Opt. Spectrosc. 74, 336–340 (1993).

Ghosh, D. K.

Ghosh, P. S.

Goldberg, L.

U. Simon, F. K. Tittel, L. Goldberg, “Difference-frequency mixing in AgGaS2 by use of a high-power GaAlAs tapered semiconductor amplifier at 860 nm,” Opt. Lett. 15, 1931–1933 (1993).
[CrossRef]

Harasaki, A.

J. Sakuma, T. Itoh, A. Harasaki, T. Satoh, M. Sugii, “Development of a high power mid-IR source using TEA CO2 laser MOPA system with AgGaSe2 crystals,” Rev. Laser Engineer. 25, 61–66 (1997), in Japanese.
[CrossRef]

A. Harasaki, J. Sakuma, T. Itoh, T. Satoh, M. Sugii, K. Kato, “High-average-power mid-IR laser obtained by frequency-doubling a TEA CO2 MOPA system by using AgGaS2 crystals,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest (Optical Society of America, Washington, D.C., 1995), paper CTuO3.

Hielscher, A. H.

P. Canarelli, Z. Benko, A. H. Hielscher, R. F. Curl, F. K. Tittel, “Measurements of nonlinear coefficient and phase-matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 28, 52–55 (1992).
[CrossRef]

Hulet, R. G.

Itoh, T.

J. Sakuma, T. Itoh, A. Harasaki, T. Satoh, M. Sugii, “Development of a high power mid-IR source using TEA CO2 laser MOPA system with AgGaSe2 crystals,” Rev. Laser Engineer. 25, 61–66 (1997), in Japanese.
[CrossRef]

A. Harasaki, J. Sakuma, T. Itoh, T. Satoh, M. Sugii, K. Kato, “High-average-power mid-IR laser obtained by frequency-doubling a TEA CO2 MOPA system by using AgGaS2 crystals,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest (Optical Society of America, Washington, D.C., 1995), paper CTuO3.

Kato, K.

E. Takaoka, K. Kato, “Thermo-optic dispersion formula of AgGaSe2 and its practical applications,” Appl. Opt. 37, 561–564 (1998).
[CrossRef]

K. Kato, H. Shirahata, “Nonlinear IR generation in AgGaS2,” Jpn. J. Appl. Phys. 35, 4645–4648 (1996).
[CrossRef]

K. Kato, “Parametric oscillation at 3.2 µm in KTP pumped at 1.064 µm,” IEEE J. Quantum Electron. 27, 2043–2046 (1991).
[CrossRef]

A. Harasaki, J. Sakuma, T. Itoh, T. Satoh, M. Sugii, K. Kato, “High-average-power mid-IR laser obtained by frequency-doubling a TEA CO2 MOPA system by using AgGaS2 crystals,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest (Optical Society of America, Washington, D.C., 1995), paper CTuO3.

Khazitarkhanov, Yu. A.

L. M. Suslikov, Yu. A. Khazitarkhanov, Z. P. Gadmashi, “Effect of temperature on birefringence of silver thiogallate single crystal,” Opt. Spectrosc. 74, 336–340 (1993).

Miller, C. E.

Petrov, K. P.

Roberts, D. A.

Route, R. K.

G. C. Bhar, U. Chatterjee, P. K. Datta, S. Das, R. S. Feigelson, R. K. Route, “Noncritical detection of tunable CO2 laser radiation into the green by upconversion in silver thiogallate,” Appl. Phys. B 53, 19–22 (1991).
[CrossRef]

G. C. Bhar, S. Das, U. Chatterjee, R. S. Feigelson, R. K. Route, “Synchronous and non-linear infrared upconversion in AgGaS2,” Appl. Phys. Lett. 54, 1489–1491 (1989).
[CrossRef]

Sakuma, J.

J. Sakuma, T. Itoh, A. Harasaki, T. Satoh, M. Sugii, “Development of a high power mid-IR source using TEA CO2 laser MOPA system with AgGaSe2 crystals,” Rev. Laser Engineer. 25, 61–66 (1997), in Japanese.
[CrossRef]

A. Harasaki, J. Sakuma, T. Itoh, T. Satoh, M. Sugii, K. Kato, “High-average-power mid-IR laser obtained by frequency-doubling a TEA CO2 MOPA system by using AgGaS2 crystals,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest (Optical Society of America, Washington, D.C., 1995), paper CTuO3.

Satoh, T.

J. Sakuma, T. Itoh, A. Harasaki, T. Satoh, M. Sugii, “Development of a high power mid-IR source using TEA CO2 laser MOPA system with AgGaSe2 crystals,” Rev. Laser Engineer. 25, 61–66 (1997), in Japanese.
[CrossRef]

A. Harasaki, J. Sakuma, T. Itoh, T. Satoh, M. Sugii, K. Kato, “High-average-power mid-IR laser obtained by frequency-doubling a TEA CO2 MOPA system by using AgGaS2 crystals,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest (Optical Society of America, Washington, D.C., 1995), paper CTuO3.

Schmitt, D.

Shirahata, H.

K. Kato, H. Shirahata, “Nonlinear IR generation in AgGaS2,” Jpn. J. Appl. Phys. 35, 4645–4648 (1996).
[CrossRef]

Simon, U.

U. Simon, C. E. Miller, C. C. Bradley, R. G. Hulet, F. R. Curl, F. K. Tittel, “Difference-frequency generation in AgGaS2 by use of single-mode diode-laser pump sources,” Opt. Lett. 18, 1062–1064 (1993).
[CrossRef]

U. Simon, F. K. Tittel, L. Goldberg, “Difference-frequency mixing in AgGaS2 by use of a high-power GaAlAs tapered semiconductor amplifier at 860 nm,” Opt. Lett. 15, 1931–1933 (1993).
[CrossRef]

Smith, R. C.

G. C. Bhar, R. C. Smith, “Silver thiogallate (AgGaS2)-Part II: Linear optical properties,” IEEE J. Quantum Electron. QE-10, 546–550 (1974).
[CrossRef]

Sugii, M.

J. Sakuma, T. Itoh, A. Harasaki, T. Satoh, M. Sugii, “Development of a high power mid-IR source using TEA CO2 laser MOPA system with AgGaSe2 crystals,” Rev. Laser Engineer. 25, 61–66 (1997), in Japanese.
[CrossRef]

A. Harasaki, J. Sakuma, T. Itoh, T. Satoh, M. Sugii, K. Kato, “High-average-power mid-IR laser obtained by frequency-doubling a TEA CO2 MOPA system by using AgGaS2 crystals,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest (Optical Society of America, Washington, D.C., 1995), paper CTuO3.

Suslikov, L. M.

L. M. Suslikov, Yu. A. Khazitarkhanov, Z. P. Gadmashi, “Effect of temperature on birefringence of silver thiogallate single crystal,” Opt. Spectrosc. 74, 336–340 (1993).

Takaoka, E.

Tittel, F. K.

U. Simon, C. E. Miller, C. C. Bradley, R. G. Hulet, F. R. Curl, F. K. Tittel, “Difference-frequency generation in AgGaS2 by use of single-mode diode-laser pump sources,” Opt. Lett. 18, 1062–1064 (1993).
[CrossRef]

U. Simon, F. K. Tittel, L. Goldberg, “Difference-frequency mixing in AgGaS2 by use of a high-power GaAlAs tapered semiconductor amplifier at 860 nm,” Opt. Lett. 15, 1931–1933 (1993).
[CrossRef]

P. Canarelli, Z. Benko, A. H. Hielscher, R. F. Curl, F. K. Tittel, “Measurements of nonlinear coefficient and phase-matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 28, 52–55 (1992).
[CrossRef]

Touahri, D.

Zondy, J. J.

Appl. Opt. (3)

Appl. Phys. B (1)

G. C. Bhar, U. Chatterjee, P. K. Datta, S. Das, R. S. Feigelson, R. K. Route, “Noncritical detection of tunable CO2 laser radiation into the green by upconversion in silver thiogallate,” Appl. Phys. B 53, 19–22 (1991).
[CrossRef]

Appl. Phys. Lett. (1)

G. C. Bhar, S. Das, U. Chatterjee, R. S. Feigelson, R. K. Route, “Synchronous and non-linear infrared upconversion in AgGaS2,” Appl. Phys. Lett. 54, 1489–1491 (1989).
[CrossRef]

IEEE J. Quantum Electron. (3)

P. Canarelli, Z. Benko, A. H. Hielscher, R. F. Curl, F. K. Tittel, “Measurements of nonlinear coefficient and phase-matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 28, 52–55 (1992).
[CrossRef]

K. Kato, “Parametric oscillation at 3.2 µm in KTP pumped at 1.064 µm,” IEEE J. Quantum Electron. 27, 2043–2046 (1991).
[CrossRef]

G. C. Bhar, R. C. Smith, “Silver thiogallate (AgGaS2)-Part II: Linear optical properties,” IEEE J. Quantum Electron. QE-10, 546–550 (1974).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

G. C. Bhar, S. Das, P. K. Datta, “Tangentially phase-matched infrared detection in AgGaS2,” J. Phys. D 27, 228–230 (1994).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Kato, H. Shirahata, “Nonlinear IR generation in AgGaS2,” Jpn. J. Appl. Phys. 35, 4645–4648 (1996).
[CrossRef]

Opt. Lett. (2)

U. Simon, F. K. Tittel, L. Goldberg, “Difference-frequency mixing in AgGaS2 by use of a high-power GaAlAs tapered semiconductor amplifier at 860 nm,” Opt. Lett. 15, 1931–1933 (1993).
[CrossRef]

U. Simon, C. E. Miller, C. C. Bradley, R. G. Hulet, F. R. Curl, F. K. Tittel, “Difference-frequency generation in AgGaS2 by use of single-mode diode-laser pump sources,” Opt. Lett. 18, 1062–1064 (1993).
[CrossRef]

Opt. Spectrosc. (1)

L. M. Suslikov, Yu. A. Khazitarkhanov, Z. P. Gadmashi, “Effect of temperature on birefringence of silver thiogallate single crystal,” Opt. Spectrosc. 74, 336–340 (1993).

Rev. Laser Engineer. (1)

J. Sakuma, T. Itoh, A. Harasaki, T. Satoh, M. Sugii, “Development of a high power mid-IR source using TEA CO2 laser MOPA system with AgGaSe2 crystals,” Rev. Laser Engineer. 25, 61–66 (1997), in Japanese.
[CrossRef]

Other (1)

A. Harasaki, J. Sakuma, T. Itoh, T. Satoh, M. Sugii, K. Kato, “High-average-power mid-IR laser obtained by frequency-doubling a TEA CO2 MOPA system by using AgGaS2 crystals,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest (Optical Society of America, Washington, D.C., 1995), paper CTuO3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

IR transmission curves of a 2-cm-long (θ = 90°, ϕ = 45°) type-1 cut AgGaS2 crystal antireflection coated at both 1.064 and 4.6 µm. Reproduced from the original traces.

Fig. 2
Fig. 2

Temperature-tuned phase-matching angles for type-1 SFG between the idler output of a KTP optical parametric oscillator at 3.2637 µm and its pump source at 1.0642 µm in AgGaS2. The dashed curves (B) and (Z/T) represent the theoretical curves that were calculated with the Sellmeier equations and thermo-optic dispersion formulas of Bhar et al.1,9 and of Zondy and Touahri.6 The dash–dot curves (B) and (ZT) represent the theoretical curves calculated with our index formula and the thermo-optic dispersion formulas of Bhar et al.1 and Zondy and Touahri.6 The dashed curve (T/K) represents the theoretical curve calculated with our formulas. The ⊙ represents our experimental points.

Fig. 3
Fig. 3

Temperature variation of the phase-matching angles for type-1 SHG of a CO2 laser at 9.5525 µm and its SHG at 5.2955 µm in AgGaS2. The dashed curves (B) and (Z/T) represent the results obtained with our Sellmeier equations and the thermo-optic dispersion formulas of Bhar et al.1 and of Zondy and Touahri.6 The real lines represent the results that were calculated with our formula. The slope of the phase-matching angle versus temperature is dθpm/dT = +0.0042 deg/°C for 9.5525 µm and dθpm/dT = +0.0047 deg/°C for 5.2955 µm. The ⊙ represents our experimental points.

Tables (1)

Tables Icon

Table 1 Temperature Phase-Matching Bandwidths (FWHM) for Type-1 SHG of a CO2 Laser and Its Harmonics in AgGaS2

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

no2=5.7975+0.2311λ2-0.0688-0.00257λ2,  ne2=5.5436+0.2230λ2-0.0946-0.00261λ2,  0.58λ10.59,
dnodT=0.3180λ3+2.8968λ2-0.8685λ+15.2679×10-5°C-1,  dnedT=6.1742λ3-12.0868λ2+8.2485λ+14.4365×10-5,  0.56  λ  10.59,

Metrics