Abstract

Modeling the plankton ecosystem requires a code for simulating the profile of irradiance from the chlorophyll profile at each time step of the integration. We have compared two existing codes with data from the Biogeochemical Ocean Flux Study: the Hydrolight radiative transfer model is accurate but too slow to use interactively in ecological models; Morel’s [J. Geophys. Res. 93, 10,749 (1988)] empirical model is much faster but produces substantial error. We have developed a streamlined version of the Hydrolight radiative transfer model that is 20 times faster than the full Hydrolight code, while limiting errors to less than 12% within the euphotic zone. This new code is both fast and accurate and is, therefore, suitable for use interactively in oceanic ecosystem models.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Morel, “Optical modelling of the upper ocean in relation to its biogenous matter content (case 1 water),” J. Geophys. Res. 93, 10,749–10,768 (1988).
    [CrossRef]
  2. C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484–7504 (1993).
    [CrossRef] [PubMed]
  3. C. D. Mobley, “A numerical model for the computation of radiance distributions in natural waters with wind-roughened surfaces,” Limnol. Oceanogr. 34, 1473–1483 (1989).
    [CrossRef]
  4. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, San Diego, Calif., 1994).
  5. C. D. Mobley, Hydrolight 3.0 Users’ Guide (SRI International, Menlo Park, Calif., 1995).
  6. C. D. Mobley, Hydrolight 3.1 Users’ Guide (SRI International, Menlo Park, Calif., 1996).
  7. R. K. Lowry, P. Machin, R. N. Cramer, BOFS North Atlantic Data Set: Oceanographic Data Collected during the North Atlantic Cruises of the National Environment Research Council Biogeochemical Ocean Flux Study (1989–1991); a UK Contribution to the Joint Global Ocean Flux Study (CD-ROM and Users’s Guide) (British Oceanographic Data Centre, Proudman Oceanographic Laboratory, Birkenhead, England, 1994).
  8. J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems (Cambridge U. Press, Cambridge, UK, 1994).
    [CrossRef]
  9. T. R. Anderson, “A spectrally averaged model of light penetration and photosynthesis,” Limnol. Oceanogr. 38, 1403–1419 (1993).
    [CrossRef]
  10. M. J. R. Fasham, J. L. Sarmiento, R. D. Slater, H. W. Ducklow, R. Williams, “Ecosystem behaviour at Bermuda Station ‘S’ and Ocean Weather Station “India”: a General Circulation Model and observational analysis,” Global Biogeochem. Cycles 7, 379–415 (1993).
    [CrossRef]
  11. J. Woods, W. Barkmann, “Simulating plankton ecosystems by the Lagrangian ensemble method,” Philos. Trans. R. Soc. London Ser. B 343, 27–31 (1994).
    [CrossRef]
  12. T. Platt, S. Sathyendranath, “Biological production models as elements of coupled, atmosphere–ocean models for climate research,” J. Geophys. Res. 96, 2585–2592 (1991).
    [CrossRef]
  13. R. W. Preisendorfer, “Generalized invariant imbedding relation,” Proc. Natl. Acad. Sci. USA 47, 591–594 (1961).
    [CrossRef] [PubMed]
  14. H. R. Gordon, A. Y. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: a Review (Springer-Verlag, New York, 1983).
    [CrossRef]
  15. A. Morel, “Light and marine photosynthesis: a spectral model with geochemical and climatological implications,” Prog. Oceanogr. 26, 263–306 (1991).
    [CrossRef]
  16. L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
    [CrossRef]
  17. T. Tyrrell, P. M. Holligan, C. D. Mobley, “Optical impacts of oceanic coccolithophore blooms,” J. Geophys. Res. 104, 3223–3241 (1999).
    [CrossRef]
  18. C.-C. Liu, J. Woods. “Prediction of ocean colour: Monte-Carlo simulation applied to a virtual ecosystem based on the Lagrangian ensemble method,” in Developing Space ’98: Proceedings of the 1998 Remote Sensing Society Student Conference (Remote Sensing Society, Nottingham, England, 1998), pp. 14–25.

1999 (1)

T. Tyrrell, P. M. Holligan, C. D. Mobley, “Optical impacts of oceanic coccolithophore blooms,” J. Geophys. Res. 104, 3223–3241 (1999).
[CrossRef]

1994 (1)

J. Woods, W. Barkmann, “Simulating plankton ecosystems by the Lagrangian ensemble method,” Philos. Trans. R. Soc. London Ser. B 343, 27–31 (1994).
[CrossRef]

1993 (3)

C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484–7504 (1993).
[CrossRef] [PubMed]

T. R. Anderson, “A spectrally averaged model of light penetration and photosynthesis,” Limnol. Oceanogr. 38, 1403–1419 (1993).
[CrossRef]

M. J. R. Fasham, J. L. Sarmiento, R. D. Slater, H. W. Ducklow, R. Williams, “Ecosystem behaviour at Bermuda Station ‘S’ and Ocean Weather Station “India”: a General Circulation Model and observational analysis,” Global Biogeochem. Cycles 7, 379–415 (1993).
[CrossRef]

1991 (2)

T. Platt, S. Sathyendranath, “Biological production models as elements of coupled, atmosphere–ocean models for climate research,” J. Geophys. Res. 96, 2585–2592 (1991).
[CrossRef]

A. Morel, “Light and marine photosynthesis: a spectral model with geochemical and climatological implications,” Prog. Oceanogr. 26, 263–306 (1991).
[CrossRef]

1989 (1)

C. D. Mobley, “A numerical model for the computation of radiance distributions in natural waters with wind-roughened surfaces,” Limnol. Oceanogr. 34, 1473–1483 (1989).
[CrossRef]

1988 (1)

A. Morel, “Optical modelling of the upper ocean in relation to its biogenous matter content (case 1 water),” J. Geophys. Res. 93, 10,749–10,768 (1988).
[CrossRef]

1981 (1)

L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
[CrossRef]

1961 (1)

R. W. Preisendorfer, “Generalized invariant imbedding relation,” Proc. Natl. Acad. Sci. USA 47, 591–594 (1961).
[CrossRef] [PubMed]

Anderson, T. R.

T. R. Anderson, “A spectrally averaged model of light penetration and photosynthesis,” Limnol. Oceanogr. 38, 1403–1419 (1993).
[CrossRef]

Barkmann, W.

J. Woods, W. Barkmann, “Simulating plankton ecosystems by the Lagrangian ensemble method,” Philos. Trans. R. Soc. London Ser. B 343, 27–31 (1994).
[CrossRef]

Cramer, R. N.

R. K. Lowry, P. Machin, R. N. Cramer, BOFS North Atlantic Data Set: Oceanographic Data Collected during the North Atlantic Cruises of the National Environment Research Council Biogeochemical Ocean Flux Study (1989–1991); a UK Contribution to the Joint Global Ocean Flux Study (CD-ROM and Users’s Guide) (British Oceanographic Data Centre, Proudman Oceanographic Laboratory, Birkenhead, England, 1994).

Ducklow, H. W.

M. J. R. Fasham, J. L. Sarmiento, R. D. Slater, H. W. Ducklow, R. Williams, “Ecosystem behaviour at Bermuda Station ‘S’ and Ocean Weather Station “India”: a General Circulation Model and observational analysis,” Global Biogeochem. Cycles 7, 379–415 (1993).
[CrossRef]

Fasham, M. J. R.

M. J. R. Fasham, J. L. Sarmiento, R. D. Slater, H. W. Ducklow, R. Williams, “Ecosystem behaviour at Bermuda Station ‘S’ and Ocean Weather Station “India”: a General Circulation Model and observational analysis,” Global Biogeochem. Cycles 7, 379–415 (1993).
[CrossRef]

Gentili, B.

Gordon, H. R.

Holligan, P. M.

T. Tyrrell, P. M. Holligan, C. D. Mobley, “Optical impacts of oceanic coccolithophore blooms,” J. Geophys. Res. 104, 3223–3241 (1999).
[CrossRef]

Jin, Z.

Kattawar, G. W.

Kirk, J. T. O.

J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems (Cambridge U. Press, Cambridge, UK, 1994).
[CrossRef]

Liu, C.-C.

C.-C. Liu, J. Woods. “Prediction of ocean colour: Monte-Carlo simulation applied to a virtual ecosystem based on the Lagrangian ensemble method,” in Developing Space ’98: Proceedings of the 1998 Remote Sensing Society Student Conference (Remote Sensing Society, Nottingham, England, 1998), pp. 14–25.

Lowry, R. K.

R. K. Lowry, P. Machin, R. N. Cramer, BOFS North Atlantic Data Set: Oceanographic Data Collected during the North Atlantic Cruises of the National Environment Research Council Biogeochemical Ocean Flux Study (1989–1991); a UK Contribution to the Joint Global Ocean Flux Study (CD-ROM and Users’s Guide) (British Oceanographic Data Centre, Proudman Oceanographic Laboratory, Birkenhead, England, 1994).

Machin, P.

R. K. Lowry, P. Machin, R. N. Cramer, BOFS North Atlantic Data Set: Oceanographic Data Collected during the North Atlantic Cruises of the National Environment Research Council Biogeochemical Ocean Flux Study (1989–1991); a UK Contribution to the Joint Global Ocean Flux Study (CD-ROM and Users’s Guide) (British Oceanographic Data Centre, Proudman Oceanographic Laboratory, Birkenhead, England, 1994).

Mobley, C. D.

T. Tyrrell, P. M. Holligan, C. D. Mobley, “Optical impacts of oceanic coccolithophore blooms,” J. Geophys. Res. 104, 3223–3241 (1999).
[CrossRef]

C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484–7504 (1993).
[CrossRef] [PubMed]

C. D. Mobley, “A numerical model for the computation of radiance distributions in natural waters with wind-roughened surfaces,” Limnol. Oceanogr. 34, 1473–1483 (1989).
[CrossRef]

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, San Diego, Calif., 1994).

C. D. Mobley, Hydrolight 3.0 Users’ Guide (SRI International, Menlo Park, Calif., 1995).

C. D. Mobley, Hydrolight 3.1 Users’ Guide (SRI International, Menlo Park, Calif., 1996).

Morel, A.

C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484–7504 (1993).
[CrossRef] [PubMed]

A. Morel, “Light and marine photosynthesis: a spectral model with geochemical and climatological implications,” Prog. Oceanogr. 26, 263–306 (1991).
[CrossRef]

A. Morel, “Optical modelling of the upper ocean in relation to its biogenous matter content (case 1 water),” J. Geophys. Res. 93, 10,749–10,768 (1988).
[CrossRef]

Morel, A. Y.

H. R. Gordon, A. Y. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: a Review (Springer-Verlag, New York, 1983).
[CrossRef]

Platt, T.

T. Platt, S. Sathyendranath, “Biological production models as elements of coupled, atmosphere–ocean models for climate research,” J. Geophys. Res. 96, 2585–2592 (1991).
[CrossRef]

Preisendorfer, R. W.

R. W. Preisendorfer, “Generalized invariant imbedding relation,” Proc. Natl. Acad. Sci. USA 47, 591–594 (1961).
[CrossRef] [PubMed]

Prieur, L.

L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
[CrossRef]

Reinersman, P.

Sarmiento, J. L.

M. J. R. Fasham, J. L. Sarmiento, R. D. Slater, H. W. Ducklow, R. Williams, “Ecosystem behaviour at Bermuda Station ‘S’ and Ocean Weather Station “India”: a General Circulation Model and observational analysis,” Global Biogeochem. Cycles 7, 379–415 (1993).
[CrossRef]

Sathyendranath, S.

T. Platt, S. Sathyendranath, “Biological production models as elements of coupled, atmosphere–ocean models for climate research,” J. Geophys. Res. 96, 2585–2592 (1991).
[CrossRef]

L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
[CrossRef]

Slater, R. D.

M. J. R. Fasham, J. L. Sarmiento, R. D. Slater, H. W. Ducklow, R. Williams, “Ecosystem behaviour at Bermuda Station ‘S’ and Ocean Weather Station “India”: a General Circulation Model and observational analysis,” Global Biogeochem. Cycles 7, 379–415 (1993).
[CrossRef]

Stamnes, K.

Stavn, R. H.

Tyrrell, T.

T. Tyrrell, P. M. Holligan, C. D. Mobley, “Optical impacts of oceanic coccolithophore blooms,” J. Geophys. Res. 104, 3223–3241 (1999).
[CrossRef]

Williams, R.

M. J. R. Fasham, J. L. Sarmiento, R. D. Slater, H. W. Ducklow, R. Williams, “Ecosystem behaviour at Bermuda Station ‘S’ and Ocean Weather Station “India”: a General Circulation Model and observational analysis,” Global Biogeochem. Cycles 7, 379–415 (1993).
[CrossRef]

Woods, J.

J. Woods, W. Barkmann, “Simulating plankton ecosystems by the Lagrangian ensemble method,” Philos. Trans. R. Soc. London Ser. B 343, 27–31 (1994).
[CrossRef]

C.-C. Liu, J. Woods. “Prediction of ocean colour: Monte-Carlo simulation applied to a virtual ecosystem based on the Lagrangian ensemble method,” in Developing Space ’98: Proceedings of the 1998 Remote Sensing Society Student Conference (Remote Sensing Society, Nottingham, England, 1998), pp. 14–25.

Appl. Opt. (1)

Global Biogeochem. Cycles (1)

M. J. R. Fasham, J. L. Sarmiento, R. D. Slater, H. W. Ducklow, R. Williams, “Ecosystem behaviour at Bermuda Station ‘S’ and Ocean Weather Station “India”: a General Circulation Model and observational analysis,” Global Biogeochem. Cycles 7, 379–415 (1993).
[CrossRef]

J. Geophys. Res. (3)

A. Morel, “Optical modelling of the upper ocean in relation to its biogenous matter content (case 1 water),” J. Geophys. Res. 93, 10,749–10,768 (1988).
[CrossRef]

T. Platt, S. Sathyendranath, “Biological production models as elements of coupled, atmosphere–ocean models for climate research,” J. Geophys. Res. 96, 2585–2592 (1991).
[CrossRef]

T. Tyrrell, P. M. Holligan, C. D. Mobley, “Optical impacts of oceanic coccolithophore blooms,” J. Geophys. Res. 104, 3223–3241 (1999).
[CrossRef]

Limnol. Oceanogr. (3)

L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
[CrossRef]

T. R. Anderson, “A spectrally averaged model of light penetration and photosynthesis,” Limnol. Oceanogr. 38, 1403–1419 (1993).
[CrossRef]

C. D. Mobley, “A numerical model for the computation of radiance distributions in natural waters with wind-roughened surfaces,” Limnol. Oceanogr. 34, 1473–1483 (1989).
[CrossRef]

Philos. Trans. R. Soc. London Ser. B (1)

J. Woods, W. Barkmann, “Simulating plankton ecosystems by the Lagrangian ensemble method,” Philos. Trans. R. Soc. London Ser. B 343, 27–31 (1994).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

R. W. Preisendorfer, “Generalized invariant imbedding relation,” Proc. Natl. Acad. Sci. USA 47, 591–594 (1961).
[CrossRef] [PubMed]

Prog. Oceanogr. (1)

A. Morel, “Light and marine photosynthesis: a spectral model with geochemical and climatological implications,” Prog. Oceanogr. 26, 263–306 (1991).
[CrossRef]

Other (7)

H. R. Gordon, A. Y. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: a Review (Springer-Verlag, New York, 1983).
[CrossRef]

C.-C. Liu, J. Woods. “Prediction of ocean colour: Monte-Carlo simulation applied to a virtual ecosystem based on the Lagrangian ensemble method,” in Developing Space ’98: Proceedings of the 1998 Remote Sensing Society Student Conference (Remote Sensing Society, Nottingham, England, 1998), pp. 14–25.

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, San Diego, Calif., 1994).

C. D. Mobley, Hydrolight 3.0 Users’ Guide (SRI International, Menlo Park, Calif., 1995).

C. D. Mobley, Hydrolight 3.1 Users’ Guide (SRI International, Menlo Park, Calif., 1996).

R. K. Lowry, P. Machin, R. N. Cramer, BOFS North Atlantic Data Set: Oceanographic Data Collected during the North Atlantic Cruises of the National Environment Research Council Biogeochemical Ocean Flux Study (1989–1991); a UK Contribution to the Joint Global Ocean Flux Study (CD-ROM and Users’s Guide) (British Oceanographic Data Centre, Proudman Oceanographic Laboratory, Birkenhead, England, 1994).

J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems (Cambridge U. Press, Cambridge, UK, 1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Chlorophyll and irradiance profiles collected on the CTD casts by the BOFS project in 1990.

Fig. 2
Fig. 2

Equal-angle partition of Ξ by means of circles of constant θ and by semicircles of constant ϕ. Based on Mobley, the number of quads in the θ direction is M = 2m = 20 and the number in the ϕ direction is N = 2n = 24. All nonpolar-cap quads have equal angular widths Δϕ = 2π/N = π/n, Δθ = π/M = π/2m and center at ϕ v ≡ (v - 1)Δϕ = (v - 1)π/n for v = 1, 2, … , 2n, and θ u ≡ (u - 1)Δθ = (u - 1)π/2m for u = 1, 2, … , 2m.

Fig. 3
Fig. 3

Comparison of the wavelength-integrated underwater scalar irradiances between the BOFS measurements, Hydrolight, and the Morel empirical model. Note that the profile based on Morel’s model uses E od * as a surrogate for E od ; see Eq. (6) and the accompanying discussion.

Fig. 4
Fig. 4

Comparison of the wavelength-integrated underwater planar irradiances between Hydrolight and the Morel empirical model.

Fig. 5
Fig. 5

Sensitivity test of Hydrolight to various conditions. Simulations on the diffuse attenuation coefficient for the downwelling planar irradiance K d obtained with the standard numerical condition and various relaxed numerical conditions for BOFS originator identifier (OID) data (a) 0305C#4, (b) 0405C#8, (c) 0605C#6.

Fig. 6
Fig. 6

Sensitivity test of Hydrolight to various conditions. Simulations on the diffuse attenuation coefficient for the downwelling planar irradiance K d obtained with the standard numerical condition and various relaxed numerical conditions for BOFS originator identifier (OID) data (a) 1105C#6, (b) 1305C#3, (c) 1905C#2.

Fig. 7
Fig. 7

Comparison of the underwater downwelling planar irradiance E d made with the standard numerical condition and various relaxed numerical conditions.

Tables (2)

Tables Icon

Table 1 BOFS CD46 Data Descriptionsa

Tables Icon

Table 2 Comparisons of the Computer Time Consumption and Deviations by Use of a Standard Numerical Condition and Various Relaxed Numerical Conditions to Simulate the Underwater Downwelling Planar Irradiance Ed

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Edz; λ=Ed0+; λexp- kwλ+χcλCzeλdz.
dLξˆ; λdr=-cξˆ; λLξˆ; λ+Ξ Lξˆ; λβξˆξˆdΩξˆ,
μ dLz; ξˆ; λdz=-cz; λLz; ξˆ; λ+Ξ Lz; ξˆ; λβz; ξˆξˆ; λdΩξˆ.
μ dLς; ξˆ; λdς=-Lς; ξˆ; λ+ω0ς; λ×Ξ Lς; ξˆ;λβ˜ς; ξˆξˆ; λdΩξˆ.
μudLς; u, v; ldς=-Lς; u, v; l+ω0ς; l×rs Lς; r, s; lβ˜ς; r, su, v; l,
Eod*=Edμ¯d,
μ¯d=cos θw=cossin-1nanw sin θSun.
az; λ=awλ+0.06ac*λCz0.65×1+aother exp-0.014λ-440.

Metrics