Abstract

A spectroradiometer has been developed for direct measurement of the solar actinic UV flux (scalar intensity) and determination of photolysis frequencies in the atmosphere. The instrument is based on a scanning double monochromator with an entrance optic that exhibits an isotropic angular response over a solid angle of 2π sr. Actinic flux spectra are measured at a resolution of 1 nm across a range of 280–420 nm, which is relevant for most tropospheric photolysis processes. The photolysis frequencies are derived from the measured radiation spectra by use of published absorption cross sections and quantum yields. The advantage of this technique compared with the traditional chemical actinometry is its versatility. It is possible to determine the photolysis frequency for any photochemical reaction of interest provided that the respective molecular photodissociation parameters are known and the absorption cross section falls within a wavelength range that is accessible by the spectroradiometer. The instrument and the calibration procedures are described in detail, and problems specific to measurement of the actinic radiation are discussed. An error analysis is presented together with a discussion of the spectral requirements of the instrument for accurate measurements of important tropospheric photolysis frequencies (J O1 D, J NO2, J HCHO). An example of measurements from previous atmospheric chemistry field campaigns are presented and discussed.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Seinfeld, S. N. Pandis, Atmospheric Chemistry and Physics (Wiley, New York, 1998).
  2. S. Madronich, “Photodissociation in the atmosphere, 1. Actinic flux and the effects of ground reflection and clouds,” J. Geophys. Res. 92, 9740–9752 (1987).
    [Crossref]
  3. J. Lenoble, Atmospheric Radiative Transfer (A. Deepak, Hampton, Va., 1993).
  4. A. Kraus, A. Hofzumahaus, “Field measurements of atmospheric photolysis frequencies for O3, NO2, HCHO, H2O2 and HONO by UV spectroradiometry,” J. Atmos. Chem. 31, 161–180 (1998).
    [Crossref]
  5. F. Bahe, U. Schurath, “Measurement of O(1D) formation by ozone photolysis in the troposphere,” Pageoph 116, 537–544 (1978).
    [Crossref]
  6. F. C. Bahe, W. N. Marx, U. Schurath, E. P. Röth, “Determination of the absolute photolysis rate of ozone by sunlight, O3 + hν → O(1D) + O2(1Δg), at ground level,” Atmos. Environ. 13, 1515–1522 (1979).
    [Crossref]
  7. R. R. Dickerson, D. H. Stedman, W. L. Chameides, P. J. Crutzen, J. Fishman, “Actinometric measurements and theoretical calculations of j(O3), the rate of photolysis of ozone to O(1D),” Geophys. Res. Lett. 6, 833–836 (1979).
    [Crossref]
  8. R. R. Dickerson, D. H. Stedman, A. C. Delany, “Direct measurements of ozone and nitrogen dioxide photolysis rates in the troposphere,” J. Geophys. Res. 87, 4933–4946 (1982).
    [Crossref]
  9. T. E. Blackburn, S. T. Bairai, D. H. Stedman, “Solar photolysis of ozone to singlet D oxygen atoms,” J. Geophys. Res. 97, 10,109–10,117 (1992).
    [Crossref]
  10. S. T. Bairai, D. H. Stedman, “Actinometric measurement of j〈O3-O(1D)〉 using a luminol detector,” Geophys. Res. Lett. 19, 2047–2050 (1992).
    [Crossref]
  11. M. Müller, A. Kraus, A. Hofzumahaus, “O3 → O(1D) photolysis frequencies determined from spectroradiometric measurements of solar actinic UV radiation: comparison with chemical actinometer measurements,” Geophys. Res. Lett. 22, 679–682 (1995).
    [Crossref]
  12. R. E. Shetter, C. A. Cantrell, K. O. Lantz, S. J. Flocke, J. J. Orlando, G. S. Tyndall, T. M. Gilpin, C. A. Fischer, S. Madronich, J. G. Calvert, W. Junkermann, “Actinometric and radiometric measurement and modeling of the photolysis rate coefficient of ozone to O(1D) during the Mauna Loa Observatory Photochemistry Experiment 2,” J. Geophys. Res. 101, 10,631–10,642 (1996).
  13. D. H. Stedman, W. Chameides, J. O. Jackson, “Comparison of experimental and computed values of j(NO2),” Geophys. Res. Lett. 2, 22–25 (1975).
    [Crossref]
  14. L. Zafonte, P. L. Rieger, J. R. Holmes, “Nitrogen dioxide photolysis in the Los Angeles atmosphere,” Environ. Sci. Technol. 11, 483–487 (1977).
    [Crossref]
  15. F. C. Bahe, U. Schurath, K. H. Becker, “The frequency of NO2 photolysis at ground level as recorded by a continuous actinometer,” Atmos. Environ. 14, 711–718 (1980).
    [Crossref]
  16. S. Madronich, D. R. Hastie, B. A. Ridley, H. I. Schiff, “Measurement of the photodissociation coefficient of NO2 in the atmosphere: I. Method and surface measurements,” J. Atmos. Chem. 1, 3–25 (1983).
    [Crossref]
  17. D. D. Parrish, P. C. Murphy, D. L. Albritton, F. C. Fehsenfeld, “The measurement of the photodissociation rate of NO2 in the atmosphere,” Atmos. Environ. 17, 1365–1379 (1983).
    [Crossref]
  18. R. E. Shetter, A. H. McDaniel, C. A. Cantrell, S. Madronich, J. G. Calvert, “Actinometer and Eppley radiometer measurements of the NO2 photolysis rate coefficient during the Mauna Loa Observatory Photochemistry Experiment,” J. Geophys. Res. 97, 10,349–10,359 (1992).
    [Crossref]
  19. P. Kelley, R. R. Russel, W. T. Luke, G. L. Kok, “Rate of NO2 photolysis from the surface to 7.6-km altitude in clear sky and clouds,” Geophys. Res. Lett. 22, 2621–2624 (1995).
    [Crossref]
  20. M. Schultz, N. Houben, D. Mihelcic, H.-W. Pätz, A. Volz-Thomas, “A chemical actinometer for the calibration of photoelectric detectors for the measurement of jNO2 (in German),” Vol. JUEL 3135 of (Forschungszentrum Jülich GmbH, Jülich, 1995).
  21. K. O. Lantz, R. E. Shetter, C. A. Cantrell, S. J. Flocke, J. G. Calvert, S. Madronich, “Theoretical, actinometric, and radiometric determinations of the photolysis rate coefficient of NO2 during the Mauna Loa Observatory Photochemistry Experiment 2,” J. Geophys. Res. 101, 14,613–14,630 (1996).
    [Crossref]
  22. W. Junkermann, U. Platt, A. Volz-Thomas, “A photoelectric detector for the measurement of photolysis frequencies of ozone and other atmospheric molecules,” J. Atmos. Chem. 8, 203–227 (1989).
    [Crossref]
  23. A. Hofzumahaus, T. Brauers, U. Platt, J. Callies, “Latitudinal variation of measured O3 photolysis frequencies J(O1D) and primary OH production rates over the Atlantic Ocean between 50 °N and 30 °S,” J. Atmos. Chem. 15, 283–298 (1992).
    [Crossref]
  24. T. Brauers, A. Hofzumahaus, “Latitudinal variation of measured NO2 photolysis frequencies over the Atlantic Ocean between 50 °N and 30 °S,” J. Atmos. Chem. 15, 269–282 (1992).
    [Crossref]
  25. W. Junkermann, “Measurements of the J(O1D) actinic flux within and above stratiform clouds and above snow surfaces,” Geophys. Res. Lett. 21, 793–796 (1994).
    [Crossref]
  26. M. Müller, “Messung der aktinischen ultravioletten Strahlung und der Ozon-Photolysefrequenz in der Atmosphäre mittels Filterradiometrie und Spektralradiometrie,” Ph.D. dissertation (University of Bonn, Bonn, Germany, 1994).
  27. A. Volz-Thomas, A. Lerner, H.-W. Pätz, M. Schultz, D. S. McKenna, R. Schmitt, S. Madronich, E. P. Röth, “Airborne measurements of the photolysis frequency of NO2,” J. Geophys. Res. 101, 18,613–18,627 (1996).
    [Crossref]
  28. S. Madronich, “Intercomparison of NO2 photodissociation and UV radiometer measurements,” Atmos. Environ. 21, 569–578 (1987).
    [Crossref]
  29. M. VanWeele, J. V.-G. de Arellano, F. Kuik, “Combined measurements of UV-A actinic flux, UV-A irradiance and global radiation in relation to photodissociation rates,” Tellus Ser. B 47, 353–364 (1995).
    [Crossref]
  30. K. L. Demerjian, K. L. Schere, J. T. Peterson, “Theoretical estimates of actinic (spherically integrated) flux and photolytic rate constants of atmospheric species in the lower troposphere,” in Advances in Environmental Science and Technology, Vol. 10 of NATO ASI Series, J. J. N. Pitts, R. L. Metcalf, D. Grosjean, eds. (Wiley, New York, 1980), pp. 369–459.
  31. J. A. Logan, M. J. Prather, S. C. Wofsy, M. B. McElroy, “Tropospheric chemistry: a global perspective,” J. Geophys. Res. 86, 7210–7254 (1981).
    [Crossref]
  32. U. Feister, “Measurements of chemically and biologically effective radiation reaching the ground,” J. Atmos. Chem. 19, 289–315 (1994).
    [Crossref]
  33. C. T. McElroy, C. Midwinter, D. V. Barton, R. B. Hall, “A comparison of J values from the composition and photodissociative flux measurement with model calculations,” Geophys. Res. Lett. 22, 1365–1368 (1995).
    [Crossref]
  34. H. Cotte, C. Devaux, P. Carlier, “Transformation of irradiance measurements into spectral actinic flux for photolysis rates measurements,” J. Atmos. Chem. 26, 1–28 (1997).
    [Crossref]
  35. A. Ruggaber, R. Forkel, R. Dlugi, “Spectral actinic flux and its ratio to spectral irradiance by radiation transfer calculations,” J. Geophys. Res. 98, 1151–1162 (1993).
    [Crossref]
  36. A. Kylling, Norwegian Institute for Air Research (NILU), Kjeller, Norway (personal communication, 1997).
  37. M. Blumthaler, J. Gröbner, M. Huber, W. Ambach, “Measuring spectral and spatial variations of UVA and UVB sky radiance,” Geophys. Res. Lett. 23, 547–550 (1996).
    [Crossref]
  38. H. Levy, “Photochemistry of the lower troposphere,” Planet. Space Sci. 20, 919–935 (1972).
    [Crossref]
  39. “Setting standards for European ultraviolet spectroradiometers,” Vol. EUR16153 of , B. G. Gardiner, P. J. Kirsch, eds. (European Commission, Brussels, 1995).
  40. W. Budde, Physical Detectors of Optical Radiation, Vol. 4 of Optical Radiation Measurements (Academic, Orlando, Fla., 1983).
  41. K. G. Lindh, H. Buchberg, K. W. Wilson, “Omnidirectional ultraviolet radiometer,” Sol. Energy 8, 112–116 (1964).
    [Crossref]
  42. J. S. Nader, N. White, “Volumetric measurement of ultraviolet energy in an urban atmosphere,” Environ. Sci. Technol. 3, 848–854 (1969).
    [Crossref]
  43. J. C. H. VanderHage, W. Boot, H. vanDop, P. G. Duynkerke, J. V.-G. de Arellano, “A photoelectric detector suspended under a balloon for actinic flux measurements,” J. Atmos. Ocean Technol. 11, 674–679 (1994).
    [Crossref]
  44. E. P. Röth, Universität-Gesamthochschule Essen, Essen, Germany (personal communication, 1994).
  45. M. E. VanHoosier, Naval Research Laboratory (NRL), Washington, D.C. (personal communication, 1997) (data available at http://www.solar.nrl.navy.mil/susim_atlas.html ).
  46. R. L. McKenzie, P. V. Johnston, M. Kotkamp, A. Bittar, J. D. Hamlin, “Solar ultraviolet spectroradiometry in New Zealand: instrumentation and sample results from 1990,” Appl. Opt. 31, 6501–6509 (1992).
    [Crossref] [PubMed]
  47. H. Slaper, H. A. J. M. Reinen, M. Blumenthaler, M. Huber, F. Kuik, “Comparing ground-level spectrally resolved solar UV measurements using various instruments: a technique resolving effects of wavelength shift and slit width,” Geophys. Res. Lett. 22, 2721–2724 (1995).
    [Crossref]
  48. B. Mayer, Messung und Modellierung der spektralen UV Bestrahlungsstärke in Garmisch-Partenkirchen, Vol. 45–97 of Schriftenreihe des Fraunhofer-Instituts für Atmosphärische Umweltforschung (Wissenschafts-Verlag Maraun, Frankfurt, 1997).
  49. R. L. McKenzie, W. A. Matthews, P. V. Johnston, “The relationship between erythemal UV and ozone, derived from spectral irradiance measurements,” Geophys. Res. Lett. 18, 2269–2272 (1991).
    [Crossref]
  50. D. Lubin, G. Mitchell, J. E. Frederick, A. D. Alberts, C. R. Booth, T. Lucas, D. Neuschuler, “A contribution towards understanding the biospherical significance of Antarctic ozone depletion,” J. Geophys. Res. 97, 7817–7828 (1992).
    [Crossref]
  51. G. Seckmeyer, G. Bernhard, B. Mayer, R. Erb, “High-accuracy spectroradiometry of solar ultraviolet radiation,” Metrologia 32, 697–700 (1995).
    [Crossref]
  52. A. F. Bais, C. S. Zerefos, C. T. McElroy, “Solar UV-B measurements with the double- and single-monochromator Brewer ozone spectrophotometers,” Geophys. Res. Lett. 23, 833–836 (1996).
    [Crossref]
  53. D. Daumont, J. B. J. Charbonnier, J. Malicet, “Ozone UV spectroscopy I: Absorption cross sections at room temperature,” J. Atmos. Chem. 15, 145–155 (1992).
    [Crossref]
  54. M. F. Merienne, A. Jenouvrier, B. Coquart, “The NO2 absorption spectrum: 1. Absorption cross sections at ambient temperature in the 300–500-nm region,” J. Atmos. Chem. 20, 281–297 (1995).
    [Crossref]
  55. C. A. Cantrell, J. A. Davidson, A. H. McDaniel, R. E. Shetter, J. G. Calvert, “Temperature-dependent formaldehyde cross section in the near-ultraviolet spectral region,” J. Phys. Chem. 94, 3902–3908 (1990).
    [Crossref]
  56. W. B. DeMore, S. P. Sander, C. J. Howard, A. R. Ravishankara, D. M. Golden, C. E. Kolb, R. F. Hampson, M. J. Kurylo, M. J. Molina, Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, (1997).
  57. S. Madronich, G. Weller, “Numerical integration errors in calculated tropospheric photodissociation rate coefficients,” J. Atmos. Chem. 10, 289–300 (1990).
    [Crossref]
  58. L. T. Molina, M. J. Molina, “Absolute absorption cross sections of ozone in the 185–350-nm wavelength range,” J. Geophys. Res. 91, 14,501–14,508 (1986).
    [Crossref]
  59. F. Rohrer, Forschungszentrum Jülich, Jülich, (personal communication, 1997).
  60. A. Kraus, T. Brauers, D. Brüning, A. Hofzumahaus, F. Rohrer, N. Houben, H. W. Pätz, A. Volz-Thomas, “Results of the NO2-photolysis frequency intercomparison JCOM97” (in German), Vol. JUEL 3578 of (Forschungszentrum Jülich GmbH, Jülich, 1998).
  61. R. E. Shetter, M. Müller, “Photolysis frequency measurements using actinic flux spectroradiometry during the PEM-Tropics Mission: Instrumentation description and some results,” J. Geophys. Res. 104, 5647–5661 (1999).
    [Crossref]
  62. R. Schmitt, Meteorologie Consult GmbH, Glashütten (personal communication, 1997).

1999 (1)

R. E. Shetter, M. Müller, “Photolysis frequency measurements using actinic flux spectroradiometry during the PEM-Tropics Mission: Instrumentation description and some results,” J. Geophys. Res. 104, 5647–5661 (1999).
[Crossref]

1998 (1)

A. Kraus, A. Hofzumahaus, “Field measurements of atmospheric photolysis frequencies for O3, NO2, HCHO, H2O2 and HONO by UV spectroradiometry,” J. Atmos. Chem. 31, 161–180 (1998).
[Crossref]

1997 (1)

H. Cotte, C. Devaux, P. Carlier, “Transformation of irradiance measurements into spectral actinic flux for photolysis rates measurements,” J. Atmos. Chem. 26, 1–28 (1997).
[Crossref]

1996 (5)

M. Blumthaler, J. Gröbner, M. Huber, W. Ambach, “Measuring spectral and spatial variations of UVA and UVB sky radiance,” Geophys. Res. Lett. 23, 547–550 (1996).
[Crossref]

K. O. Lantz, R. E. Shetter, C. A. Cantrell, S. J. Flocke, J. G. Calvert, S. Madronich, “Theoretical, actinometric, and radiometric determinations of the photolysis rate coefficient of NO2 during the Mauna Loa Observatory Photochemistry Experiment 2,” J. Geophys. Res. 101, 14,613–14,630 (1996).
[Crossref]

A. Volz-Thomas, A. Lerner, H.-W. Pätz, M. Schultz, D. S. McKenna, R. Schmitt, S. Madronich, E. P. Röth, “Airborne measurements of the photolysis frequency of NO2,” J. Geophys. Res. 101, 18,613–18,627 (1996).
[Crossref]

R. E. Shetter, C. A. Cantrell, K. O. Lantz, S. J. Flocke, J. J. Orlando, G. S. Tyndall, T. M. Gilpin, C. A. Fischer, S. Madronich, J. G. Calvert, W. Junkermann, “Actinometric and radiometric measurement and modeling of the photolysis rate coefficient of ozone to O(1D) during the Mauna Loa Observatory Photochemistry Experiment 2,” J. Geophys. Res. 101, 10,631–10,642 (1996).

A. F. Bais, C. S. Zerefos, C. T. McElroy, “Solar UV-B measurements with the double- and single-monochromator Brewer ozone spectrophotometers,” Geophys. Res. Lett. 23, 833–836 (1996).
[Crossref]

1995 (7)

H. Slaper, H. A. J. M. Reinen, M. Blumenthaler, M. Huber, F. Kuik, “Comparing ground-level spectrally resolved solar UV measurements using various instruments: a technique resolving effects of wavelength shift and slit width,” Geophys. Res. Lett. 22, 2721–2724 (1995).
[Crossref]

G. Seckmeyer, G. Bernhard, B. Mayer, R. Erb, “High-accuracy spectroradiometry of solar ultraviolet radiation,” Metrologia 32, 697–700 (1995).
[Crossref]

M. F. Merienne, A. Jenouvrier, B. Coquart, “The NO2 absorption spectrum: 1. Absorption cross sections at ambient temperature in the 300–500-nm region,” J. Atmos. Chem. 20, 281–297 (1995).
[Crossref]

M. Müller, A. Kraus, A. Hofzumahaus, “O3 → O(1D) photolysis frequencies determined from spectroradiometric measurements of solar actinic UV radiation: comparison with chemical actinometer measurements,” Geophys. Res. Lett. 22, 679–682 (1995).
[Crossref]

P. Kelley, R. R. Russel, W. T. Luke, G. L. Kok, “Rate of NO2 photolysis from the surface to 7.6-km altitude in clear sky and clouds,” Geophys. Res. Lett. 22, 2621–2624 (1995).
[Crossref]

M. VanWeele, J. V.-G. de Arellano, F. Kuik, “Combined measurements of UV-A actinic flux, UV-A irradiance and global radiation in relation to photodissociation rates,” Tellus Ser. B 47, 353–364 (1995).
[Crossref]

C. T. McElroy, C. Midwinter, D. V. Barton, R. B. Hall, “A comparison of J values from the composition and photodissociative flux measurement with model calculations,” Geophys. Res. Lett. 22, 1365–1368 (1995).
[Crossref]

1994 (3)

U. Feister, “Measurements of chemically and biologically effective radiation reaching the ground,” J. Atmos. Chem. 19, 289–315 (1994).
[Crossref]

W. Junkermann, “Measurements of the J(O1D) actinic flux within and above stratiform clouds and above snow surfaces,” Geophys. Res. Lett. 21, 793–796 (1994).
[Crossref]

J. C. H. VanderHage, W. Boot, H. vanDop, P. G. Duynkerke, J. V.-G. de Arellano, “A photoelectric detector suspended under a balloon for actinic flux measurements,” J. Atmos. Ocean Technol. 11, 674–679 (1994).
[Crossref]

1993 (1)

A. Ruggaber, R. Forkel, R. Dlugi, “Spectral actinic flux and its ratio to spectral irradiance by radiation transfer calculations,” J. Geophys. Res. 98, 1151–1162 (1993).
[Crossref]

1992 (8)

A. Hofzumahaus, T. Brauers, U. Platt, J. Callies, “Latitudinal variation of measured O3 photolysis frequencies J(O1D) and primary OH production rates over the Atlantic Ocean between 50 °N and 30 °S,” J. Atmos. Chem. 15, 283–298 (1992).
[Crossref]

T. Brauers, A. Hofzumahaus, “Latitudinal variation of measured NO2 photolysis frequencies over the Atlantic Ocean between 50 °N and 30 °S,” J. Atmos. Chem. 15, 269–282 (1992).
[Crossref]

R. E. Shetter, A. H. McDaniel, C. A. Cantrell, S. Madronich, J. G. Calvert, “Actinometer and Eppley radiometer measurements of the NO2 photolysis rate coefficient during the Mauna Loa Observatory Photochemistry Experiment,” J. Geophys. Res. 97, 10,349–10,359 (1992).
[Crossref]

T. E. Blackburn, S. T. Bairai, D. H. Stedman, “Solar photolysis of ozone to singlet D oxygen atoms,” J. Geophys. Res. 97, 10,109–10,117 (1992).
[Crossref]

S. T. Bairai, D. H. Stedman, “Actinometric measurement of j〈O3-O(1D)〉 using a luminol detector,” Geophys. Res. Lett. 19, 2047–2050 (1992).
[Crossref]

R. L. McKenzie, P. V. Johnston, M. Kotkamp, A. Bittar, J. D. Hamlin, “Solar ultraviolet spectroradiometry in New Zealand: instrumentation and sample results from 1990,” Appl. Opt. 31, 6501–6509 (1992).
[Crossref] [PubMed]

D. Daumont, J. B. J. Charbonnier, J. Malicet, “Ozone UV spectroscopy I: Absorption cross sections at room temperature,” J. Atmos. Chem. 15, 145–155 (1992).
[Crossref]

D. Lubin, G. Mitchell, J. E. Frederick, A. D. Alberts, C. R. Booth, T. Lucas, D. Neuschuler, “A contribution towards understanding the biospherical significance of Antarctic ozone depletion,” J. Geophys. Res. 97, 7817–7828 (1992).
[Crossref]

1991 (1)

R. L. McKenzie, W. A. Matthews, P. V. Johnston, “The relationship between erythemal UV and ozone, derived from spectral irradiance measurements,” Geophys. Res. Lett. 18, 2269–2272 (1991).
[Crossref]

1990 (2)

C. A. Cantrell, J. A. Davidson, A. H. McDaniel, R. E. Shetter, J. G. Calvert, “Temperature-dependent formaldehyde cross section in the near-ultraviolet spectral region,” J. Phys. Chem. 94, 3902–3908 (1990).
[Crossref]

S. Madronich, G. Weller, “Numerical integration errors in calculated tropospheric photodissociation rate coefficients,” J. Atmos. Chem. 10, 289–300 (1990).
[Crossref]

1989 (1)

W. Junkermann, U. Platt, A. Volz-Thomas, “A photoelectric detector for the measurement of photolysis frequencies of ozone and other atmospheric molecules,” J. Atmos. Chem. 8, 203–227 (1989).
[Crossref]

1987 (2)

S. Madronich, “Intercomparison of NO2 photodissociation and UV radiometer measurements,” Atmos. Environ. 21, 569–578 (1987).
[Crossref]

S. Madronich, “Photodissociation in the atmosphere, 1. Actinic flux and the effects of ground reflection and clouds,” J. Geophys. Res. 92, 9740–9752 (1987).
[Crossref]

1986 (1)

L. T. Molina, M. J. Molina, “Absolute absorption cross sections of ozone in the 185–350-nm wavelength range,” J. Geophys. Res. 91, 14,501–14,508 (1986).
[Crossref]

1983 (2)

S. Madronich, D. R. Hastie, B. A. Ridley, H. I. Schiff, “Measurement of the photodissociation coefficient of NO2 in the atmosphere: I. Method and surface measurements,” J. Atmos. Chem. 1, 3–25 (1983).
[Crossref]

D. D. Parrish, P. C. Murphy, D. L. Albritton, F. C. Fehsenfeld, “The measurement of the photodissociation rate of NO2 in the atmosphere,” Atmos. Environ. 17, 1365–1379 (1983).
[Crossref]

1982 (1)

R. R. Dickerson, D. H. Stedman, A. C. Delany, “Direct measurements of ozone and nitrogen dioxide photolysis rates in the troposphere,” J. Geophys. Res. 87, 4933–4946 (1982).
[Crossref]

1981 (1)

J. A. Logan, M. J. Prather, S. C. Wofsy, M. B. McElroy, “Tropospheric chemistry: a global perspective,” J. Geophys. Res. 86, 7210–7254 (1981).
[Crossref]

1980 (1)

F. C. Bahe, U. Schurath, K. H. Becker, “The frequency of NO2 photolysis at ground level as recorded by a continuous actinometer,” Atmos. Environ. 14, 711–718 (1980).
[Crossref]

1979 (2)

F. C. Bahe, W. N. Marx, U. Schurath, E. P. Röth, “Determination of the absolute photolysis rate of ozone by sunlight, O3 + hν → O(1D) + O2(1Δg), at ground level,” Atmos. Environ. 13, 1515–1522 (1979).
[Crossref]

R. R. Dickerson, D. H. Stedman, W. L. Chameides, P. J. Crutzen, J. Fishman, “Actinometric measurements and theoretical calculations of j(O3), the rate of photolysis of ozone to O(1D),” Geophys. Res. Lett. 6, 833–836 (1979).
[Crossref]

1978 (1)

F. Bahe, U. Schurath, “Measurement of O(1D) formation by ozone photolysis in the troposphere,” Pageoph 116, 537–544 (1978).
[Crossref]

1977 (1)

L. Zafonte, P. L. Rieger, J. R. Holmes, “Nitrogen dioxide photolysis in the Los Angeles atmosphere,” Environ. Sci. Technol. 11, 483–487 (1977).
[Crossref]

1975 (1)

D. H. Stedman, W. Chameides, J. O. Jackson, “Comparison of experimental and computed values of j(NO2),” Geophys. Res. Lett. 2, 22–25 (1975).
[Crossref]

1972 (1)

H. Levy, “Photochemistry of the lower troposphere,” Planet. Space Sci. 20, 919–935 (1972).
[Crossref]

1969 (1)

J. S. Nader, N. White, “Volumetric measurement of ultraviolet energy in an urban atmosphere,” Environ. Sci. Technol. 3, 848–854 (1969).
[Crossref]

1964 (1)

K. G. Lindh, H. Buchberg, K. W. Wilson, “Omnidirectional ultraviolet radiometer,” Sol. Energy 8, 112–116 (1964).
[Crossref]

Alberts, A. D.

D. Lubin, G. Mitchell, J. E. Frederick, A. D. Alberts, C. R. Booth, T. Lucas, D. Neuschuler, “A contribution towards understanding the biospherical significance of Antarctic ozone depletion,” J. Geophys. Res. 97, 7817–7828 (1992).
[Crossref]

Albritton, D. L.

D. D. Parrish, P. C. Murphy, D. L. Albritton, F. C. Fehsenfeld, “The measurement of the photodissociation rate of NO2 in the atmosphere,” Atmos. Environ. 17, 1365–1379 (1983).
[Crossref]

Ambach, W.

M. Blumthaler, J. Gröbner, M. Huber, W. Ambach, “Measuring spectral and spatial variations of UVA and UVB sky radiance,” Geophys. Res. Lett. 23, 547–550 (1996).
[Crossref]

Bahe, F.

F. Bahe, U. Schurath, “Measurement of O(1D) formation by ozone photolysis in the troposphere,” Pageoph 116, 537–544 (1978).
[Crossref]

Bahe, F. C.

F. C. Bahe, U. Schurath, K. H. Becker, “The frequency of NO2 photolysis at ground level as recorded by a continuous actinometer,” Atmos. Environ. 14, 711–718 (1980).
[Crossref]

F. C. Bahe, W. N. Marx, U. Schurath, E. P. Röth, “Determination of the absolute photolysis rate of ozone by sunlight, O3 + hν → O(1D) + O2(1Δg), at ground level,” Atmos. Environ. 13, 1515–1522 (1979).
[Crossref]

Bairai, S. T.

T. E. Blackburn, S. T. Bairai, D. H. Stedman, “Solar photolysis of ozone to singlet D oxygen atoms,” J. Geophys. Res. 97, 10,109–10,117 (1992).
[Crossref]

S. T. Bairai, D. H. Stedman, “Actinometric measurement of j〈O3-O(1D)〉 using a luminol detector,” Geophys. Res. Lett. 19, 2047–2050 (1992).
[Crossref]

Bais, A. F.

A. F. Bais, C. S. Zerefos, C. T. McElroy, “Solar UV-B measurements with the double- and single-monochromator Brewer ozone spectrophotometers,” Geophys. Res. Lett. 23, 833–836 (1996).
[Crossref]

Barton, D. V.

C. T. McElroy, C. Midwinter, D. V. Barton, R. B. Hall, “A comparison of J values from the composition and photodissociative flux measurement with model calculations,” Geophys. Res. Lett. 22, 1365–1368 (1995).
[Crossref]

Becker, K. H.

F. C. Bahe, U. Schurath, K. H. Becker, “The frequency of NO2 photolysis at ground level as recorded by a continuous actinometer,” Atmos. Environ. 14, 711–718 (1980).
[Crossref]

Bernhard, G.

G. Seckmeyer, G. Bernhard, B. Mayer, R. Erb, “High-accuracy spectroradiometry of solar ultraviolet radiation,” Metrologia 32, 697–700 (1995).
[Crossref]

Bittar, A.

Blackburn, T. E.

T. E. Blackburn, S. T. Bairai, D. H. Stedman, “Solar photolysis of ozone to singlet D oxygen atoms,” J. Geophys. Res. 97, 10,109–10,117 (1992).
[Crossref]

Blumenthaler, M.

H. Slaper, H. A. J. M. Reinen, M. Blumenthaler, M. Huber, F. Kuik, “Comparing ground-level spectrally resolved solar UV measurements using various instruments: a technique resolving effects of wavelength shift and slit width,” Geophys. Res. Lett. 22, 2721–2724 (1995).
[Crossref]

Blumthaler, M.

M. Blumthaler, J. Gröbner, M. Huber, W. Ambach, “Measuring spectral and spatial variations of UVA and UVB sky radiance,” Geophys. Res. Lett. 23, 547–550 (1996).
[Crossref]

Boot, W.

J. C. H. VanderHage, W. Boot, H. vanDop, P. G. Duynkerke, J. V.-G. de Arellano, “A photoelectric detector suspended under a balloon for actinic flux measurements,” J. Atmos. Ocean Technol. 11, 674–679 (1994).
[Crossref]

Booth, C. R.

D. Lubin, G. Mitchell, J. E. Frederick, A. D. Alberts, C. R. Booth, T. Lucas, D. Neuschuler, “A contribution towards understanding the biospherical significance of Antarctic ozone depletion,” J. Geophys. Res. 97, 7817–7828 (1992).
[Crossref]

Brauers, T.

A. Hofzumahaus, T. Brauers, U. Platt, J. Callies, “Latitudinal variation of measured O3 photolysis frequencies J(O1D) and primary OH production rates over the Atlantic Ocean between 50 °N and 30 °S,” J. Atmos. Chem. 15, 283–298 (1992).
[Crossref]

T. Brauers, A. Hofzumahaus, “Latitudinal variation of measured NO2 photolysis frequencies over the Atlantic Ocean between 50 °N and 30 °S,” J. Atmos. Chem. 15, 269–282 (1992).
[Crossref]

A. Kraus, T. Brauers, D. Brüning, A. Hofzumahaus, F. Rohrer, N. Houben, H. W. Pätz, A. Volz-Thomas, “Results of the NO2-photolysis frequency intercomparison JCOM97” (in German), Vol. JUEL 3578 of (Forschungszentrum Jülich GmbH, Jülich, 1998).

Brüning, D.

A. Kraus, T. Brauers, D. Brüning, A. Hofzumahaus, F. Rohrer, N. Houben, H. W. Pätz, A. Volz-Thomas, “Results of the NO2-photolysis frequency intercomparison JCOM97” (in German), Vol. JUEL 3578 of (Forschungszentrum Jülich GmbH, Jülich, 1998).

Buchberg, H.

K. G. Lindh, H. Buchberg, K. W. Wilson, “Omnidirectional ultraviolet radiometer,” Sol. Energy 8, 112–116 (1964).
[Crossref]

Budde, W.

W. Budde, Physical Detectors of Optical Radiation, Vol. 4 of Optical Radiation Measurements (Academic, Orlando, Fla., 1983).

Callies, J.

A. Hofzumahaus, T. Brauers, U. Platt, J. Callies, “Latitudinal variation of measured O3 photolysis frequencies J(O1D) and primary OH production rates over the Atlantic Ocean between 50 °N and 30 °S,” J. Atmos. Chem. 15, 283–298 (1992).
[Crossref]

Calvert, J. G.

K. O. Lantz, R. E. Shetter, C. A. Cantrell, S. J. Flocke, J. G. Calvert, S. Madronich, “Theoretical, actinometric, and radiometric determinations of the photolysis rate coefficient of NO2 during the Mauna Loa Observatory Photochemistry Experiment 2,” J. Geophys. Res. 101, 14,613–14,630 (1996).
[Crossref]

R. E. Shetter, C. A. Cantrell, K. O. Lantz, S. J. Flocke, J. J. Orlando, G. S. Tyndall, T. M. Gilpin, C. A. Fischer, S. Madronich, J. G. Calvert, W. Junkermann, “Actinometric and radiometric measurement and modeling of the photolysis rate coefficient of ozone to O(1D) during the Mauna Loa Observatory Photochemistry Experiment 2,” J. Geophys. Res. 101, 10,631–10,642 (1996).

R. E. Shetter, A. H. McDaniel, C. A. Cantrell, S. Madronich, J. G. Calvert, “Actinometer and Eppley radiometer measurements of the NO2 photolysis rate coefficient during the Mauna Loa Observatory Photochemistry Experiment,” J. Geophys. Res. 97, 10,349–10,359 (1992).
[Crossref]

C. A. Cantrell, J. A. Davidson, A. H. McDaniel, R. E. Shetter, J. G. Calvert, “Temperature-dependent formaldehyde cross section in the near-ultraviolet spectral region,” J. Phys. Chem. 94, 3902–3908 (1990).
[Crossref]

Cantrell, C. A.

R. E. Shetter, C. A. Cantrell, K. O. Lantz, S. J. Flocke, J. J. Orlando, G. S. Tyndall, T. M. Gilpin, C. A. Fischer, S. Madronich, J. G. Calvert, W. Junkermann, “Actinometric and radiometric measurement and modeling of the photolysis rate coefficient of ozone to O(1D) during the Mauna Loa Observatory Photochemistry Experiment 2,” J. Geophys. Res. 101, 10,631–10,642 (1996).

K. O. Lantz, R. E. Shetter, C. A. Cantrell, S. J. Flocke, J. G. Calvert, S. Madronich, “Theoretical, actinometric, and radiometric determinations of the photolysis rate coefficient of NO2 during the Mauna Loa Observatory Photochemistry Experiment 2,” J. Geophys. Res. 101, 14,613–14,630 (1996).
[Crossref]

R. E. Shetter, A. H. McDaniel, C. A. Cantrell, S. Madronich, J. G. Calvert, “Actinometer and Eppley radiometer measurements of the NO2 photolysis rate coefficient during the Mauna Loa Observatory Photochemistry Experiment,” J. Geophys. Res. 97, 10,349–10,359 (1992).
[Crossref]

C. A. Cantrell, J. A. Davidson, A. H. McDaniel, R. E. Shetter, J. G. Calvert, “Temperature-dependent formaldehyde cross section in the near-ultraviolet spectral region,” J. Phys. Chem. 94, 3902–3908 (1990).
[Crossref]

Carlier, P.

H. Cotte, C. Devaux, P. Carlier, “Transformation of irradiance measurements into spectral actinic flux for photolysis rates measurements,” J. Atmos. Chem. 26, 1–28 (1997).
[Crossref]

Chameides, W.

D. H. Stedman, W. Chameides, J. O. Jackson, “Comparison of experimental and computed values of j(NO2),” Geophys. Res. Lett. 2, 22–25 (1975).
[Crossref]

Chameides, W. L.

R. R. Dickerson, D. H. Stedman, W. L. Chameides, P. J. Crutzen, J. Fishman, “Actinometric measurements and theoretical calculations of j(O3), the rate of photolysis of ozone to O(1D),” Geophys. Res. Lett. 6, 833–836 (1979).
[Crossref]

Charbonnier, J. B. J.

D. Daumont, J. B. J. Charbonnier, J. Malicet, “Ozone UV spectroscopy I: Absorption cross sections at room temperature,” J. Atmos. Chem. 15, 145–155 (1992).
[Crossref]

Coquart, B.

M. F. Merienne, A. Jenouvrier, B. Coquart, “The NO2 absorption spectrum: 1. Absorption cross sections at ambient temperature in the 300–500-nm region,” J. Atmos. Chem. 20, 281–297 (1995).
[Crossref]

Cotte, H.

H. Cotte, C. Devaux, P. Carlier, “Transformation of irradiance measurements into spectral actinic flux for photolysis rates measurements,” J. Atmos. Chem. 26, 1–28 (1997).
[Crossref]

Crutzen, P. J.

R. R. Dickerson, D. H. Stedman, W. L. Chameides, P. J. Crutzen, J. Fishman, “Actinometric measurements and theoretical calculations of j(O3), the rate of photolysis of ozone to O(1D),” Geophys. Res. Lett. 6, 833–836 (1979).
[Crossref]

Daumont, D.

D. Daumont, J. B. J. Charbonnier, J. Malicet, “Ozone UV spectroscopy I: Absorption cross sections at room temperature,” J. Atmos. Chem. 15, 145–155 (1992).
[Crossref]

Davidson, J. A.

C. A. Cantrell, J. A. Davidson, A. H. McDaniel, R. E. Shetter, J. G. Calvert, “Temperature-dependent formaldehyde cross section in the near-ultraviolet spectral region,” J. Phys. Chem. 94, 3902–3908 (1990).
[Crossref]

de Arellano, J. V.-G.

M. VanWeele, J. V.-G. de Arellano, F. Kuik, “Combined measurements of UV-A actinic flux, UV-A irradiance and global radiation in relation to photodissociation rates,” Tellus Ser. B 47, 353–364 (1995).
[Crossref]

J. C. H. VanderHage, W. Boot, H. vanDop, P. G. Duynkerke, J. V.-G. de Arellano, “A photoelectric detector suspended under a balloon for actinic flux measurements,” J. Atmos. Ocean Technol. 11, 674–679 (1994).
[Crossref]

Delany, A. C.

R. R. Dickerson, D. H. Stedman, A. C. Delany, “Direct measurements of ozone and nitrogen dioxide photolysis rates in the troposphere,” J. Geophys. Res. 87, 4933–4946 (1982).
[Crossref]

Demerjian, K. L.

K. L. Demerjian, K. L. Schere, J. T. Peterson, “Theoretical estimates of actinic (spherically integrated) flux and photolytic rate constants of atmospheric species in the lower troposphere,” in Advances in Environmental Science and Technology, Vol. 10 of NATO ASI Series, J. J. N. Pitts, R. L. Metcalf, D. Grosjean, eds. (Wiley, New York, 1980), pp. 369–459.

DeMore, W. B.

W. B. DeMore, S. P. Sander, C. J. Howard, A. R. Ravishankara, D. M. Golden, C. E. Kolb, R. F. Hampson, M. J. Kurylo, M. J. Molina, Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, (1997).

Devaux, C.

H. Cotte, C. Devaux, P. Carlier, “Transformation of irradiance measurements into spectral actinic flux for photolysis rates measurements,” J. Atmos. Chem. 26, 1–28 (1997).
[Crossref]

Dickerson, R. R.

R. R. Dickerson, D. H. Stedman, A. C. Delany, “Direct measurements of ozone and nitrogen dioxide photolysis rates in the troposphere,” J. Geophys. Res. 87, 4933–4946 (1982).
[Crossref]

R. R. Dickerson, D. H. Stedman, W. L. Chameides, P. J. Crutzen, J. Fishman, “Actinometric measurements and theoretical calculations of j(O3), the rate of photolysis of ozone to O(1D),” Geophys. Res. Lett. 6, 833–836 (1979).
[Crossref]

Dlugi, R.

A. Ruggaber, R. Forkel, R. Dlugi, “Spectral actinic flux and its ratio to spectral irradiance by radiation transfer calculations,” J. Geophys. Res. 98, 1151–1162 (1993).
[Crossref]

Duynkerke, P. G.

J. C. H. VanderHage, W. Boot, H. vanDop, P. G. Duynkerke, J. V.-G. de Arellano, “A photoelectric detector suspended under a balloon for actinic flux measurements,” J. Atmos. Ocean Technol. 11, 674–679 (1994).
[Crossref]

Erb, R.

G. Seckmeyer, G. Bernhard, B. Mayer, R. Erb, “High-accuracy spectroradiometry of solar ultraviolet radiation,” Metrologia 32, 697–700 (1995).
[Crossref]

Fehsenfeld, F. C.

D. D. Parrish, P. C. Murphy, D. L. Albritton, F. C. Fehsenfeld, “The measurement of the photodissociation rate of NO2 in the atmosphere,” Atmos. Environ. 17, 1365–1379 (1983).
[Crossref]

Feister, U.

U. Feister, “Measurements of chemically and biologically effective radiation reaching the ground,” J. Atmos. Chem. 19, 289–315 (1994).
[Crossref]

Fischer, C. A.

R. E. Shetter, C. A. Cantrell, K. O. Lantz, S. J. Flocke, J. J. Orlando, G. S. Tyndall, T. M. Gilpin, C. A. Fischer, S. Madronich, J. G. Calvert, W. Junkermann, “Actinometric and radiometric measurement and modeling of the photolysis rate coefficient of ozone to O(1D) during the Mauna Loa Observatory Photochemistry Experiment 2,” J. Geophys. Res. 101, 10,631–10,642 (1996).

Fishman, J.

R. R. Dickerson, D. H. Stedman, W. L. Chameides, P. J. Crutzen, J. Fishman, “Actinometric measurements and theoretical calculations of j(O3), the rate of photolysis of ozone to O(1D),” Geophys. Res. Lett. 6, 833–836 (1979).
[Crossref]

Flocke, S. J.

R. E. Shetter, C. A. Cantrell, K. O. Lantz, S. J. Flocke, J. J. Orlando, G. S. Tyndall, T. M. Gilpin, C. A. Fischer, S. Madronich, J. G. Calvert, W. Junkermann, “Actinometric and radiometric measurement and modeling of the photolysis rate coefficient of ozone to O(1D) during the Mauna Loa Observatory Photochemistry Experiment 2,” J. Geophys. Res. 101, 10,631–10,642 (1996).

K. O. Lantz, R. E. Shetter, C. A. Cantrell, S. J. Flocke, J. G. Calvert, S. Madronich, “Theoretical, actinometric, and radiometric determinations of the photolysis rate coefficient of NO2 during the Mauna Loa Observatory Photochemistry Experiment 2,” J. Geophys. Res. 101, 14,613–14,630 (1996).
[Crossref]

Forkel, R.

A. Ruggaber, R. Forkel, R. Dlugi, “Spectral actinic flux and its ratio to spectral irradiance by radiation transfer calculations,” J. Geophys. Res. 98, 1151–1162 (1993).
[Crossref]

Frederick, J. E.

D. Lubin, G. Mitchell, J. E. Frederick, A. D. Alberts, C. R. Booth, T. Lucas, D. Neuschuler, “A contribution towards understanding the biospherical significance of Antarctic ozone depletion,” J. Geophys. Res. 97, 7817–7828 (1992).
[Crossref]

Gilpin, T. M.

R. E. Shetter, C. A. Cantrell, K. O. Lantz, S. J. Flocke, J. J. Orlando, G. S. Tyndall, T. M. Gilpin, C. A. Fischer, S. Madronich, J. G. Calvert, W. Junkermann, “Actinometric and radiometric measurement and modeling of the photolysis rate coefficient of ozone to O(1D) during the Mauna Loa Observatory Photochemistry Experiment 2,” J. Geophys. Res. 101, 10,631–10,642 (1996).

Golden, D. M.

W. B. DeMore, S. P. Sander, C. J. Howard, A. R. Ravishankara, D. M. Golden, C. E. Kolb, R. F. Hampson, M. J. Kurylo, M. J. Molina, Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, (1997).

Gröbner, J.

M. Blumthaler, J. Gröbner, M. Huber, W. Ambach, “Measuring spectral and spatial variations of UVA and UVB sky radiance,” Geophys. Res. Lett. 23, 547–550 (1996).
[Crossref]

Hall, R. B.

C. T. McElroy, C. Midwinter, D. V. Barton, R. B. Hall, “A comparison of J values from the composition and photodissociative flux measurement with model calculations,” Geophys. Res. Lett. 22, 1365–1368 (1995).
[Crossref]

Hamlin, J. D.

Hampson, R. F.

W. B. DeMore, S. P. Sander, C. J. Howard, A. R. Ravishankara, D. M. Golden, C. E. Kolb, R. F. Hampson, M. J. Kurylo, M. J. Molina, Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, (1997).

Hastie, D. R.

S. Madronich, D. R. Hastie, B. A. Ridley, H. I. Schiff, “Measurement of the photodissociation coefficient of NO2 in the atmosphere: I. Method and surface measurements,” J. Atmos. Chem. 1, 3–25 (1983).
[Crossref]

Hofzumahaus, A.

A. Kraus, A. Hofzumahaus, “Field measurements of atmospheric photolysis frequencies for O3, NO2, HCHO, H2O2 and HONO by UV spectroradiometry,” J. Atmos. Chem. 31, 161–180 (1998).
[Crossref]

M. Müller, A. Kraus, A. Hofzumahaus, “O3 → O(1D) photolysis frequencies determined from spectroradiometric measurements of solar actinic UV radiation: comparison with chemical actinometer measurements,” Geophys. Res. Lett. 22, 679–682 (1995).
[Crossref]

A. Hofzumahaus, T. Brauers, U. Platt, J. Callies, “Latitudinal variation of measured O3 photolysis frequencies J(O1D) and primary OH production rates over the Atlantic Ocean between 50 °N and 30 °S,” J. Atmos. Chem. 15, 283–298 (1992).
[Crossref]

T. Brauers, A. Hofzumahaus, “Latitudinal variation of measured NO2 photolysis frequencies over the Atlantic Ocean between 50 °N and 30 °S,” J. Atmos. Chem. 15, 269–282 (1992).
[Crossref]

A. Kraus, T. Brauers, D. Brüning, A. Hofzumahaus, F. Rohrer, N. Houben, H. W. Pätz, A. Volz-Thomas, “Results of the NO2-photolysis frequency intercomparison JCOM97” (in German), Vol. JUEL 3578 of (Forschungszentrum Jülich GmbH, Jülich, 1998).

Holmes, J. R.

L. Zafonte, P. L. Rieger, J. R. Holmes, “Nitrogen dioxide photolysis in the Los Angeles atmosphere,” Environ. Sci. Technol. 11, 483–487 (1977).
[Crossref]

Houben, N.

M. Schultz, N. Houben, D. Mihelcic, H.-W. Pätz, A. Volz-Thomas, “A chemical actinometer for the calibration of photoelectric detectors for the measurement of jNO2 (in German),” Vol. JUEL 3135 of (Forschungszentrum Jülich GmbH, Jülich, 1995).

A. Kraus, T. Brauers, D. Brüning, A. Hofzumahaus, F. Rohrer, N. Houben, H. W. Pätz, A. Volz-Thomas, “Results of the NO2-photolysis frequency intercomparison JCOM97” (in German), Vol. JUEL 3578 of (Forschungszentrum Jülich GmbH, Jülich, 1998).

Howard, C. J.

W. B. DeMore, S. P. Sander, C. J. Howard, A. R. Ravishankara, D. M. Golden, C. E. Kolb, R. F. Hampson, M. J. Kurylo, M. J. Molina, Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, (1997).

Huber, M.

M. Blumthaler, J. Gröbner, M. Huber, W. Ambach, “Measuring spectral and spatial variations of UVA and UVB sky radiance,” Geophys. Res. Lett. 23, 547–550 (1996).
[Crossref]

H. Slaper, H. A. J. M. Reinen, M. Blumenthaler, M. Huber, F. Kuik, “Comparing ground-level spectrally resolved solar UV measurements using various instruments: a technique resolving effects of wavelength shift and slit width,” Geophys. Res. Lett. 22, 2721–2724 (1995).
[Crossref]

Jackson, J. O.

D. H. Stedman, W. Chameides, J. O. Jackson, “Comparison of experimental and computed values of j(NO2),” Geophys. Res. Lett. 2, 22–25 (1975).
[Crossref]

Jenouvrier, A.

M. F. Merienne, A. Jenouvrier, B. Coquart, “The NO2 absorption spectrum: 1. Absorption cross sections at ambient temperature in the 300–500-nm region,” J. Atmos. Chem. 20, 281–297 (1995).
[Crossref]

Johnston, P. V.

R. L. McKenzie, P. V. Johnston, M. Kotkamp, A. Bittar, J. D. Hamlin, “Solar ultraviolet spectroradiometry in New Zealand: instrumentation and sample results from 1990,” Appl. Opt. 31, 6501–6509 (1992).
[Crossref] [PubMed]

R. L. McKenzie, W. A. Matthews, P. V. Johnston, “The relationship between erythemal UV and ozone, derived from spectral irradiance measurements,” Geophys. Res. Lett. 18, 2269–2272 (1991).
[Crossref]

Junkermann, W.

R. E. Shetter, C. A. Cantrell, K. O. Lantz, S. J. Flocke, J. J. Orlando, G. S. Tyndall, T. M. Gilpin, C. A. Fischer, S. Madronich, J. G. Calvert, W. Junkermann, “Actinometric and radiometric measurement and modeling of the photolysis rate coefficient of ozone to O(1D) during the Mauna Loa Observatory Photochemistry Experiment 2,” J. Geophys. Res. 101, 10,631–10,642 (1996).

W. Junkermann, “Measurements of the J(O1D) actinic flux within and above stratiform clouds and above snow surfaces,” Geophys. Res. Lett. 21, 793–796 (1994).
[Crossref]

W. Junkermann, U. Platt, A. Volz-Thomas, “A photoelectric detector for the measurement of photolysis frequencies of ozone and other atmospheric molecules,” J. Atmos. Chem. 8, 203–227 (1989).
[Crossref]

Kelley, P.

P. Kelley, R. R. Russel, W. T. Luke, G. L. Kok, “Rate of NO2 photolysis from the surface to 7.6-km altitude in clear sky and clouds,” Geophys. Res. Lett. 22, 2621–2624 (1995).
[Crossref]

Kok, G. L.

P. Kelley, R. R. Russel, W. T. Luke, G. L. Kok, “Rate of NO2 photolysis from the surface to 7.6-km altitude in clear sky and clouds,” Geophys. Res. Lett. 22, 2621–2624 (1995).
[Crossref]

Kolb, C. E.

W. B. DeMore, S. P. Sander, C. J. Howard, A. R. Ravishankara, D. M. Golden, C. E. Kolb, R. F. Hampson, M. J. Kurylo, M. J. Molina, Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, (1997).

Kotkamp, M.

Kraus, A.

A. Kraus, A. Hofzumahaus, “Field measurements of atmospheric photolysis frequencies for O3, NO2, HCHO, H2O2 and HONO by UV spectroradiometry,” J. Atmos. Chem. 31, 161–180 (1998).
[Crossref]

M. Müller, A. Kraus, A. Hofzumahaus, “O3 → O(1D) photolysis frequencies determined from spectroradiometric measurements of solar actinic UV radiation: comparison with chemical actinometer measurements,” Geophys. Res. Lett. 22, 679–682 (1995).
[Crossref]

A. Kraus, T. Brauers, D. Brüning, A. Hofzumahaus, F. Rohrer, N. Houben, H. W. Pätz, A. Volz-Thomas, “Results of the NO2-photolysis frequency intercomparison JCOM97” (in German), Vol. JUEL 3578 of (Forschungszentrum Jülich GmbH, Jülich, 1998).

Kuik, F.

H. Slaper, H. A. J. M. Reinen, M. Blumenthaler, M. Huber, F. Kuik, “Comparing ground-level spectrally resolved solar UV measurements using various instruments: a technique resolving effects of wavelength shift and slit width,” Geophys. Res. Lett. 22, 2721–2724 (1995).
[Crossref]

M. VanWeele, J. V.-G. de Arellano, F. Kuik, “Combined measurements of UV-A actinic flux, UV-A irradiance and global radiation in relation to photodissociation rates,” Tellus Ser. B 47, 353–364 (1995).
[Crossref]

Kurylo, M. J.

W. B. DeMore, S. P. Sander, C. J. Howard, A. R. Ravishankara, D. M. Golden, C. E. Kolb, R. F. Hampson, M. J. Kurylo, M. J. Molina, Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, (1997).

Kylling, A.

A. Kylling, Norwegian Institute for Air Research (NILU), Kjeller, Norway (personal communication, 1997).

Lantz, K. O.

R. E. Shetter, C. A. Cantrell, K. O. Lantz, S. J. Flocke, J. J. Orlando, G. S. Tyndall, T. M. Gilpin, C. A. Fischer, S. Madronich, J. G. Calvert, W. Junkermann, “Actinometric and radiometric measurement and modeling of the photolysis rate coefficient of ozone to O(1D) during the Mauna Loa Observatory Photochemistry Experiment 2,” J. Geophys. Res. 101, 10,631–10,642 (1996).

K. O. Lantz, R. E. Shetter, C. A. Cantrell, S. J. Flocke, J. G. Calvert, S. Madronich, “Theoretical, actinometric, and radiometric determinations of the photolysis rate coefficient of NO2 during the Mauna Loa Observatory Photochemistry Experiment 2,” J. Geophys. Res. 101, 14,613–14,630 (1996).
[Crossref]

Lenoble, J.

J. Lenoble, Atmospheric Radiative Transfer (A. Deepak, Hampton, Va., 1993).

Lerner, A.

A. Volz-Thomas, A. Lerner, H.-W. Pätz, M. Schultz, D. S. McKenna, R. Schmitt, S. Madronich, E. P. Röth, “Airborne measurements of the photolysis frequency of NO2,” J. Geophys. Res. 101, 18,613–18,627 (1996).
[Crossref]

Levy, H.

H. Levy, “Photochemistry of the lower troposphere,” Planet. Space Sci. 20, 919–935 (1972).
[Crossref]

Lindh, K. G.

K. G. Lindh, H. Buchberg, K. W. Wilson, “Omnidirectional ultraviolet radiometer,” Sol. Energy 8, 112–116 (1964).
[Crossref]

Logan, J. A.

J. A. Logan, M. J. Prather, S. C. Wofsy, M. B. McElroy, “Tropospheric chemistry: a global perspective,” J. Geophys. Res. 86, 7210–7254 (1981).
[Crossref]

Lubin, D.

D. Lubin, G. Mitchell, J. E. Frederick, A. D. Alberts, C. R. Booth, T. Lucas, D. Neuschuler, “A contribution towards understanding the biospherical significance of Antarctic ozone depletion,” J. Geophys. Res. 97, 7817–7828 (1992).
[Crossref]

Lucas, T.

D. Lubin, G. Mitchell, J. E. Frederick, A. D. Alberts, C. R. Booth, T. Lucas, D. Neuschuler, “A contribution towards understanding the biospherical significance of Antarctic ozone depletion,” J. Geophys. Res. 97, 7817–7828 (1992).
[Crossref]

Luke, W. T.

P. Kelley, R. R. Russel, W. T. Luke, G. L. Kok, “Rate of NO2 photolysis from the surface to 7.6-km altitude in clear sky and clouds,” Geophys. Res. Lett. 22, 2621–2624 (1995).
[Crossref]

Madronich, S.

R. E. Shetter, C. A. Cantrell, K. O. Lantz, S. J. Flocke, J. J. Orlando, G. S. Tyndall, T. M. Gilpin, C. A. Fischer, S. Madronich, J. G. Calvert, W. Junkermann, “Actinometric and radiometric measurement and modeling of the photolysis rate coefficient of ozone to O(1D) during the Mauna Loa Observatory Photochemistry Experiment 2,” J. Geophys. Res. 101, 10,631–10,642 (1996).

A. Volz-Thomas, A. Lerner, H.-W. Pätz, M. Schultz, D. S. McKenna, R. Schmitt, S. Madronich, E. P. Röth, “Airborne measurements of the photolysis frequency of NO2,” J. Geophys. Res. 101, 18,613–18,627 (1996).
[Crossref]

K. O. Lantz, R. E. Shetter, C. A. Cantrell, S. J. Flocke, J. G. Calvert, S. Madronich, “Theoretical, actinometric, and radiometric determinations of the photolysis rate coefficient of NO2 during the Mauna Loa Observatory Photochemistry Experiment 2,” J. Geophys. Res. 101, 14,613–14,630 (1996).
[Crossref]

R. E. Shetter, A. H. McDaniel, C. A. Cantrell, S. Madronich, J. G. Calvert, “Actinometer and Eppley radiometer measurements of the NO2 photolysis rate coefficient during the Mauna Loa Observatory Photochemistry Experiment,” J. Geophys. Res. 97, 10,349–10,359 (1992).
[Crossref]

S. Madronich, G. Weller, “Numerical integration errors in calculated tropospheric photodissociation rate coefficients,” J. Atmos. Chem. 10, 289–300 (1990).
[Crossref]

S. Madronich, “Photodissociation in the atmosphere, 1. Actinic flux and the effects of ground reflection and clouds,” J. Geophys. Res. 92, 9740–9752 (1987).
[Crossref]

S. Madronich, “Intercomparison of NO2 photodissociation and UV radiometer measurements,” Atmos. Environ. 21, 569–578 (1987).
[Crossref]

S. Madronich, D. R. Hastie, B. A. Ridley, H. I. Schiff, “Measurement of the photodissociation coefficient of NO2 in the atmosphere: I. Method and surface measurements,” J. Atmos. Chem. 1, 3–25 (1983).
[Crossref]

Malicet, J.

D. Daumont, J. B. J. Charbonnier, J. Malicet, “Ozone UV spectroscopy I: Absorption cross sections at room temperature,” J. Atmos. Chem. 15, 145–155 (1992).
[Crossref]

Marx, W. N.

F. C. Bahe, W. N. Marx, U. Schurath, E. P. Röth, “Determination of the absolute photolysis rate of ozone by sunlight, O3 + hν → O(1D) + O2(1Δg), at ground level,” Atmos. Environ. 13, 1515–1522 (1979).
[Crossref]

Matthews, W. A.

R. L. McKenzie, W. A. Matthews, P. V. Johnston, “The relationship between erythemal UV and ozone, derived from spectral irradiance measurements,” Geophys. Res. Lett. 18, 2269–2272 (1991).
[Crossref]

Mayer, B.

G. Seckmeyer, G. Bernhard, B. Mayer, R. Erb, “High-accuracy spectroradiometry of solar ultraviolet radiation,” Metrologia 32, 697–700 (1995).
[Crossref]

B. Mayer, Messung und Modellierung der spektralen UV Bestrahlungsstärke in Garmisch-Partenkirchen, Vol. 45–97 of Schriftenreihe des Fraunhofer-Instituts für Atmosphärische Umweltforschung (Wissenschafts-Verlag Maraun, Frankfurt, 1997).

McDaniel, A. H.

R. E. Shetter, A. H. McDaniel, C. A. Cantrell, S. Madronich, J. G. Calvert, “Actinometer and Eppley radiometer measurements of the NO2 photolysis rate coefficient during the Mauna Loa Observatory Photochemistry Experiment,” J. Geophys. Res. 97, 10,349–10,359 (1992).
[Crossref]

C. A. Cantrell, J. A. Davidson, A. H. McDaniel, R. E. Shetter, J. G. Calvert, “Temperature-dependent formaldehyde cross section in the near-ultraviolet spectral region,” J. Phys. Chem. 94, 3902–3908 (1990).
[Crossref]

McElroy, C. T.

A. F. Bais, C. S. Zerefos, C. T. McElroy, “Solar UV-B measurements with the double- and single-monochromator Brewer ozone spectrophotometers,” Geophys. Res. Lett. 23, 833–836 (1996).
[Crossref]

C. T. McElroy, C. Midwinter, D. V. Barton, R. B. Hall, “A comparison of J values from the composition and photodissociative flux measurement with model calculations,” Geophys. Res. Lett. 22, 1365–1368 (1995).
[Crossref]

McElroy, M. B.

J. A. Logan, M. J. Prather, S. C. Wofsy, M. B. McElroy, “Tropospheric chemistry: a global perspective,” J. Geophys. Res. 86, 7210–7254 (1981).
[Crossref]

McKenna, D. S.

A. Volz-Thomas, A. Lerner, H.-W. Pätz, M. Schultz, D. S. McKenna, R. Schmitt, S. Madronich, E. P. Röth, “Airborne measurements of the photolysis frequency of NO2,” J. Geophys. Res. 101, 18,613–18,627 (1996).
[Crossref]

McKenzie, R. L.

R. L. McKenzie, P. V. Johnston, M. Kotkamp, A. Bittar, J. D. Hamlin, “Solar ultraviolet spectroradiometry in New Zealand: instrumentation and sample results from 1990,” Appl. Opt. 31, 6501–6509 (1992).
[Crossref] [PubMed]

R. L. McKenzie, W. A. Matthews, P. V. Johnston, “The relationship between erythemal UV and ozone, derived from spectral irradiance measurements,” Geophys. Res. Lett. 18, 2269–2272 (1991).
[Crossref]

Merienne, M. F.

M. F. Merienne, A. Jenouvrier, B. Coquart, “The NO2 absorption spectrum: 1. Absorption cross sections at ambient temperature in the 300–500-nm region,” J. Atmos. Chem. 20, 281–297 (1995).
[Crossref]

Midwinter, C.

C. T. McElroy, C. Midwinter, D. V. Barton, R. B. Hall, “A comparison of J values from the composition and photodissociative flux measurement with model calculations,” Geophys. Res. Lett. 22, 1365–1368 (1995).
[Crossref]

Mihelcic, D.

M. Schultz, N. Houben, D. Mihelcic, H.-W. Pätz, A. Volz-Thomas, “A chemical actinometer for the calibration of photoelectric detectors for the measurement of jNO2 (in German),” Vol. JUEL 3135 of (Forschungszentrum Jülich GmbH, Jülich, 1995).

Mitchell, G.

D. Lubin, G. Mitchell, J. E. Frederick, A. D. Alberts, C. R. Booth, T. Lucas, D. Neuschuler, “A contribution towards understanding the biospherical significance of Antarctic ozone depletion,” J. Geophys. Res. 97, 7817–7828 (1992).
[Crossref]

Molina, L. T.

L. T. Molina, M. J. Molina, “Absolute absorption cross sections of ozone in the 185–350-nm wavelength range,” J. Geophys. Res. 91, 14,501–14,508 (1986).
[Crossref]

Molina, M. J.

L. T. Molina, M. J. Molina, “Absolute absorption cross sections of ozone in the 185–350-nm wavelength range,” J. Geophys. Res. 91, 14,501–14,508 (1986).
[Crossref]

W. B. DeMore, S. P. Sander, C. J. Howard, A. R. Ravishankara, D. M. Golden, C. E. Kolb, R. F. Hampson, M. J. Kurylo, M. J. Molina, Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, (1997).

Müller, M.

R. E. Shetter, M. Müller, “Photolysis frequency measurements using actinic flux spectroradiometry during the PEM-Tropics Mission: Instrumentation description and some results,” J. Geophys. Res. 104, 5647–5661 (1999).
[Crossref]

M. Müller, A. Kraus, A. Hofzumahaus, “O3 → O(1D) photolysis frequencies determined from spectroradiometric measurements of solar actinic UV radiation: comparison with chemical actinometer measurements,” Geophys. Res. Lett. 22, 679–682 (1995).
[Crossref]

M. Müller, “Messung der aktinischen ultravioletten Strahlung und der Ozon-Photolysefrequenz in der Atmosphäre mittels Filterradiometrie und Spektralradiometrie,” Ph.D. dissertation (University of Bonn, Bonn, Germany, 1994).

Murphy, P. C.

D. D. Parrish, P. C. Murphy, D. L. Albritton, F. C. Fehsenfeld, “The measurement of the photodissociation rate of NO2 in the atmosphere,” Atmos. Environ. 17, 1365–1379 (1983).
[Crossref]

Nader, J. S.

J. S. Nader, N. White, “Volumetric measurement of ultraviolet energy in an urban atmosphere,” Environ. Sci. Technol. 3, 848–854 (1969).
[Crossref]

Neuschuler, D.

D. Lubin, G. Mitchell, J. E. Frederick, A. D. Alberts, C. R. Booth, T. Lucas, D. Neuschuler, “A contribution towards understanding the biospherical significance of Antarctic ozone depletion,” J. Geophys. Res. 97, 7817–7828 (1992).
[Crossref]

Orlando, J. J.

R. E. Shetter, C. A. Cantrell, K. O. Lantz, S. J. Flocke, J. J. Orlando, G. S. Tyndall, T. M. Gilpin, C. A. Fischer, S. Madronich, J. G. Calvert, W. Junkermann, “Actinometric and radiometric measurement and modeling of the photolysis rate coefficient of ozone to O(1D) during the Mauna Loa Observatory Photochemistry Experiment 2,” J. Geophys. Res. 101, 10,631–10,642 (1996).

Pandis, S. N.

J. H. Seinfeld, S. N. Pandis, Atmospheric Chemistry and Physics (Wiley, New York, 1998).

Parrish, D. D.

D. D. Parrish, P. C. Murphy, D. L. Albritton, F. C. Fehsenfeld, “The measurement of the photodissociation rate of NO2 in the atmosphere,” Atmos. Environ. 17, 1365–1379 (1983).
[Crossref]

Pätz, H. W.

A. Kraus, T. Brauers, D. Brüning, A. Hofzumahaus, F. Rohrer, N. Houben, H. W. Pätz, A. Volz-Thomas, “Results of the NO2-photolysis frequency intercomparison JCOM97” (in German), Vol. JUEL 3578 of (Forschungszentrum Jülich GmbH, Jülich, 1998).

Pätz, H.-W.

A. Volz-Thomas, A. Lerner, H.-W. Pätz, M. Schultz, D. S. McKenna, R. Schmitt, S. Madronich, E. P. Röth, “Airborne measurements of the photolysis frequency of NO2,” J. Geophys. Res. 101, 18,613–18,627 (1996).
[Crossref]

M. Schultz, N. Houben, D. Mihelcic, H.-W. Pätz, A. Volz-Thomas, “A chemical actinometer for the calibration of photoelectric detectors for the measurement of jNO2 (in German),” Vol. JUEL 3135 of (Forschungszentrum Jülich GmbH, Jülich, 1995).

Peterson, J. T.

K. L. Demerjian, K. L. Schere, J. T. Peterson, “Theoretical estimates of actinic (spherically integrated) flux and photolytic rate constants of atmospheric species in the lower troposphere,” in Advances in Environmental Science and Technology, Vol. 10 of NATO ASI Series, J. J. N. Pitts, R. L. Metcalf, D. Grosjean, eds. (Wiley, New York, 1980), pp. 369–459.

Platt, U.

A. Hofzumahaus, T. Brauers, U. Platt, J. Callies, “Latitudinal variation of measured O3 photolysis frequencies J(O1D) and primary OH production rates over the Atlantic Ocean between 50 °N and 30 °S,” J. Atmos. Chem. 15, 283–298 (1992).
[Crossref]

W. Junkermann, U. Platt, A. Volz-Thomas, “A photoelectric detector for the measurement of photolysis frequencies of ozone and other atmospheric molecules,” J. Atmos. Chem. 8, 203–227 (1989).
[Crossref]

Prather, M. J.

J. A. Logan, M. J. Prather, S. C. Wofsy, M. B. McElroy, “Tropospheric chemistry: a global perspective,” J. Geophys. Res. 86, 7210–7254 (1981).
[Crossref]

Ravishankara, A. R.

W. B. DeMore, S. P. Sander, C. J. Howard, A. R. Ravishankara, D. M. Golden, C. E. Kolb, R. F. Hampson, M. J. Kurylo, M. J. Molina, Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, (1997).

Reinen, H. A. J. M.

H. Slaper, H. A. J. M. Reinen, M. Blumenthaler, M. Huber, F. Kuik, “Comparing ground-level spectrally resolved solar UV measurements using various instruments: a technique resolving effects of wavelength shift and slit width,” Geophys. Res. Lett. 22, 2721–2724 (1995).
[Crossref]

Ridley, B. A.

S. Madronich, D. R. Hastie, B. A. Ridley, H. I. Schiff, “Measurement of the photodissociation coefficient of NO2 in the atmosphere: I. Method and surface measurements,” J. Atmos. Chem. 1, 3–25 (1983).
[Crossref]

Rieger, P. L.

L. Zafonte, P. L. Rieger, J. R. Holmes, “Nitrogen dioxide photolysis in the Los Angeles atmosphere,” Environ. Sci. Technol. 11, 483–487 (1977).
[Crossref]

Rohrer, F.

F. Rohrer, Forschungszentrum Jülich, Jülich, (personal communication, 1997).

A. Kraus, T. Brauers, D. Brüning, A. Hofzumahaus, F. Rohrer, N. Houben, H. W. Pätz, A. Volz-Thomas, “Results of the NO2-photolysis frequency intercomparison JCOM97” (in German), Vol. JUEL 3578 of (Forschungszentrum Jülich GmbH, Jülich, 1998).

Röth, E. P.

A. Volz-Thomas, A. Lerner, H.-W. Pätz, M. Schultz, D. S. McKenna, R. Schmitt, S. Madronich, E. P. Röth, “Airborne measurements of the photolysis frequency of NO2,” J. Geophys. Res. 101, 18,613–18,627 (1996).
[Crossref]

F. C. Bahe, W. N. Marx, U. Schurath, E. P. Röth, “Determination of the absolute photolysis rate of ozone by sunlight, O3 + hν → O(1D) + O2(1Δg), at ground level,” Atmos. Environ. 13, 1515–1522 (1979).
[Crossref]

E. P. Röth, Universität-Gesamthochschule Essen, Essen, Germany (personal communication, 1994).

Ruggaber, A.

A. Ruggaber, R. Forkel, R. Dlugi, “Spectral actinic flux and its ratio to spectral irradiance by radiation transfer calculations,” J. Geophys. Res. 98, 1151–1162 (1993).
[Crossref]

Russel, R. R.

P. Kelley, R. R. Russel, W. T. Luke, G. L. Kok, “Rate of NO2 photolysis from the surface to 7.6-km altitude in clear sky and clouds,” Geophys. Res. Lett. 22, 2621–2624 (1995).
[Crossref]

Sander, S. P.

W. B. DeMore, S. P. Sander, C. J. Howard, A. R. Ravishankara, D. M. Golden, C. E. Kolb, R. F. Hampson, M. J. Kurylo, M. J. Molina, Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, (1997).

Schere, K. L.

K. L. Demerjian, K. L. Schere, J. T. Peterson, “Theoretical estimates of actinic (spherically integrated) flux and photolytic rate constants of atmospheric species in the lower troposphere,” in Advances in Environmental Science and Technology, Vol. 10 of NATO ASI Series, J. J. N. Pitts, R. L. Metcalf, D. Grosjean, eds. (Wiley, New York, 1980), pp. 369–459.

Schiff, H. I.

S. Madronich, D. R. Hastie, B. A. Ridley, H. I. Schiff, “Measurement of the photodissociation coefficient of NO2 in the atmosphere: I. Method and surface measurements,” J. Atmos. Chem. 1, 3–25 (1983).
[Crossref]

Schmitt, R.

A. Volz-Thomas, A. Lerner, H.-W. Pätz, M. Schultz, D. S. McKenna, R. Schmitt, S. Madronich, E. P. Röth, “Airborne measurements of the photolysis frequency of NO2,” J. Geophys. Res. 101, 18,613–18,627 (1996).
[Crossref]

R. Schmitt, Meteorologie Consult GmbH, Glashütten (personal communication, 1997).

Schultz, M.

A. Volz-Thomas, A. Lerner, H.-W. Pätz, M. Schultz, D. S. McKenna, R. Schmitt, S. Madronich, E. P. Röth, “Airborne measurements of the photolysis frequency of NO2,” J. Geophys. Res. 101, 18,613–18,627 (1996).
[Crossref]

M. Schultz, N. Houben, D. Mihelcic, H.-W. Pätz, A. Volz-Thomas, “A chemical actinometer for the calibration of photoelectric detectors for the measurement of jNO2 (in German),” Vol. JUEL 3135 of (Forschungszentrum Jülich GmbH, Jülich, 1995).

Schurath, U.

F. C. Bahe, U. Schurath, K. H. Becker, “The frequency of NO2 photolysis at ground level as recorded by a continuous actinometer,” Atmos. Environ. 14, 711–718 (1980).
[Crossref]

F. C. Bahe, W. N. Marx, U. Schurath, E. P. Röth, “Determination of the absolute photolysis rate of ozone by sunlight, O3 + hν → O(1D) + O2(1Δg), at ground level,” Atmos. Environ. 13, 1515–1522 (1979).
[Crossref]

F. Bahe, U. Schurath, “Measurement of O(1D) formation by ozone photolysis in the troposphere,” Pageoph 116, 537–544 (1978).
[Crossref]

Seckmeyer, G.

G. Seckmeyer, G. Bernhard, B. Mayer, R. Erb, “High-accuracy spectroradiometry of solar ultraviolet radiation,” Metrologia 32, 697–700 (1995).
[Crossref]

Seinfeld, J. H.

J. H. Seinfeld, S. N. Pandis, Atmospheric Chemistry and Physics (Wiley, New York, 1998).

Shetter, R. E.

R. E. Shetter, M. Müller, “Photolysis frequency measurements using actinic flux spectroradiometry during the PEM-Tropics Mission: Instrumentation description and some results,” J. Geophys. Res. 104, 5647–5661 (1999).
[Crossref]

R. E. Shetter, C. A. Cantrell, K. O. Lantz, S. J. Flocke, J. J. Orlando, G. S. Tyndall, T. M. Gilpin, C. A. Fischer, S. Madronich, J. G. Calvert, W. Junkermann, “Actinometric and radiometric measurement and modeling of the photolysis rate coefficient of ozone to O(1D) during the Mauna Loa Observatory Photochemistry Experiment 2,” J. Geophys. Res. 101, 10,631–10,642 (1996).

K. O. Lantz, R. E. Shetter, C. A. Cantrell, S. J. Flocke, J. G. Calvert, S. Madronich, “Theoretical, actinometric, and radiometric determinations of the photolysis rate coefficient of NO2 during the Mauna Loa Observatory Photochemistry Experiment 2,” J. Geophys. Res. 101, 14,613–14,630 (1996).
[Crossref]

R. E. Shetter, A. H. McDaniel, C. A. Cantrell, S. Madronich, J. G. Calvert, “Actinometer and Eppley radiometer measurements of the NO2 photolysis rate coefficient during the Mauna Loa Observatory Photochemistry Experiment,” J. Geophys. Res. 97, 10,349–10,359 (1992).
[Crossref]

C. A. Cantrell, J. A. Davidson, A. H. McDaniel, R. E. Shetter, J. G. Calvert, “Temperature-dependent formaldehyde cross section in the near-ultraviolet spectral region,” J. Phys. Chem. 94, 3902–3908 (1990).
[Crossref]

Slaper, H.

H. Slaper, H. A. J. M. Reinen, M. Blumenthaler, M. Huber, F. Kuik, “Comparing ground-level spectrally resolved solar UV measurements using various instruments: a technique resolving effects of wavelength shift and slit width,” Geophys. Res. Lett. 22, 2721–2724 (1995).
[Crossref]

Stedman, D. H.

T. E. Blackburn, S. T. Bairai, D. H. Stedman, “Solar photolysis of ozone to singlet D oxygen atoms,” J. Geophys. Res. 97, 10,109–10,117 (1992).
[Crossref]

S. T. Bairai, D. H. Stedman, “Actinometric measurement of j〈O3-O(1D)〉 using a luminol detector,” Geophys. Res. Lett. 19, 2047–2050 (1992).
[Crossref]

R. R. Dickerson, D. H. Stedman, A. C. Delany, “Direct measurements of ozone and nitrogen dioxide photolysis rates in the troposphere,” J. Geophys. Res. 87, 4933–4946 (1982).
[Crossref]

R. R. Dickerson, D. H. Stedman, W. L. Chameides, P. J. Crutzen, J. Fishman, “Actinometric measurements and theoretical calculations of j(O3), the rate of photolysis of ozone to O(1D),” Geophys. Res. Lett. 6, 833–836 (1979).
[Crossref]

D. H. Stedman, W. Chameides, J. O. Jackson, “Comparison of experimental and computed values of j(NO2),” Geophys. Res. Lett. 2, 22–25 (1975).
[Crossref]

Tyndall, G. S.

R. E. Shetter, C. A. Cantrell, K. O. Lantz, S. J. Flocke, J. J. Orlando, G. S. Tyndall, T. M. Gilpin, C. A. Fischer, S. Madronich, J. G. Calvert, W. Junkermann, “Actinometric and radiometric measurement and modeling of the photolysis rate coefficient of ozone to O(1D) during the Mauna Loa Observatory Photochemistry Experiment 2,” J. Geophys. Res. 101, 10,631–10,642 (1996).

VanderHage, J. C. H.

J. C. H. VanderHage, W. Boot, H. vanDop, P. G. Duynkerke, J. V.-G. de Arellano, “A photoelectric detector suspended under a balloon for actinic flux measurements,” J. Atmos. Ocean Technol. 11, 674–679 (1994).
[Crossref]

vanDop, H.

J. C. H. VanderHage, W. Boot, H. vanDop, P. G. Duynkerke, J. V.-G. de Arellano, “A photoelectric detector suspended under a balloon for actinic flux measurements,” J. Atmos. Ocean Technol. 11, 674–679 (1994).
[Crossref]

VanHoosier, M. E.

M. E. VanHoosier, Naval Research Laboratory (NRL), Washington, D.C. (personal communication, 1997) (data available at http://www.solar.nrl.navy.mil/susim_atlas.html ).

VanWeele, M.

M. VanWeele, J. V.-G. de Arellano, F. Kuik, “Combined measurements of UV-A actinic flux, UV-A irradiance and global radiation in relation to photodissociation rates,” Tellus Ser. B 47, 353–364 (1995).
[Crossref]

Volz-Thomas, A.

A. Volz-Thomas, A. Lerner, H.-W. Pätz, M. Schultz, D. S. McKenna, R. Schmitt, S. Madronich, E. P. Röth, “Airborne measurements of the photolysis frequency of NO2,” J. Geophys. Res. 101, 18,613–18,627 (1996).
[Crossref]

W. Junkermann, U. Platt, A. Volz-Thomas, “A photoelectric detector for the measurement of photolysis frequencies of ozone and other atmospheric molecules,” J. Atmos. Chem. 8, 203–227 (1989).
[Crossref]

M. Schultz, N. Houben, D. Mihelcic, H.-W. Pätz, A. Volz-Thomas, “A chemical actinometer for the calibration of photoelectric detectors for the measurement of jNO2 (in German),” Vol. JUEL 3135 of (Forschungszentrum Jülich GmbH, Jülich, 1995).

A. Kraus, T. Brauers, D. Brüning, A. Hofzumahaus, F. Rohrer, N. Houben, H. W. Pätz, A. Volz-Thomas, “Results of the NO2-photolysis frequency intercomparison JCOM97” (in German), Vol. JUEL 3578 of (Forschungszentrum Jülich GmbH, Jülich, 1998).

Weller, G.

S. Madronich, G. Weller, “Numerical integration errors in calculated tropospheric photodissociation rate coefficients,” J. Atmos. Chem. 10, 289–300 (1990).
[Crossref]

White, N.

J. S. Nader, N. White, “Volumetric measurement of ultraviolet energy in an urban atmosphere,” Environ. Sci. Technol. 3, 848–854 (1969).
[Crossref]

Wilson, K. W.

K. G. Lindh, H. Buchberg, K. W. Wilson, “Omnidirectional ultraviolet radiometer,” Sol. Energy 8, 112–116 (1964).
[Crossref]

Wofsy, S. C.

J. A. Logan, M. J. Prather, S. C. Wofsy, M. B. McElroy, “Tropospheric chemistry: a global perspective,” J. Geophys. Res. 86, 7210–7254 (1981).
[Crossref]

Zafonte, L.

L. Zafonte, P. L. Rieger, J. R. Holmes, “Nitrogen dioxide photolysis in the Los Angeles atmosphere,” Environ. Sci. Technol. 11, 483–487 (1977).
[Crossref]

Zerefos, C. S.

A. F. Bais, C. S. Zerefos, C. T. McElroy, “Solar UV-B measurements with the double- and single-monochromator Brewer ozone spectrophotometers,” Geophys. Res. Lett. 23, 833–836 (1996).
[Crossref]

Appl. Opt. (1)

Atmos. Environ. (4)

F. C. Bahe, W. N. Marx, U. Schurath, E. P. Röth, “Determination of the absolute photolysis rate of ozone by sunlight, O3 + hν → O(1D) + O2(1Δg), at ground level,” Atmos. Environ. 13, 1515–1522 (1979).
[Crossref]

F. C. Bahe, U. Schurath, K. H. Becker, “The frequency of NO2 photolysis at ground level as recorded by a continuous actinometer,” Atmos. Environ. 14, 711–718 (1980).
[Crossref]

D. D. Parrish, P. C. Murphy, D. L. Albritton, F. C. Fehsenfeld, “The measurement of the photodissociation rate of NO2 in the atmosphere,” Atmos. Environ. 17, 1365–1379 (1983).
[Crossref]

S. Madronich, “Intercomparison of NO2 photodissociation and UV radiometer measurements,” Atmos. Environ. 21, 569–578 (1987).
[Crossref]

Environ. Sci. Technol. (2)

L. Zafonte, P. L. Rieger, J. R. Holmes, “Nitrogen dioxide photolysis in the Los Angeles atmosphere,” Environ. Sci. Technol. 11, 483–487 (1977).
[Crossref]

J. S. Nader, N. White, “Volumetric measurement of ultraviolet energy in an urban atmosphere,” Environ. Sci. Technol. 3, 848–854 (1969).
[Crossref]

Geophys. Res. Lett. (11)

M. Blumthaler, J. Gröbner, M. Huber, W. Ambach, “Measuring spectral and spatial variations of UVA and UVB sky radiance,” Geophys. Res. Lett. 23, 547–550 (1996).
[Crossref]

H. Slaper, H. A. J. M. Reinen, M. Blumenthaler, M. Huber, F. Kuik, “Comparing ground-level spectrally resolved solar UV measurements using various instruments: a technique resolving effects of wavelength shift and slit width,” Geophys. Res. Lett. 22, 2721–2724 (1995).
[Crossref]

A. F. Bais, C. S. Zerefos, C. T. McElroy, “Solar UV-B measurements with the double- and single-monochromator Brewer ozone spectrophotometers,” Geophys. Res. Lett. 23, 833–836 (1996).
[Crossref]

R. L. McKenzie, W. A. Matthews, P. V. Johnston, “The relationship between erythemal UV and ozone, derived from spectral irradiance measurements,” Geophys. Res. Lett. 18, 2269–2272 (1991).
[Crossref]

P. Kelley, R. R. Russel, W. T. Luke, G. L. Kok, “Rate of NO2 photolysis from the surface to 7.6-km altitude in clear sky and clouds,” Geophys. Res. Lett. 22, 2621–2624 (1995).
[Crossref]

W. Junkermann, “Measurements of the J(O1D) actinic flux within and above stratiform clouds and above snow surfaces,” Geophys. Res. Lett. 21, 793–796 (1994).
[Crossref]

C. T. McElroy, C. Midwinter, D. V. Barton, R. B. Hall, “A comparison of J values from the composition and photodissociative flux measurement with model calculations,” Geophys. Res. Lett. 22, 1365–1368 (1995).
[Crossref]

S. T. Bairai, D. H. Stedman, “Actinometric measurement of j〈O3-O(1D)〉 using a luminol detector,” Geophys. Res. Lett. 19, 2047–2050 (1992).
[Crossref]

M. Müller, A. Kraus, A. Hofzumahaus, “O3 → O(1D) photolysis frequencies determined from spectroradiometric measurements of solar actinic UV radiation: comparison with chemical actinometer measurements,” Geophys. Res. Lett. 22, 679–682 (1995).
[Crossref]

D. H. Stedman, W. Chameides, J. O. Jackson, “Comparison of experimental and computed values of j(NO2),” Geophys. Res. Lett. 2, 22–25 (1975).
[Crossref]

R. R. Dickerson, D. H. Stedman, W. L. Chameides, P. J. Crutzen, J. Fishman, “Actinometric measurements and theoretical calculations of j(O3), the rate of photolysis of ozone to O(1D),” Geophys. Res. Lett. 6, 833–836 (1979).
[Crossref]

J. Atmos. Chem. (10)

A. Kraus, A. Hofzumahaus, “Field measurements of atmospheric photolysis frequencies for O3, NO2, HCHO, H2O2 and HONO by UV spectroradiometry,” J. Atmos. Chem. 31, 161–180 (1998).
[Crossref]

S. Madronich, D. R. Hastie, B. A. Ridley, H. I. Schiff, “Measurement of the photodissociation coefficient of NO2 in the atmosphere: I. Method and surface measurements,” J. Atmos. Chem. 1, 3–25 (1983).
[Crossref]

H. Cotte, C. Devaux, P. Carlier, “Transformation of irradiance measurements into spectral actinic flux for photolysis rates measurements,” J. Atmos. Chem. 26, 1–28 (1997).
[Crossref]

W. Junkermann, U. Platt, A. Volz-Thomas, “A photoelectric detector for the measurement of photolysis frequencies of ozone and other atmospheric molecules,” J. Atmos. Chem. 8, 203–227 (1989).
[Crossref]

A. Hofzumahaus, T. Brauers, U. Platt, J. Callies, “Latitudinal variation of measured O3 photolysis frequencies J(O1D) and primary OH production rates over the Atlantic Ocean between 50 °N and 30 °S,” J. Atmos. Chem. 15, 283–298 (1992).
[Crossref]

T. Brauers, A. Hofzumahaus, “Latitudinal variation of measured NO2 photolysis frequencies over the Atlantic Ocean between 50 °N and 30 °S,” J. Atmos. Chem. 15, 269–282 (1992).
[Crossref]

S. Madronich, G. Weller, “Numerical integration errors in calculated tropospheric photodissociation rate coefficients,” J. Atmos. Chem. 10, 289–300 (1990).
[Crossref]

D. Daumont, J. B. J. Charbonnier, J. Malicet, “Ozone UV spectroscopy I: Absorption cross sections at room temperature,” J. Atmos. Chem. 15, 145–155 (1992).
[Crossref]

M. F. Merienne, A. Jenouvrier, B. Coquart, “The NO2 absorption spectrum: 1. Absorption cross sections at ambient temperature in the 300–500-nm region,” J. Atmos. Chem. 20, 281–297 (1995).
[Crossref]

U. Feister, “Measurements of chemically and biologically effective radiation reaching the ground,” J. Atmos. Chem. 19, 289–315 (1994).
[Crossref]

J. Atmos. Ocean Technol. (1)

J. C. H. VanderHage, W. Boot, H. vanDop, P. G. Duynkerke, J. V.-G. de Arellano, “A photoelectric detector suspended under a balloon for actinic flux measurements,” J. Atmos. Ocean Technol. 11, 674–679 (1994).
[Crossref]

J. Geophys. Res. (12)

L. T. Molina, M. J. Molina, “Absolute absorption cross sections of ozone in the 185–350-nm wavelength range,” J. Geophys. Res. 91, 14,501–14,508 (1986).
[Crossref]

D. Lubin, G. Mitchell, J. E. Frederick, A. D. Alberts, C. R. Booth, T. Lucas, D. Neuschuler, “A contribution towards understanding the biospherical significance of Antarctic ozone depletion,” J. Geophys. Res. 97, 7817–7828 (1992).
[Crossref]

R. E. Shetter, M. Müller, “Photolysis frequency measurements using actinic flux spectroradiometry during the PEM-Tropics Mission: Instrumentation description and some results,” J. Geophys. Res. 104, 5647–5661 (1999).
[Crossref]

K. O. Lantz, R. E. Shetter, C. A. Cantrell, S. J. Flocke, J. G. Calvert, S. Madronich, “Theoretical, actinometric, and radiometric determinations of the photolysis rate coefficient of NO2 during the Mauna Loa Observatory Photochemistry Experiment 2,” J. Geophys. Res. 101, 14,613–14,630 (1996).
[Crossref]

A. Ruggaber, R. Forkel, R. Dlugi, “Spectral actinic flux and its ratio to spectral irradiance by radiation transfer calculations,” J. Geophys. Res. 98, 1151–1162 (1993).
[Crossref]

A. Volz-Thomas, A. Lerner, H.-W. Pätz, M. Schultz, D. S. McKenna, R. Schmitt, S. Madronich, E. P. Röth, “Airborne measurements of the photolysis frequency of NO2,” J. Geophys. Res. 101, 18,613–18,627 (1996).
[Crossref]

J. A. Logan, M. J. Prather, S. C. Wofsy, M. B. McElroy, “Tropospheric chemistry: a global perspective,” J. Geophys. Res. 86, 7210–7254 (1981).
[Crossref]

R. E. Shetter, A. H. McDaniel, C. A. Cantrell, S. Madronich, J. G. Calvert, “Actinometer and Eppley radiometer measurements of the NO2 photolysis rate coefficient during the Mauna Loa Observatory Photochemistry Experiment,” J. Geophys. Res. 97, 10,349–10,359 (1992).
[Crossref]

R. E. Shetter, C. A. Cantrell, K. O. Lantz, S. J. Flocke, J. J. Orlando, G. S. Tyndall, T. M. Gilpin, C. A. Fischer, S. Madronich, J. G. Calvert, W. Junkermann, “Actinometric and radiometric measurement and modeling of the photolysis rate coefficient of ozone to O(1D) during the Mauna Loa Observatory Photochemistry Experiment 2,” J. Geophys. Res. 101, 10,631–10,642 (1996).

S. Madronich, “Photodissociation in the atmosphere, 1. Actinic flux and the effects of ground reflection and clouds,” J. Geophys. Res. 92, 9740–9752 (1987).
[Crossref]

R. R. Dickerson, D. H. Stedman, A. C. Delany, “Direct measurements of ozone and nitrogen dioxide photolysis rates in the troposphere,” J. Geophys. Res. 87, 4933–4946 (1982).
[Crossref]

T. E. Blackburn, S. T. Bairai, D. H. Stedman, “Solar photolysis of ozone to singlet D oxygen atoms,” J. Geophys. Res. 97, 10,109–10,117 (1992).
[Crossref]

J. Phys. Chem. (1)

C. A. Cantrell, J. A. Davidson, A. H. McDaniel, R. E. Shetter, J. G. Calvert, “Temperature-dependent formaldehyde cross section in the near-ultraviolet spectral region,” J. Phys. Chem. 94, 3902–3908 (1990).
[Crossref]

Metrologia (1)

G. Seckmeyer, G. Bernhard, B. Mayer, R. Erb, “High-accuracy spectroradiometry of solar ultraviolet radiation,” Metrologia 32, 697–700 (1995).
[Crossref]

Pageoph (1)

F. Bahe, U. Schurath, “Measurement of O(1D) formation by ozone photolysis in the troposphere,” Pageoph 116, 537–544 (1978).
[Crossref]

Planet. Space Sci. (1)

H. Levy, “Photochemistry of the lower troposphere,” Planet. Space Sci. 20, 919–935 (1972).
[Crossref]

Sol. Energy (1)

K. G. Lindh, H. Buchberg, K. W. Wilson, “Omnidirectional ultraviolet radiometer,” Sol. Energy 8, 112–116 (1964).
[Crossref]

Tellus Ser. B (1)

M. VanWeele, J. V.-G. de Arellano, F. Kuik, “Combined measurements of UV-A actinic flux, UV-A irradiance and global radiation in relation to photodissociation rates,” Tellus Ser. B 47, 353–364 (1995).
[Crossref]

Other (15)

K. L. Demerjian, K. L. Schere, J. T. Peterson, “Theoretical estimates of actinic (spherically integrated) flux and photolytic rate constants of atmospheric species in the lower troposphere,” in Advances in Environmental Science and Technology, Vol. 10 of NATO ASI Series, J. J. N. Pitts, R. L. Metcalf, D. Grosjean, eds. (Wiley, New York, 1980), pp. 369–459.

A. Kylling, Norwegian Institute for Air Research (NILU), Kjeller, Norway (personal communication, 1997).

M. Schultz, N. Houben, D. Mihelcic, H.-W. Pätz, A. Volz-Thomas, “A chemical actinometer for the calibration of photoelectric detectors for the measurement of jNO2 (in German),” Vol. JUEL 3135 of (Forschungszentrum Jülich GmbH, Jülich, 1995).

M. Müller, “Messung der aktinischen ultravioletten Strahlung und der Ozon-Photolysefrequenz in der Atmosphäre mittels Filterradiometrie und Spektralradiometrie,” Ph.D. dissertation (University of Bonn, Bonn, Germany, 1994).

J. Lenoble, Atmospheric Radiative Transfer (A. Deepak, Hampton, Va., 1993).

J. H. Seinfeld, S. N. Pandis, Atmospheric Chemistry and Physics (Wiley, New York, 1998).

B. Mayer, Messung und Modellierung der spektralen UV Bestrahlungsstärke in Garmisch-Partenkirchen, Vol. 45–97 of Schriftenreihe des Fraunhofer-Instituts für Atmosphärische Umweltforschung (Wissenschafts-Verlag Maraun, Frankfurt, 1997).

W. B. DeMore, S. P. Sander, C. J. Howard, A. R. Ravishankara, D. M. Golden, C. E. Kolb, R. F. Hampson, M. J. Kurylo, M. J. Molina, Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, (1997).

“Setting standards for European ultraviolet spectroradiometers,” Vol. EUR16153 of , B. G. Gardiner, P. J. Kirsch, eds. (European Commission, Brussels, 1995).

W. Budde, Physical Detectors of Optical Radiation, Vol. 4 of Optical Radiation Measurements (Academic, Orlando, Fla., 1983).

E. P. Röth, Universität-Gesamthochschule Essen, Essen, Germany (personal communication, 1994).

M. E. VanHoosier, Naval Research Laboratory (NRL), Washington, D.C. (personal communication, 1997) (data available at http://www.solar.nrl.navy.mil/susim_atlas.html ).

R. Schmitt, Meteorologie Consult GmbH, Glashütten (personal communication, 1997).

F. Rohrer, Forschungszentrum Jülich, Jülich, (personal communication, 1997).

A. Kraus, T. Brauers, D. Brüning, A. Hofzumahaus, F. Rohrer, N. Houben, H. W. Pätz, A. Volz-Thomas, “Results of the NO2-photolysis frequency intercomparison JCOM97” (in German), Vol. JUEL 3578 of (Forschungszentrum Jülich GmbH, Jülich, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Polar diagrams of the relative angular response of detectors for single-hemispheric measurements. The solid curves in (a) and (b) represent the response of ideal 2π sr detectors for actinic flux and irradiance, respectively, whereas the solid curve in (c) shows the response of our real detector. The lengths of the arrows indicate the relative sensitivity in the given direction. Isotropic response functions [dashed curves in (b) and (c)] are shown for comparison.

Fig. 2
Fig. 2

Normalized irradiance emax) = E λmax)/F λ(2π sr) and normalized actinic flux fmax) = F λmax)/F λ(2π sr) for the case of isotropic sky radiance (without direct sunlight) and a field of view restricted to polar angles ϑ = 0° - ϑmax. F λ(2π sr) denotes the actinic flux from the full hemisphere (ϑmax = 90°).

Fig. 3
Fig. 3

Schematic diagram of the spectroradiometer: DM, double monochromator; HV, high-voltage supply; AMP, transimpedance amplifier; ADC, analog–digital converter; PC, personal computer; DL, 10-channel data logger; SMD, stepping motor drive; FWD, filter wheel drive; FW, filter wheel with optical shutter.

Fig. 4
Fig. 4

Schematic diagram of the receiver optic. A shadow ring serves as an artificial horizon to restrict the field of view to one hemisphere (2π sr). A drying cartridge prevents condensation of humidity at cold ambient temperatures. The quartz fiber bundle connects the diffuser to the entrance of the double monochromator.

Fig. 5
Fig. 5

Relative angular dependence Z p of the spectroradiometer sensitivity as a function of polar angle ϑ. The different symbols denote measurements at four different azimuthal angles: □, φ = 0°; △, φ = 90°; ○, φ = 180°; ◇, φ = 270°. The monochromator wavelength was set at 300 nm. The solid line represents the response of an ideal 2π sr actinic flux detector.

Fig. 6
Fig. 6

Real three-dimensional receiver irradiated by a lamp at the working distance z 0 from the reference point (tip of the outer quartz dome) of the receiver: S, outer surface of the diffuser. The real detector can be thought to behave like a virtual plane receiver with an active surface, S′, being a projection of S (see Appendix A). The displacement Δz of the plane of S′ relative to the reference point has a distinct value that is a fixed property of the real receiver.

Fig. 7
Fig. 7

Plot of the inverse square root of the spectroradiometer signal I λ as a function of distance z between the lamp and the reference point of the receiver optic (Fig. 6). The different symbols denote measurements at different wavelengths. The solid lines are regression lines that intersect the abscissa at z = -Δz.

Fig. 8
Fig. 8

Absolute detection sensitivity D 0(λ) of the spectroradiometer as a function of wavelength.

Fig. 9
Fig. 9

Actinic flux spectrum (2π sr) measured at a solar zenith angle of 30° on 16 June 1997 in Jülich (50.6 °N, 6.2 °E). Partially resolved Fraunhofer lines are seen in the spectrum, which is plotted on a linear (a) and a logarithmic (b) scale.

Fig. 10
Fig. 10

Example of the spectral photolysis frequency σϕF λ (10-6 s-1 nm-1) of the ozone photodissociation leading to the formation of electronically excited O(1D) atoms (reaction R1). For comparison the photodissociation cross section σϕ (10-18 cm2) and the actinic flux spectrum F λ (1014 cm-2 s-1 nm-1) are also displayed.

Fig. 11
Fig. 11

Relative distributions of the spectral photolysis frequencies σϕF λ of ozone (reaction R1) and nitrogen dioxide (reaction R6). Owing to the finite scanning speed (typically 1.5 nm s-1) of the spectroradiometer, the integral photolysis frequencies J O1 D and J NO2 are measured effectively at different times, t 1 and t 2, respectively, defined by the medians of the spectral distributions of the photolysis frequencies.

Fig. 12
Fig. 12

Diurnal profiles of J O1 D and J NO2 measured on a clear day (23 August 1994) at ground in northeast Germany (54 °N, 12 °E).4 The ground albedo contribution was ∼4%.

Fig. 13
Fig. 13

Optical receiver irradiated by a collimated beam collinear with the rotational symmetry axis of the optical receiver. S′ and ds′ are projections of the outer diffuser surfaces, S and ds, onto a plane perpendicular to the optical axis.

Fig. 14
Fig. 14

Receiver irradiated by a lamp at the working distance z 0 (Fig. 6). The surface element ds(r) is displaced relative to the reference point of the receiver by the distance ξ(r) along the optical axis.

Tables (6)

Tables Icon

Table 1 Important Photodissociation Processes in Tropospheric Chemistry

Tables Icon

Table 2 Instrumental Specifications of the Spectroradiometer

Tables Icon

Table 3 Wavelength-Independent Errors of the Measured Spectral Actinic Fluxa

Tables Icon

Table 4 Systematic Error (Bias) of Calculated Photolysis Frequencies for Three Selected Processes Owing to the Spectral Bandpass of the Spectroradiometera

Tables Icon

Table 5 Systematic Error (Bias) of Calculated Photolysis Frequencies Owing to a Wavelength Error (Shift) of the Actinic Spectrum Recorded with a Bandpass of 1.0 nm (FWHM)a

Tables Icon

Table 6 Systematic Error (Bias) of Calculated Photolysis Frequencies due to Uncorrected Monochromator Stray Lighta

Equations (39)

Equations on this page are rendered with MathJax. Learn more.

J=-1ABdABdt,
Fλλ= Lλλ, ϑ, φdω.
J= σλϕλFλλdλ,
Eλλ= Lλλ, ϑ, φcosϑdω.
dIλλ=Dλ, ϑ, φLλλ, ϑ, φdω
=D0λZpλ, ϑ, φLλλ, ϑ, φdω.
dIλ=D0λZpϑLλλ, ϑ, φdω.
Iλ=D04πsr ZpϑLλϑ, φdω.
Iλ=D0ZHFλ2π sr,
ZH=1Fλ2π sr4πsr ZpϑLλϑ, φdω.
Zpideal=1for 0°ϑ90°,0for ϑ>90°,
Iλideal=D0Fλ2π sr.
Lλ=L0+L+L,
L0=F0δϑ0, φ0,
L=F2π,
L=F2π,
α=F0F0+F,
β=FF0+F.
ZHϑ0=αZpϑ0+1-α2πupperhemisphere Zpdω+β2πlowerhemisphere Zpdω,
Fλ2π sr=F0+F.
F=A2 cos ϑ0F0+F.
β=A1+2 cos ϑ0-1α.
Fλλ, ϑ=0°=Eλλ, ϑ=0°.
Iλλ=D0λEλλ.
Iλ=constz0+Δz-2.
Iλ-1/2=const-1/2z0+Δz.
dΦλ=Eλds,
ds=ds cos α.
dIλ=δrdΦλ.
Iλ=S δrEλds.
D0=S δrds.
Eλ=Eλz0z0z0+ξr2,
11+x21-2x if |x|  1,
Eλ=Eλz01-2ξrz0.
Iλ=Eλz0Sδrds-2z0S ξrδrds.
Iλ=D0Eλz0+Δz
=D0Eλz0z0z0+Δz2.
Iλ=D0Eλz01-2Δzz0.
Δz=S ξrδrdsS δrds.

Metrics