Abstract

We describe the application of partial-response (PR) maximum-likelihood (ML) detection in rewritable phase-change optical data storage. The input to this detector, which is simulated in software, is the actual signal (without any equalization), reproduced from reading of the recorded sequence on an optical disk. The detection algorithm involves the extraction of the impulse response from the readout signal, PR equalization, the adjustment of gain and recovery of clock, ML sequence estimation with the Viterbi algorithm, and analysis of PRML performance. With a laser wavelength of 0.69 µm and an objective lens with a numerical aperture of 0.6, three linear densities are examined: 0.35 and 0.31 µm/bit without modulation code and 0.2 µm/bit with the (1, 7) modulation code. The equalized signal exhibits good eye patterns, especially at the densities of 0.35 and 0.31 µm/bit. Analyses of noise and bit-error rate indicate that jitter, rather than noise, is the main obstacle to realizing ultrahigh density in phase-change media with PRML detection. We also briefly discuss the problem of the inherent nonlinear effect in phase-change readout.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Feinleib, J. de Nuerville, S. C. Moss, S. R. Ovshinsky, “The rapid reversible light-induced crystallization of amorphous semiconductors,” Appl. Phys. Lett. 18, 254–257 (1991).
    [Crossref]
  2. M. Libera, M. Chen, “Multilayered thin-film materials for phase-change erasable storage,” MRS Bull. 15, 40–45 (1990).
  3. T. Ohta, N. Akahira, I. Satoh, R. Imanaka, “Evolution of the phase-change optical disk into the multimedia era,” in Fourth International Symposium on Optical Storage (ISOS ’96)F. Gan, ed., Proc. SPIE2931, 7–12 (1996).
    [Crossref]
  4. K. A. Schouhamer Immink, “Coding methods for high-density optical recording,” Philips J. Res. 41, 410–430 (1986).
  5. P. H. Siegel, J. K. Wolf, “Modulation and coding for information storage,” IEEE Trans. Commun. 39, 68–86 (1991).
  6. P. Kabal, S. Pasupathy, “Partial-response signaling,” IEEE Trans. Commun. COM-23, 921–934 (1975).
    [Crossref]
  7. H. Kobayashi, “Correlative level coding and maximum-likelihood decoding,” IEEE Trans. Inf. Theory IT-17, 586–594 (1971).
    [Crossref]
  8. G. D. Forney, “Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference,” IEEE Trans. Inf. Theory IT-18, 363–378 (1972).
    [Crossref]
  9. J. W. M. Bergmans, Digital Baseband Transmission and Recording (Kluwer Academic, Boston, Mass., 1996), Chap. 6.
    [Crossref]
  10. H. Kobayashi, D. T. Tang, “Application of partial-response channel coding to magnetic recording system,” IBM J. Res. Dev. 15, 65–74 (1971).
    [Crossref]
  11. R. D. Cideciyan, F. Dolivo, R. Hermann, W. Hirt, W. Schott, “A PRML system for digital magnetic recording,” IEEE J. Sel. Areas Commun. 10, 38–56 (1992).
    [Crossref]
  12. R. T. Lynch, “Channels and codes for magnetooptical recording,” IEEE J. Sel. Areas Commun. 10, 57–72 (1992).
    [Crossref]
  13. L. Cheng, M. Mansuripur, D. G. Howe, “Partial-response equalization in magneto-optical disk readout: a theoretical investigation,” Appl. Opt. 34, 5153–5166 (1995).
    [Crossref] [PubMed]
  14. I. Ozgunes, B. Kumar, “Adaptive partial response (PR) signaling for magneto-optic (MO) read channels in the presence of transition noise,” in Coding and Signal Processing for Information Storage, R. M. Rao, S. A. Dianati, S. W. McLaughlin, M. Hassner, eds., Proc. SPIE2605, 77–83 (1995).
    [Crossref]
  15. M. Taguchi, A. Itakura, Y. Fujita, H. Izumi, M. Matsuura, “Partial-response maximum-likelihood channel for mark edge recording on magneto-optical disks,” Jpn. J. Appl. Phys. Part 1 35, 459–465 (1996).
    [Crossref]
  16. T. Narahara, K. Aratani, A. Fukumoto, S. Masuhara, “Partial-response maximum-likelihood method for magneto-optical recording,” Jpn. J. Appl. Phys. Part 1 36, 549–566 (1997).
    [Crossref]
  17. C. Peng, M. Mansuripur, “Sources of noise in erasable optical disk data storage,” Appl. Opt. 37, 921–928 (1998).
    [Crossref]
  18. A. Gallopolos, C. Heegard, P. H. Siegel, “The power spectrum of run-length-limited codes,” IEEE Trans. Commun. 37, 906–916 (1989).
    [Crossref]
  19. N. Akahira, N. Miyagawa, K. Nishiuchi, Y. Sakaue, E. Ohno, “High density recording on phase-change optical disks,” in Optical Data Storage ’95, G. R. Knight, H. Ooki, Y. S. Tyan, eds., Proc. SPIE2514, 294–301 (1995).
    [Crossref]
  20. T. Perkins, Z. A. Keirn, “A window-margin-like procedure for evaluating PRML channel performance,” IEEE Trans. Magn. 31, 1109–1114 (1995).
    [Crossref]
  21. J. M. Cioffi, “Least-squares storage-channel identification,” IBM J. Res. Dev. 30, 310–319 (1986).
    [Crossref]
  22. J. W. M. Bergmans, “A class of data-aided timing recovery schemes,” IEEE Trans. Commun. 43, 1819–1827 (1995).
    [Crossref]
  23. S. U. H. Qureshi, “Timing recovery for equalized partial-response system,” IEEE Trans. Commun. COM-24, 1326–1331 (1976).
    [Crossref]
  24. A. Viterbi, “Error bounds for convolutional codes and an asympto-optimum decoding algorithm,” IEEE Trans. Inf. Theory IT-13, 260–269 (1967).
    [Crossref]
  25. G. D. Forney, “The Viterbi algorithm,” Proc. IEEE 61, 268–277 (1973).
    [Crossref]

1998 (1)

1997 (1)

T. Narahara, K. Aratani, A. Fukumoto, S. Masuhara, “Partial-response maximum-likelihood method for magneto-optical recording,” Jpn. J. Appl. Phys. Part 1 36, 549–566 (1997).
[Crossref]

1996 (1)

M. Taguchi, A. Itakura, Y. Fujita, H. Izumi, M. Matsuura, “Partial-response maximum-likelihood channel for mark edge recording on magneto-optical disks,” Jpn. J. Appl. Phys. Part 1 35, 459–465 (1996).
[Crossref]

1995 (3)

L. Cheng, M. Mansuripur, D. G. Howe, “Partial-response equalization in magneto-optical disk readout: a theoretical investigation,” Appl. Opt. 34, 5153–5166 (1995).
[Crossref] [PubMed]

T. Perkins, Z. A. Keirn, “A window-margin-like procedure for evaluating PRML channel performance,” IEEE Trans. Magn. 31, 1109–1114 (1995).
[Crossref]

J. W. M. Bergmans, “A class of data-aided timing recovery schemes,” IEEE Trans. Commun. 43, 1819–1827 (1995).
[Crossref]

1992 (2)

R. D. Cideciyan, F. Dolivo, R. Hermann, W. Hirt, W. Schott, “A PRML system for digital magnetic recording,” IEEE J. Sel. Areas Commun. 10, 38–56 (1992).
[Crossref]

R. T. Lynch, “Channels and codes for magnetooptical recording,” IEEE J. Sel. Areas Commun. 10, 57–72 (1992).
[Crossref]

1991 (2)

J. Feinleib, J. de Nuerville, S. C. Moss, S. R. Ovshinsky, “The rapid reversible light-induced crystallization of amorphous semiconductors,” Appl. Phys. Lett. 18, 254–257 (1991).
[Crossref]

P. H. Siegel, J. K. Wolf, “Modulation and coding for information storage,” IEEE Trans. Commun. 39, 68–86 (1991).

1990 (1)

M. Libera, M. Chen, “Multilayered thin-film materials for phase-change erasable storage,” MRS Bull. 15, 40–45 (1990).

1989 (1)

A. Gallopolos, C. Heegard, P. H. Siegel, “The power spectrum of run-length-limited codes,” IEEE Trans. Commun. 37, 906–916 (1989).
[Crossref]

1986 (2)

K. A. Schouhamer Immink, “Coding methods for high-density optical recording,” Philips J. Res. 41, 410–430 (1986).

J. M. Cioffi, “Least-squares storage-channel identification,” IBM J. Res. Dev. 30, 310–319 (1986).
[Crossref]

1976 (1)

S. U. H. Qureshi, “Timing recovery for equalized partial-response system,” IEEE Trans. Commun. COM-24, 1326–1331 (1976).
[Crossref]

1975 (1)

P. Kabal, S. Pasupathy, “Partial-response signaling,” IEEE Trans. Commun. COM-23, 921–934 (1975).
[Crossref]

1973 (1)

G. D. Forney, “The Viterbi algorithm,” Proc. IEEE 61, 268–277 (1973).
[Crossref]

1972 (1)

G. D. Forney, “Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference,” IEEE Trans. Inf. Theory IT-18, 363–378 (1972).
[Crossref]

1971 (2)

H. Kobayashi, D. T. Tang, “Application of partial-response channel coding to magnetic recording system,” IBM J. Res. Dev. 15, 65–74 (1971).
[Crossref]

H. Kobayashi, “Correlative level coding and maximum-likelihood decoding,” IEEE Trans. Inf. Theory IT-17, 586–594 (1971).
[Crossref]

1967 (1)

A. Viterbi, “Error bounds for convolutional codes and an asympto-optimum decoding algorithm,” IEEE Trans. Inf. Theory IT-13, 260–269 (1967).
[Crossref]

Akahira, N.

T. Ohta, N. Akahira, I. Satoh, R. Imanaka, “Evolution of the phase-change optical disk into the multimedia era,” in Fourth International Symposium on Optical Storage (ISOS ’96)F. Gan, ed., Proc. SPIE2931, 7–12 (1996).
[Crossref]

N. Akahira, N. Miyagawa, K. Nishiuchi, Y. Sakaue, E. Ohno, “High density recording on phase-change optical disks,” in Optical Data Storage ’95, G. R. Knight, H. Ooki, Y. S. Tyan, eds., Proc. SPIE2514, 294–301 (1995).
[Crossref]

Aratani, K.

T. Narahara, K. Aratani, A. Fukumoto, S. Masuhara, “Partial-response maximum-likelihood method for magneto-optical recording,” Jpn. J. Appl. Phys. Part 1 36, 549–566 (1997).
[Crossref]

Bergmans, J. W. M.

J. W. M. Bergmans, “A class of data-aided timing recovery schemes,” IEEE Trans. Commun. 43, 1819–1827 (1995).
[Crossref]

J. W. M. Bergmans, Digital Baseband Transmission and Recording (Kluwer Academic, Boston, Mass., 1996), Chap. 6.
[Crossref]

Chen, M.

M. Libera, M. Chen, “Multilayered thin-film materials for phase-change erasable storage,” MRS Bull. 15, 40–45 (1990).

Cheng, L.

Cideciyan, R. D.

R. D. Cideciyan, F. Dolivo, R. Hermann, W. Hirt, W. Schott, “A PRML system for digital magnetic recording,” IEEE J. Sel. Areas Commun. 10, 38–56 (1992).
[Crossref]

Cioffi, J. M.

J. M. Cioffi, “Least-squares storage-channel identification,” IBM J. Res. Dev. 30, 310–319 (1986).
[Crossref]

de Nuerville, J.

J. Feinleib, J. de Nuerville, S. C. Moss, S. R. Ovshinsky, “The rapid reversible light-induced crystallization of amorphous semiconductors,” Appl. Phys. Lett. 18, 254–257 (1991).
[Crossref]

Dolivo, F.

R. D. Cideciyan, F. Dolivo, R. Hermann, W. Hirt, W. Schott, “A PRML system for digital magnetic recording,” IEEE J. Sel. Areas Commun. 10, 38–56 (1992).
[Crossref]

Feinleib, J.

J. Feinleib, J. de Nuerville, S. C. Moss, S. R. Ovshinsky, “The rapid reversible light-induced crystallization of amorphous semiconductors,” Appl. Phys. Lett. 18, 254–257 (1991).
[Crossref]

Forney, G. D.

G. D. Forney, “The Viterbi algorithm,” Proc. IEEE 61, 268–277 (1973).
[Crossref]

G. D. Forney, “Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference,” IEEE Trans. Inf. Theory IT-18, 363–378 (1972).
[Crossref]

Fujita, Y.

M. Taguchi, A. Itakura, Y. Fujita, H. Izumi, M. Matsuura, “Partial-response maximum-likelihood channel for mark edge recording on magneto-optical disks,” Jpn. J. Appl. Phys. Part 1 35, 459–465 (1996).
[Crossref]

Fukumoto, A.

T. Narahara, K. Aratani, A. Fukumoto, S. Masuhara, “Partial-response maximum-likelihood method for magneto-optical recording,” Jpn. J. Appl. Phys. Part 1 36, 549–566 (1997).
[Crossref]

Gallopolos, A.

A. Gallopolos, C. Heegard, P. H. Siegel, “The power spectrum of run-length-limited codes,” IEEE Trans. Commun. 37, 906–916 (1989).
[Crossref]

Heegard, C.

A. Gallopolos, C. Heegard, P. H. Siegel, “The power spectrum of run-length-limited codes,” IEEE Trans. Commun. 37, 906–916 (1989).
[Crossref]

Hermann, R.

R. D. Cideciyan, F. Dolivo, R. Hermann, W. Hirt, W. Schott, “A PRML system for digital magnetic recording,” IEEE J. Sel. Areas Commun. 10, 38–56 (1992).
[Crossref]

Hirt, W.

R. D. Cideciyan, F. Dolivo, R. Hermann, W. Hirt, W. Schott, “A PRML system for digital magnetic recording,” IEEE J. Sel. Areas Commun. 10, 38–56 (1992).
[Crossref]

Howe, D. G.

Imanaka, R.

T. Ohta, N. Akahira, I. Satoh, R. Imanaka, “Evolution of the phase-change optical disk into the multimedia era,” in Fourth International Symposium on Optical Storage (ISOS ’96)F. Gan, ed., Proc. SPIE2931, 7–12 (1996).
[Crossref]

Itakura, A.

M. Taguchi, A. Itakura, Y. Fujita, H. Izumi, M. Matsuura, “Partial-response maximum-likelihood channel for mark edge recording on magneto-optical disks,” Jpn. J. Appl. Phys. Part 1 35, 459–465 (1996).
[Crossref]

Izumi, H.

M. Taguchi, A. Itakura, Y. Fujita, H. Izumi, M. Matsuura, “Partial-response maximum-likelihood channel for mark edge recording on magneto-optical disks,” Jpn. J. Appl. Phys. Part 1 35, 459–465 (1996).
[Crossref]

Kabal, P.

P. Kabal, S. Pasupathy, “Partial-response signaling,” IEEE Trans. Commun. COM-23, 921–934 (1975).
[Crossref]

Keirn, Z. A.

T. Perkins, Z. A. Keirn, “A window-margin-like procedure for evaluating PRML channel performance,” IEEE Trans. Magn. 31, 1109–1114 (1995).
[Crossref]

Kobayashi, H.

H. Kobayashi, “Correlative level coding and maximum-likelihood decoding,” IEEE Trans. Inf. Theory IT-17, 586–594 (1971).
[Crossref]

H. Kobayashi, D. T. Tang, “Application of partial-response channel coding to magnetic recording system,” IBM J. Res. Dev. 15, 65–74 (1971).
[Crossref]

Kumar, B.

I. Ozgunes, B. Kumar, “Adaptive partial response (PR) signaling for magneto-optic (MO) read channels in the presence of transition noise,” in Coding and Signal Processing for Information Storage, R. M. Rao, S. A. Dianati, S. W. McLaughlin, M. Hassner, eds., Proc. SPIE2605, 77–83 (1995).
[Crossref]

Libera, M.

M. Libera, M. Chen, “Multilayered thin-film materials for phase-change erasable storage,” MRS Bull. 15, 40–45 (1990).

Lynch, R. T.

R. T. Lynch, “Channels and codes for magnetooptical recording,” IEEE J. Sel. Areas Commun. 10, 57–72 (1992).
[Crossref]

Mansuripur, M.

Masuhara, S.

T. Narahara, K. Aratani, A. Fukumoto, S. Masuhara, “Partial-response maximum-likelihood method for magneto-optical recording,” Jpn. J. Appl. Phys. Part 1 36, 549–566 (1997).
[Crossref]

Matsuura, M.

M. Taguchi, A. Itakura, Y. Fujita, H. Izumi, M. Matsuura, “Partial-response maximum-likelihood channel for mark edge recording on magneto-optical disks,” Jpn. J. Appl. Phys. Part 1 35, 459–465 (1996).
[Crossref]

Miyagawa, N.

N. Akahira, N. Miyagawa, K. Nishiuchi, Y. Sakaue, E. Ohno, “High density recording on phase-change optical disks,” in Optical Data Storage ’95, G. R. Knight, H. Ooki, Y. S. Tyan, eds., Proc. SPIE2514, 294–301 (1995).
[Crossref]

Moss, S. C.

J. Feinleib, J. de Nuerville, S. C. Moss, S. R. Ovshinsky, “The rapid reversible light-induced crystallization of amorphous semiconductors,” Appl. Phys. Lett. 18, 254–257 (1991).
[Crossref]

Narahara, T.

T. Narahara, K. Aratani, A. Fukumoto, S. Masuhara, “Partial-response maximum-likelihood method for magneto-optical recording,” Jpn. J. Appl. Phys. Part 1 36, 549–566 (1997).
[Crossref]

Nishiuchi, K.

N. Akahira, N. Miyagawa, K. Nishiuchi, Y. Sakaue, E. Ohno, “High density recording on phase-change optical disks,” in Optical Data Storage ’95, G. R. Knight, H. Ooki, Y. S. Tyan, eds., Proc. SPIE2514, 294–301 (1995).
[Crossref]

Ohno, E.

N. Akahira, N. Miyagawa, K. Nishiuchi, Y. Sakaue, E. Ohno, “High density recording on phase-change optical disks,” in Optical Data Storage ’95, G. R. Knight, H. Ooki, Y. S. Tyan, eds., Proc. SPIE2514, 294–301 (1995).
[Crossref]

Ohta, T.

T. Ohta, N. Akahira, I. Satoh, R. Imanaka, “Evolution of the phase-change optical disk into the multimedia era,” in Fourth International Symposium on Optical Storage (ISOS ’96)F. Gan, ed., Proc. SPIE2931, 7–12 (1996).
[Crossref]

Ovshinsky, S. R.

J. Feinleib, J. de Nuerville, S. C. Moss, S. R. Ovshinsky, “The rapid reversible light-induced crystallization of amorphous semiconductors,” Appl. Phys. Lett. 18, 254–257 (1991).
[Crossref]

Ozgunes, I.

I. Ozgunes, B. Kumar, “Adaptive partial response (PR) signaling for magneto-optic (MO) read channels in the presence of transition noise,” in Coding and Signal Processing for Information Storage, R. M. Rao, S. A. Dianati, S. W. McLaughlin, M. Hassner, eds., Proc. SPIE2605, 77–83 (1995).
[Crossref]

Pasupathy, S.

P. Kabal, S. Pasupathy, “Partial-response signaling,” IEEE Trans. Commun. COM-23, 921–934 (1975).
[Crossref]

Peng, C.

Perkins, T.

T. Perkins, Z. A. Keirn, “A window-margin-like procedure for evaluating PRML channel performance,” IEEE Trans. Magn. 31, 1109–1114 (1995).
[Crossref]

Qureshi, S. U. H.

S. U. H. Qureshi, “Timing recovery for equalized partial-response system,” IEEE Trans. Commun. COM-24, 1326–1331 (1976).
[Crossref]

Sakaue, Y.

N. Akahira, N. Miyagawa, K. Nishiuchi, Y. Sakaue, E. Ohno, “High density recording on phase-change optical disks,” in Optical Data Storage ’95, G. R. Knight, H. Ooki, Y. S. Tyan, eds., Proc. SPIE2514, 294–301 (1995).
[Crossref]

Satoh, I.

T. Ohta, N. Akahira, I. Satoh, R. Imanaka, “Evolution of the phase-change optical disk into the multimedia era,” in Fourth International Symposium on Optical Storage (ISOS ’96)F. Gan, ed., Proc. SPIE2931, 7–12 (1996).
[Crossref]

Schott, W.

R. D. Cideciyan, F. Dolivo, R. Hermann, W. Hirt, W. Schott, “A PRML system for digital magnetic recording,” IEEE J. Sel. Areas Commun. 10, 38–56 (1992).
[Crossref]

Schouhamer Immink, K. A.

K. A. Schouhamer Immink, “Coding methods for high-density optical recording,” Philips J. Res. 41, 410–430 (1986).

Siegel, P. H.

P. H. Siegel, J. K. Wolf, “Modulation and coding for information storage,” IEEE Trans. Commun. 39, 68–86 (1991).

A. Gallopolos, C. Heegard, P. H. Siegel, “The power spectrum of run-length-limited codes,” IEEE Trans. Commun. 37, 906–916 (1989).
[Crossref]

Taguchi, M.

M. Taguchi, A. Itakura, Y. Fujita, H. Izumi, M. Matsuura, “Partial-response maximum-likelihood channel for mark edge recording on magneto-optical disks,” Jpn. J. Appl. Phys. Part 1 35, 459–465 (1996).
[Crossref]

Tang, D. T.

H. Kobayashi, D. T. Tang, “Application of partial-response channel coding to magnetic recording system,” IBM J. Res. Dev. 15, 65–74 (1971).
[Crossref]

Viterbi, A.

A. Viterbi, “Error bounds for convolutional codes and an asympto-optimum decoding algorithm,” IEEE Trans. Inf. Theory IT-13, 260–269 (1967).
[Crossref]

Wolf, J. K.

P. H. Siegel, J. K. Wolf, “Modulation and coding for information storage,” IEEE Trans. Commun. 39, 68–86 (1991).

Appl. Opt. (2)

Appl. Phys. Lett. (1)

J. Feinleib, J. de Nuerville, S. C. Moss, S. R. Ovshinsky, “The rapid reversible light-induced crystallization of amorphous semiconductors,” Appl. Phys. Lett. 18, 254–257 (1991).
[Crossref]

IBM J. Res. Dev. (2)

H. Kobayashi, D. T. Tang, “Application of partial-response channel coding to magnetic recording system,” IBM J. Res. Dev. 15, 65–74 (1971).
[Crossref]

J. M. Cioffi, “Least-squares storage-channel identification,” IBM J. Res. Dev. 30, 310–319 (1986).
[Crossref]

IEEE J. Sel. Areas Commun. (2)

R. D. Cideciyan, F. Dolivo, R. Hermann, W. Hirt, W. Schott, “A PRML system for digital magnetic recording,” IEEE J. Sel. Areas Commun. 10, 38–56 (1992).
[Crossref]

R. T. Lynch, “Channels and codes for magnetooptical recording,” IEEE J. Sel. Areas Commun. 10, 57–72 (1992).
[Crossref]

IEEE Trans. Commun. (5)

P. H. Siegel, J. K. Wolf, “Modulation and coding for information storage,” IEEE Trans. Commun. 39, 68–86 (1991).

P. Kabal, S. Pasupathy, “Partial-response signaling,” IEEE Trans. Commun. COM-23, 921–934 (1975).
[Crossref]

A. Gallopolos, C. Heegard, P. H. Siegel, “The power spectrum of run-length-limited codes,” IEEE Trans. Commun. 37, 906–916 (1989).
[Crossref]

J. W. M. Bergmans, “A class of data-aided timing recovery schemes,” IEEE Trans. Commun. 43, 1819–1827 (1995).
[Crossref]

S. U. H. Qureshi, “Timing recovery for equalized partial-response system,” IEEE Trans. Commun. COM-24, 1326–1331 (1976).
[Crossref]

IEEE Trans. Inf. Theory (3)

A. Viterbi, “Error bounds for convolutional codes and an asympto-optimum decoding algorithm,” IEEE Trans. Inf. Theory IT-13, 260–269 (1967).
[Crossref]

H. Kobayashi, “Correlative level coding and maximum-likelihood decoding,” IEEE Trans. Inf. Theory IT-17, 586–594 (1971).
[Crossref]

G. D. Forney, “Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference,” IEEE Trans. Inf. Theory IT-18, 363–378 (1972).
[Crossref]

IEEE Trans. Magn. (1)

T. Perkins, Z. A. Keirn, “A window-margin-like procedure for evaluating PRML channel performance,” IEEE Trans. Magn. 31, 1109–1114 (1995).
[Crossref]

Jpn. J. Appl. Phys. Part 1 (2)

M. Taguchi, A. Itakura, Y. Fujita, H. Izumi, M. Matsuura, “Partial-response maximum-likelihood channel for mark edge recording on magneto-optical disks,” Jpn. J. Appl. Phys. Part 1 35, 459–465 (1996).
[Crossref]

T. Narahara, K. Aratani, A. Fukumoto, S. Masuhara, “Partial-response maximum-likelihood method for magneto-optical recording,” Jpn. J. Appl. Phys. Part 1 36, 549–566 (1997).
[Crossref]

MRS Bull. (1)

M. Libera, M. Chen, “Multilayered thin-film materials for phase-change erasable storage,” MRS Bull. 15, 40–45 (1990).

Philips J. Res. (1)

K. A. Schouhamer Immink, “Coding methods for high-density optical recording,” Philips J. Res. 41, 410–430 (1986).

Proc. IEEE (1)

G. D. Forney, “The Viterbi algorithm,” Proc. IEEE 61, 268–277 (1973).
[Crossref]

Other (4)

N. Akahira, N. Miyagawa, K. Nishiuchi, Y. Sakaue, E. Ohno, “High density recording on phase-change optical disks,” in Optical Data Storage ’95, G. R. Knight, H. Ooki, Y. S. Tyan, eds., Proc. SPIE2514, 294–301 (1995).
[Crossref]

I. Ozgunes, B. Kumar, “Adaptive partial response (PR) signaling for magneto-optic (MO) read channels in the presence of transition noise,” in Coding and Signal Processing for Information Storage, R. M. Rao, S. A. Dianati, S. W. McLaughlin, M. Hassner, eds., Proc. SPIE2605, 77–83 (1995).
[Crossref]

T. Ohta, N. Akahira, I. Satoh, R. Imanaka, “Evolution of the phase-change optical disk into the multimedia era,” in Fourth International Symposium on Optical Storage (ISOS ’96)F. Gan, ed., Proc. SPIE2931, 7–12 (1996).
[Crossref]

J. W. M. Bergmans, Digital Baseband Transmission and Recording (Kluwer Academic, Boston, Mass., 1996), Chap. 6.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Nonlinear effect in phase-change optical readout. (a) R c = R a = 20%, Φ = π; (b) R c = 20%, R a = 5%, Φ = 0. Curves, computed read signal from a pattern consisting of two 3T marks, separated by a 1T space along a track. Circles, computed readout signal for a single 3T mark superposed on a shifted version of itself. The difference between the two curves in each frame is shown in the inset.

Fig. 2
Fig. 2

Measured carrier-to-noise ratio (CNR) versus mark length for the phase-change disk used in this paper.

Fig. 3
Fig. 3

Power spectral density obtained by reading of a written track from the PC disk. Carrier signal, 4 MHz. The trace in (a) was obtained by a spectrum analyzer, with a resolution bandwidth of 30 kHz. The curve in (b) was obtained by fast Fourier transformation of the readout signal captured by a digitizing oscilloscope at 250 megasamples/s. The corresponding resolution bandwidth of the fast Fourier transform method was 30.5 kHz. During both writing and readout the linear velocity of the track was 5.175 m/s.

Fig. 4
Fig. 4

Computed signal-to-noise degradation versus the minimum mark length T for four different PR targets at a fixed track velocity (V = 5.175 m/s). In these calculations no modulation encoding is assumed.

Fig. 5
Fig. 5

Write waveforms for 1T, 2T, 3T, 4T, and 5T marks on the PC disk.

Fig. 6
Fig. 6

Image of some of the recorded marks in different tracks. The image was obtained by scanning optical microscopy with a blue laser beam (λ = 488 nm) focused on the storage layer of the disk through its 1.2-mm-thick polycarbonate substrate. The objective lens had NA = 0.8. Three frames are shown in this picture, each separated by a black strip. The minimum lengths of mark and space are ∼0.31 µm.

Fig. 7
Fig. 7

Extracted impulse and step response. The impulse response was extracted from the read signal of a random data pattern, with a minimum mark/space length of 0.5λ.

Fig. 8
Fig. 8

Transfer function H(f) of the required electronic filter for channel shaping to the PR (1 + D) target in the case of T = 0.5λ. (a) Amplitude, (b) phase.

Fig. 9
Fig. 9

Eye patterns before and after equalization to the (1 + D) target for a random data pattern with T = 0.5λ. There are ∼1900 bits in each frame.

Fig. 10
Fig. 10

(a) Extracted impulse response, (b) required amplitude of the transfer function H(f) for equalization to (1 + D) and (1 + D)2 targets. T = 0.45λ.

Fig. 11
Fig. 11

Eye patterns obtained (a) before equalization, (b) after equalization by the (1 + D) filter, (c) after equalization by the (1 + D)2 filter. The written data sequence is random without modulation coding, and the minimum lengths of mark and space are 0.31 µm. Approximately 900 bits are included in each of these eye patterns.

Fig. 12
Fig. 12

(a) Extracted impulse response, (b) required amplitude of the transfer function H(f) for the (1 + D)(1 + D + D 2) target when the data is (1, 7) coded. T = 0.3λ.

Fig. 13
Fig. 13

Eye patterns obtained (a) before equalization, (b) after equalization. The recorded random sequence is coded by the (1, 7) modulation code. T = 0.3λ. The PR target for equalization is (1 + D)(1 + D + D 2). Each frame has ∼1600 channel bits.

Fig. 14
Fig. 14

Measured distribution of the normalized difference metric Δm/ d min 2 in three cases: (1) PR target at 1 + D, T = 0.5λ, data is not modulated coded; (2) PR target at (1 + D)2, T = 0.45λ, data is not modulation coded; (3) PR target at (1 + D)(1 + D + D 2), T = 0.3λ, data is (1, 7) modulation coded.

Fig. 15
Fig. 15

Calculated error rate versus ΔSNR for three cases under ideal conditions: (1) PR target at 1 + D, T = 0.5λ, data is not modulation coded; (2) PR target at (1 + D)2, T = 0.45λ, data is not modulation coded; (3) PR target = (1 + D)(1 + D + D 2), T = 0.3λ, data is (1, 7) coded.

Tables (1)

Tables Icon

Table 1 Noise Variance σ2 and Squared Minimum Euclidian Distance dmin 2 for the PR Channels (1 + D), (1 + D)2, and (1 + D)(1 + D + D2)a

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

SNR=10 log10 Sf|Asf|2df Nfdfbefore equalization10 log10 Sf|Asf|2|Hf|2df Nf|Hf|2dfafter equalization.
τk+1=τk-αek, τdSk, τ/dτ,
τk+1=τk-αek, τ-0.5Sk+2+Sk+1-Sk-1+0.5Sk-2.
γk+1=γk-βek, τSk+ek-1, τSk-1,
S0k=3 for Sk, τηk1 for Sk, τ<ηk,
ηk=2+signS0k-2-2.

Metrics