Abstract

Hollow glass waveguides are an increasingly popular fiber for the delivery of high-power IR laser radiation. At CO2 laser wavelengths the measured and theoretical losses agree, but at the 3-µm Er:YAG laser wavelength the losses remain higher than expected. The reason for this is the surface roughness of the silver film used to form the first layer of the Ag/AgI thin-film structure. We found that the roughness of the silver film increases fivefold as silvering times increase from 5 to 80 min. This increased surface roughness produces a concomitant linear increase in the attenuation coefficient for the silver-only guides for wavelengths shorter than approximately 5 µm.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
    [CrossRef]
  2. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
  3. M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
    [CrossRef]
  4. H. K. Pulker, Thin Films Science and Technology. 6: Coatings on Glass (Elsevier Science, Amsterdam, 1985).
  5. Y. Matsuura, T. Abel, J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842–6847 (1995).
    [CrossRef] [PubMed]
  6. Y. Matsuura, J. A. Harrington, “Infrared hollow glass waveguides fabricated by chemical vapor deposition,” Opt. Lett. 20, 2078–2080 (1995).
    [CrossRef] [PubMed]
  7. Y. Matsuura, M. Miyagi, “Er:YAG, CO, and CO2 laser delivery by ZnS-coated Ag hollow waveguides,” Appl. Opt. 32, 6598–6601 (1993).
    [CrossRef] [PubMed]
  8. M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
    [CrossRef]
  9. B. Schweig, Mirrors: A Guide to the Manufacture of Mirrors and Reflecting Surfaces (Pelham, London, 1973).
  10. M. V. H. Rao, M. K. Mathur, K. L. Chopra, “Scanning tunneling microscopy studies of nucleation and growth of silver films,” J. Mater. Sci. 30, 2682–2685 (1995).
    [CrossRef]
  11. II–VI Product Literature, “Reflection and material properties for metal mirrors used at 10.6 microns” (II–VI Incorporated, Saxonburg Pa, 1995).
  12. K. Matsuura, Y. Matsuura, J. A. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
    [CrossRef]
  13. J. A. Harrington, Y. Matsuura, “Review of hollow waveguide technology,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 4–14 (1995).
    [CrossRef]
  14. R. L. Kozodoy, A. T. Pagkalinawan, J. A. Harrington, “Small-bore hollow waveguides for delivery of 3-µm laser radiation,” Appl. Opt. 35, 1077–1082 (1996).
    [CrossRef] [PubMed]
  15. M. G. Drexage, C. T. Moynihan, “Infrared optical fibers,” Sci. Am. 259, 110–115 (1988).
    [CrossRef]
  16. O. B. Danilov, M. I. Zinchenko, Y. A. Rubinov, E. N. Sosnov, “Transmission losses and mode-selection characteristics of a curved hollow dielectric waveguide with a rough surface,” J. Opt. Soc. Am. B 7, 1785–1790 (1990).
    [CrossRef]
  17. Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
    [CrossRef]
  18. M. Alaluf, J. Dror, R. Dahan, N. Croitoru, “Plastic hollow fibers as a selective infrared radiation transmitting medium,” J. Appl. Phys. 72, 3878–3883 (1992).
    [CrossRef]
  19. C. Deumié, R. Richier, P. Dumas, C. Amra, “Multiscale roughness in optical multilayers: atomic force microscopy and light scattering,” Appl. Opt. 35, 5583–5594 (1996).
    [CrossRef] [PubMed]
  20. W. D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to Ceramics, 2nd ed. (Wiley, New York, 1976).
  21. R. Dahan, J. Dror, A. Inberg, N. Croitoru, “Scattering of IR and visible radiation from hollow waveguides,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 115–119 (1995).
    [CrossRef]
  22. Y. Abe, Y. Matsuura, Y. Shi, Y. Wong, “Polymer-coated hollow fiber for CO2 laser delivery,” Opt. Lett. 23, 89–90 (1998).
    [CrossRef]

1998 (1)

1996 (3)

1995 (3)

1993 (1)

1992 (1)

M. Alaluf, J. Dror, R. Dahan, N. Croitoru, “Plastic hollow fibers as a selective infrared radiation transmitting medium,” J. Appl. Phys. 72, 3878–3883 (1992).
[CrossRef]

1990 (1)

1989 (1)

1988 (1)

M. G. Drexage, C. T. Moynihan, “Infrared optical fibers,” Sci. Am. 259, 110–115 (1988).
[CrossRef]

1984 (1)

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

1983 (1)

M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[CrossRef]

1964 (1)

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
[CrossRef]

Abe, Y.

Abel, T.

Aizawa, Y.

M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[CrossRef]

Alaluf, M.

M. Alaluf, J. Dror, R. Dahan, N. Croitoru, “Plastic hollow fibers as a selective infrared radiation transmitting medium,” J. Appl. Phys. 72, 3878–3883 (1992).
[CrossRef]

Amra, C.

Bowen, H. K.

W. D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to Ceramics, 2nd ed. (Wiley, New York, 1976).

Chopra, K. L.

M. V. H. Rao, M. K. Mathur, K. L. Chopra, “Scanning tunneling microscopy studies of nucleation and growth of silver films,” J. Mater. Sci. 30, 2682–2685 (1995).
[CrossRef]

Croitoru, N.

M. Alaluf, J. Dror, R. Dahan, N. Croitoru, “Plastic hollow fibers as a selective infrared radiation transmitting medium,” J. Appl. Phys. 72, 3878–3883 (1992).
[CrossRef]

R. Dahan, J. Dror, A. Inberg, N. Croitoru, “Scattering of IR and visible radiation from hollow waveguides,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 115–119 (1995).
[CrossRef]

Dahan, R.

M. Alaluf, J. Dror, R. Dahan, N. Croitoru, “Plastic hollow fibers as a selective infrared radiation transmitting medium,” J. Appl. Phys. 72, 3878–3883 (1992).
[CrossRef]

R. Dahan, J. Dror, A. Inberg, N. Croitoru, “Scattering of IR and visible radiation from hollow waveguides,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 115–119 (1995).
[CrossRef]

Danilov, O. B.

Deumié, C.

Drexage, M. G.

M. G. Drexage, C. T. Moynihan, “Infrared optical fibers,” Sci. Am. 259, 110–115 (1988).
[CrossRef]

Dror, J.

M. Alaluf, J. Dror, R. Dahan, N. Croitoru, “Plastic hollow fibers as a selective infrared radiation transmitting medium,” J. Appl. Phys. 72, 3878–3883 (1992).
[CrossRef]

R. Dahan, J. Dror, A. Inberg, N. Croitoru, “Scattering of IR and visible radiation from hollow waveguides,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 115–119 (1995).
[CrossRef]

Dumas, P.

Harrington, J. A.

K. Matsuura, Y. Matsuura, J. A. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
[CrossRef]

R. L. Kozodoy, A. T. Pagkalinawan, J. A. Harrington, “Small-bore hollow waveguides for delivery of 3-µm laser radiation,” Appl. Opt. 35, 1077–1082 (1996).
[CrossRef] [PubMed]

Y. Matsuura, J. A. Harrington, “Infrared hollow glass waveguides fabricated by chemical vapor deposition,” Opt. Lett. 20, 2078–2080 (1995).
[CrossRef] [PubMed]

Y. Matsuura, T. Abel, J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842–6847 (1995).
[CrossRef] [PubMed]

J. A. Harrington, Y. Matsuura, “Review of hollow waveguide technology,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 4–14 (1995).
[CrossRef]

Hongo, A.

Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
[CrossRef]

M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[CrossRef]

Inberg, A.

R. Dahan, J. Dror, A. Inberg, N. Croitoru, “Scattering of IR and visible radiation from hollow waveguides,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 115–119 (1995).
[CrossRef]

Kawakami, S.

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[CrossRef]

Kingery, W. D.

W. D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to Ceramics, 2nd ed. (Wiley, New York, 1976).

Kozodoy, R. L.

Marcatili, E. A. J.

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
[CrossRef]

Mathur, M. K.

M. V. H. Rao, M. K. Mathur, K. L. Chopra, “Scanning tunneling microscopy studies of nucleation and growth of silver films,” J. Mater. Sci. 30, 2682–2685 (1995).
[CrossRef]

Matsuura, K.

K. Matsuura, Y. Matsuura, J. A. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
[CrossRef]

Matsuura, Y.

Miyagi, M.

Y. Matsuura, M. Miyagi, “Er:YAG, CO, and CO2 laser delivery by ZnS-coated Ag hollow waveguides,” Appl. Opt. 32, 6598–6601 (1993).
[CrossRef] [PubMed]

Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
[CrossRef]

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[CrossRef]

Moynihan, C. T.

M. G. Drexage, C. T. Moynihan, “Infrared optical fibers,” Sci. Am. 259, 110–115 (1988).
[CrossRef]

Pagkalinawan, A. T.

Pulker, H. K.

H. K. Pulker, Thin Films Science and Technology. 6: Coatings on Glass (Elsevier Science, Amsterdam, 1985).

Rao, M. V. H.

M. V. H. Rao, M. K. Mathur, K. L. Chopra, “Scanning tunneling microscopy studies of nucleation and growth of silver films,” J. Mater. Sci. 30, 2682–2685 (1995).
[CrossRef]

Richier, R.

Rubinov, Y. A.

Saito, M.

Schmeltzer, R. A.

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
[CrossRef]

Schweig, B.

B. Schweig, Mirrors: A Guide to the Manufacture of Mirrors and Reflecting Surfaces (Pelham, London, 1973).

Shi, Y.

Sosnov, E. N.

Stratton, A.

A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

Uhlmann, D. R.

W. D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to Ceramics, 2nd ed. (Wiley, New York, 1976).

Wong, Y.

Zinchenko, M. I.

Appl. Opt. (4)

Appl. Phys. Lett. (1)

M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[CrossRef]

Bell Syst. Tech. J. (1)

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
[CrossRef]

J. Appl. Phys. (1)

M. Alaluf, J. Dror, R. Dahan, N. Croitoru, “Plastic hollow fibers as a selective infrared radiation transmitting medium,” J. Appl. Phys. 72, 3878–3883 (1992).
[CrossRef]

J. Lightwave Technol. (1)

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

J. Mater. Sci. (1)

M. V. H. Rao, M. K. Mathur, K. L. Chopra, “Scanning tunneling microscopy studies of nucleation and growth of silver films,” J. Mater. Sci. 30, 2682–2685 (1995).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Eng. (1)

K. Matsuura, Y. Matsuura, J. A. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
[CrossRef]

Opt. Lett. (2)

Sci. Am. (1)

M. G. Drexage, C. T. Moynihan, “Infrared optical fibers,” Sci. Am. 259, 110–115 (1988).
[CrossRef]

Other (7)

J. A. Harrington, Y. Matsuura, “Review of hollow waveguide technology,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 4–14 (1995).
[CrossRef]

W. D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to Ceramics, 2nd ed. (Wiley, New York, 1976).

R. Dahan, J. Dror, A. Inberg, N. Croitoru, “Scattering of IR and visible radiation from hollow waveguides,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 115–119 (1995).
[CrossRef]

II–VI Product Literature, “Reflection and material properties for metal mirrors used at 10.6 microns” (II–VI Incorporated, Saxonburg Pa, 1995).

B. Schweig, Mirrors: A Guide to the Manufacture of Mirrors and Reflecting Surfaces (Pelham, London, 1973).

H. K. Pulker, Thin Films Science and Technology. 6: Coatings on Glass (Elsevier Science, Amsterdam, 1985).

A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Three basic structures of hollow waveguides commonly used to deliver IR radiation. T.I.R., total internal reflection.

Fig. 2
Fig. 2

Figure of merit F metal for selected metals with high reflectivity in the CO2 laser (10.6-µm) region of the spectrum. To fabricate waveguides with minimum attenuation, it is desirable to select a metal with the lowest value of F metal.

Fig. 3
Fig. 3

Experimental setup used in the deposition of silver films using liquid-phase chemistry: (a) peristaltic pump and (b) vacuum pump.

Fig. 4
Fig. 4

Comparison of measured and theoretical losses in HGW’s for (a) CO2 and (b) Er:YAG laser wavelengths.

Fig. 5
Fig. 5

Spectral response calculated for the lowest-order mode of a perfectly smooth silver-only HGW with a bore size of 700 µm compared with the measured values of silver-only guides silvered for 10, 20, 40, and 80 min.

Fig. 6
Fig. 6

Linear increase in loss resulting from increasing silvering times for wavelengths shorter than 4000 cm-1: (A) spectrophotometer data and (B) laser loss measurements.

Fig. 7
Fig. 7

AFM plots showing the change increase in grain size of the silver film as silvering time is increased from 5 to 80 min.

Fig. 8
Fig. 8

Topographical AFM scan showing surface roughness for (a) 5-min and (b) 80-min silvering times.

Fig. 9
Fig. 9

Increase in rms roughness as silvering time increases to a maximum of 80 min. The curve fit yields the expected t 1/2 dependence on roughness for diffusion-controlled processes.

Fig. 10
Fig. 10

Measured Er:YAG laser losses for four waveguides fabricated using different silvering times showing linear increase in loss as a function of silvering time. (6 in. = 15 cm).

Tables (2)

Tables Icon

Table 1 Figure of Merit Fmetal Calculated for Selected Metals at λ = 10.6 µma

Tables Icon

Table 2 Measured rms Roughness for Silvering Times Ranging from 5 to 80 mina

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

ka=2πaλ  |ν|unm,
γk-1 1,
αnm=unm2π2λ2a3 Reνn,
νn=1ν2-11/2,TE0m,ν2ν2-11/2,TM0m,12ν2+1ν2-11/2,HEnm,EHnm,
Fmetal=nn2+κ2,
ρ=2πxλ,  Δϕ=4πxΔnλ.
Rθ=Rθexp-4πniσ sin θλ2,
σ=Atm.
α=-1x lnTT0,
TT0RR0=exp-4πniσ sin θθ2.
α-lnRR0=-4πσ sin θλ2.
α-4πA sin θλ2t,

Metrics