Abstract

Unidirectional single-mode operation of a diode-pumped Nd:YAG laser with a planar semimonolithic ring cavity has been demonstrated at 1064 nm. The semimonolithic cavity consists of a laser active medium placed in a magnetic field, a crystal quartz plate, and an output coupling mirror, which form an optical diode by acting as a Faraday rotator, a reciprocal polarization rotator, and a partial polarizer, respectively. A single-mode output power of 155 mW and a slope efficiency of 17% were obtained with a 1.2-W diode laser at 809 nm. A laser linewidth of less than 100 kHz is inferred from a beat note frequency spectrum between two identical laser systems and continuous tuning to greater than 2 GHz was observed.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Kane, W. J. Kozlovsky, R. L. Byer, C. E. Byvik, “Coherent laser radar at 1.06 µm using Nd:YAG lasers,” Opt. Lett. 12, 239–241 (1987).
    [CrossRef] [PubMed]
  2. W. J. Kozlovsky, C. D. Nabors, R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
    [CrossRef]
  3. J. Ye, L.-S. Ma, J. L. Hall, “Ultrastable optical frequency reference at 1.064 µm using a C2HD molecular overtone transition,” IEEE Trans. Instrum. Meas. 46, 178–182 (1997).
    [CrossRef]
  4. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Berlin, 1996), p. 249.
  5. K. Wallmeroth, P. Peuser, “High power, CW single-frequency, TEM00, diode-laser-pumped Nd:YAG laser,” Electron. Lett. 24, 1086–1088 (1988).
    [CrossRef]
  6. A. J. Alfrey, “Simple 1 micron ring laser oscillators pumped by fiber-coupled laser diodes,” IEEE J. Quantum Electron. 30, 2350–2355 (1994).
    [CrossRef]
  7. J. L. Nightingale, J. K. Johnson, “Stable intracavity-frequency-doubled green laser,” in Conference on Lasers and Electro-Optics, Vol. 12 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper CM18.
  8. T. J. Kane, R. L. Byer, “Monolithic, unidirectional single-mode Nd:YAG ring laser,” Opt. Lett. 10, 65–67 (1985).
    [CrossRef] [PubMed]
  9. W. R. Trutna, D. K. Donald, M. Nazarathy, “Unidirectional diode-laser-pumped Nd:YAG ring laser with a small magnetic field,” Opt. Lett. 12, 248–250 (1987).
    [CrossRef] [PubMed]
  10. W. A. Clarkson, D. C. Hanna, “Single frequency Q-switched operation of a laser diode-pumped, Nd:YAG ring laser,” Opt. Commun. 73, 469–474 (1989).
    [CrossRef]
  11. W. A. Clarkson, D. C. Hanna, “Acousto-optically induced unidirectional single mode operation of a Q-switched miniature Nd:YAG ring laser,” Opt. Commun. 81, 375–378 (1991).
    [CrossRef]
  12. W. R. Trutna, D. K. Donald, “Two-piece, piezoelectrically tuned, single-mode Nd:YAG ring laser,” Opt. Lett. 15, 369–371 (1990).
    [CrossRef] [PubMed]
  13. D. Chen, C. L. Fincher, D. A. Hinkley, R. A. Chodzko, T. S. Rose, R. A. Fields, “Semimonolithic Nd:YAG ring resonator for generating cw single-frequency output at 1.06 µm,” Opt. Lett. 20, 1283–1285 (1995).
    [CrossRef] [PubMed]
  14. T. J. Kane, E. A. P. Cheng, “Fast tuning and phase locking of diode-pumped Nd:YAG ring lasers,” Opt. Lett. 13, 970–972 (1988).
    [CrossRef] [PubMed]
  15. D. Chen, D. Hinkley, J. Pyo, J. Swenson, R. Fields, “Single-frequency low-threshold continuous-wave 3-µm periodically poled lithium niobate optical parametric oscillator,” J. Opt. Soc. Am. B 15, 1693–1697 (1998).
    [CrossRef]

1998

1997

J. Ye, L.-S. Ma, J. L. Hall, “Ultrastable optical frequency reference at 1.064 µm using a C2HD molecular overtone transition,” IEEE Trans. Instrum. Meas. 46, 178–182 (1997).
[CrossRef]

1995

1994

A. J. Alfrey, “Simple 1 micron ring laser oscillators pumped by fiber-coupled laser diodes,” IEEE J. Quantum Electron. 30, 2350–2355 (1994).
[CrossRef]

1991

W. A. Clarkson, D. C. Hanna, “Acousto-optically induced unidirectional single mode operation of a Q-switched miniature Nd:YAG ring laser,” Opt. Commun. 81, 375–378 (1991).
[CrossRef]

1990

1989

W. A. Clarkson, D. C. Hanna, “Single frequency Q-switched operation of a laser diode-pumped, Nd:YAG ring laser,” Opt. Commun. 73, 469–474 (1989).
[CrossRef]

1988

K. Wallmeroth, P. Peuser, “High power, CW single-frequency, TEM00, diode-laser-pumped Nd:YAG laser,” Electron. Lett. 24, 1086–1088 (1988).
[CrossRef]

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
[CrossRef]

T. J. Kane, E. A. P. Cheng, “Fast tuning and phase locking of diode-pumped Nd:YAG ring lasers,” Opt. Lett. 13, 970–972 (1988).
[CrossRef] [PubMed]

1987

1985

Alfrey, A. J.

A. J. Alfrey, “Simple 1 micron ring laser oscillators pumped by fiber-coupled laser diodes,” IEEE J. Quantum Electron. 30, 2350–2355 (1994).
[CrossRef]

Byer, R. L.

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
[CrossRef]

T. J. Kane, W. J. Kozlovsky, R. L. Byer, C. E. Byvik, “Coherent laser radar at 1.06 µm using Nd:YAG lasers,” Opt. Lett. 12, 239–241 (1987).
[CrossRef] [PubMed]

T. J. Kane, R. L. Byer, “Monolithic, unidirectional single-mode Nd:YAG ring laser,” Opt. Lett. 10, 65–67 (1985).
[CrossRef] [PubMed]

Byvik, C. E.

Chen, D.

Cheng, E. A. P.

Chodzko, R. A.

Clarkson, W. A.

W. A. Clarkson, D. C. Hanna, “Acousto-optically induced unidirectional single mode operation of a Q-switched miniature Nd:YAG ring laser,” Opt. Commun. 81, 375–378 (1991).
[CrossRef]

W. A. Clarkson, D. C. Hanna, “Single frequency Q-switched operation of a laser diode-pumped, Nd:YAG ring laser,” Opt. Commun. 73, 469–474 (1989).
[CrossRef]

Donald, D. K.

Fields, R.

Fields, R. A.

Fincher, C. L.

Hall, J. L.

J. Ye, L.-S. Ma, J. L. Hall, “Ultrastable optical frequency reference at 1.064 µm using a C2HD molecular overtone transition,” IEEE Trans. Instrum. Meas. 46, 178–182 (1997).
[CrossRef]

Hanna, D. C.

W. A. Clarkson, D. C. Hanna, “Acousto-optically induced unidirectional single mode operation of a Q-switched miniature Nd:YAG ring laser,” Opt. Commun. 81, 375–378 (1991).
[CrossRef]

W. A. Clarkson, D. C. Hanna, “Single frequency Q-switched operation of a laser diode-pumped, Nd:YAG ring laser,” Opt. Commun. 73, 469–474 (1989).
[CrossRef]

Hinkley, D.

Hinkley, D. A.

Johnson, J. K.

J. L. Nightingale, J. K. Johnson, “Stable intracavity-frequency-doubled green laser,” in Conference on Lasers and Electro-Optics, Vol. 12 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper CM18.

Kane, T. J.

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Berlin, 1996), p. 249.

Kozlovsky, W. J.

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
[CrossRef]

T. J. Kane, W. J. Kozlovsky, R. L. Byer, C. E. Byvik, “Coherent laser radar at 1.06 µm using Nd:YAG lasers,” Opt. Lett. 12, 239–241 (1987).
[CrossRef] [PubMed]

Ma, L.-S.

J. Ye, L.-S. Ma, J. L. Hall, “Ultrastable optical frequency reference at 1.064 µm using a C2HD molecular overtone transition,” IEEE Trans. Instrum. Meas. 46, 178–182 (1997).
[CrossRef]

Nabors, C. D.

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
[CrossRef]

Nazarathy, M.

Nightingale, J. L.

J. L. Nightingale, J. K. Johnson, “Stable intracavity-frequency-doubled green laser,” in Conference on Lasers and Electro-Optics, Vol. 12 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper CM18.

Peuser, P.

K. Wallmeroth, P. Peuser, “High power, CW single-frequency, TEM00, diode-laser-pumped Nd:YAG laser,” Electron. Lett. 24, 1086–1088 (1988).
[CrossRef]

Pyo, J.

Rose, T. S.

Swenson, J.

Trutna, W. R.

Wallmeroth, K.

K. Wallmeroth, P. Peuser, “High power, CW single-frequency, TEM00, diode-laser-pumped Nd:YAG laser,” Electron. Lett. 24, 1086–1088 (1988).
[CrossRef]

Ye, J.

J. Ye, L.-S. Ma, J. L. Hall, “Ultrastable optical frequency reference at 1.064 µm using a C2HD molecular overtone transition,” IEEE Trans. Instrum. Meas. 46, 178–182 (1997).
[CrossRef]

Electron. Lett.

K. Wallmeroth, P. Peuser, “High power, CW single-frequency, TEM00, diode-laser-pumped Nd:YAG laser,” Electron. Lett. 24, 1086–1088 (1988).
[CrossRef]

IEEE J. Quantum Electron.

A. J. Alfrey, “Simple 1 micron ring laser oscillators pumped by fiber-coupled laser diodes,” IEEE J. Quantum Electron. 30, 2350–2355 (1994).
[CrossRef]

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
[CrossRef]

IEEE Trans. Instrum. Meas.

J. Ye, L.-S. Ma, J. L. Hall, “Ultrastable optical frequency reference at 1.064 µm using a C2HD molecular overtone transition,” IEEE Trans. Instrum. Meas. 46, 178–182 (1997).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

W. A. Clarkson, D. C. Hanna, “Single frequency Q-switched operation of a laser diode-pumped, Nd:YAG ring laser,” Opt. Commun. 73, 469–474 (1989).
[CrossRef]

W. A. Clarkson, D. C. Hanna, “Acousto-optically induced unidirectional single mode operation of a Q-switched miniature Nd:YAG ring laser,” Opt. Commun. 81, 375–378 (1991).
[CrossRef]

Opt. Lett.

Other

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Berlin, 1996), p. 249.

J. L. Nightingale, J. K. Johnson, “Stable intracavity-frequency-doubled green laser,” in Conference on Lasers and Electro-Optics, Vol. 12 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper CM18.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the planar semimonolithic ring cavity and (b) experimental setup that was used.

Fig. 2
Fig. 2

Continuous-wave output power of a semimonolithic ring laser at 1064 nm as a function of pump power at 809 nm.

Fig. 3
Fig. 3

Frequency spectra of the semimonolithic laser that was obtained by using a confocal scanning Fabry–Perot interferometer with a free spectral range of 1.5 GHz: (a) well-aligned case and (b) misaligned case.

Fig. 4
Fig. 4

Radio-frequency spectrum for the beat note of two identical planar semimonolithic ring lasers. The resolution bandwidth and the sweep time were 100 kHz and 20 ms, respectively.

Metrics